
algorithms

Article

Modified Migrating Birds Optimization for
Energy-Aware Flexible Job Shop Scheduling Problem

Hongchan Li 1, Haodong Zhu 1,* and Tianhua Jiang 2

1 School of Computer and Communication Engineering, Zhengzhou University of Light Industry,
Zhengzhou 450002, China; 2011017@zzuli.edu.cn

2 School of Transportation, Ludong University, Yantai 264025, China; jth1127@163.com
* Correspondence: 2011016@zzuli.edu.cn

Received: 1 February 2020; Accepted: 18 February 2020; Published: 20 February 2020
����������
�������

Abstract: In recent decades, workshop scheduling has excessively focused on time-related indicators,
while ignoring environmental metrics. With the advent of sustainable manufacturing, the energy-aware
scheduling problem has been attracting more and more attention from scholars and researchers.
In this study, we investigate an energy-aware flexible job shop scheduling problem to reduce the
total energy consumption in the workshop. For the considered problem, the energy consumption
model is first built to formulate the energy consumption, such as processing energy consumption,
idle energy consumption, setup energy consumption and common energy consumption. Then,
a mathematical model is established with the criterion to minimize the total energy consumption.
Secondly, a modified migrating birds optimization (MMBO) algorithm is proposed to solve the
model. In the proposed MMBO, a population initialization scheme is presented to ensure the initial
solutions with a certain quality and diversity. Five neighborhood structures are employed to create
neighborhood solutions according to the characteristics of the problem. Furthermore, both a local
search method and an aging-based re-initialization mechanism are developed to avoid premature
convergence. Finally, the experimental results validate that the proposed algorithm is effective for the
problem under study.

Keywords: flexible job shop; energy-aware scheduling; energy consumption; modified migrating
birds optimization

1. Introduction

Nowadays, with the increasing emphasis on the environmental protection and sustainable
development, manufacturing enterprises are facing not only economic pressure but also environmental
challenges. It is very important to take some measurements to control energy consumption. Several
different directions are being pursued by researchers in academia and industry area, which concentrate
on the machine level, the product level and the management level. Due to the considerable investment,
it may be only appropriate for large-size enterprises to purchase energy-saving machines and develop
energy-efficient products in the perspective of the machine level and product level. Therefore, the
existing research has mainly focused on the management level. Production scheduling is one of
the most important factors in production management, which allocates limited resources to tasks in
order to reach expected targets during the whole manufacturing process. In recent years, production
scheduling has proved to be an effective way of reducing energy consumption [1–3]. There has been
an increasing number of studies on energy-aware scheduling problems.

The flexible job shop scheduling problem (FJSP) is a well-known combinatorial optimization
problem, which is extended from the classical job shop scheduling problem (JSP) [4,5]. Compared
with the JSP, FJSP considers not only the operation permutation of each machine but also the machine

Algorithms 2020, 13, 44; doi:10.3390/a13020044 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0002-9260-4041
http://dx.doi.org/10.3390/a13020044
http://www.mdpi.com/journal/algorithms
https://www.mdpi.com/1999-4893/13/2/44?type=check_update&version=2

Algorithms 2020, 13, 44 2 of 16

assignment to each operation, which makes it closer to practical production. Due to the essential
complexity and the wide applications, FJSP has been paid a lot of attention by researchers at home
and abroad. However, most of the published literature mainly concentrates on time-related metrics,
such as makespan, earliness/tardiness, workload and flow time, while ignoring the indicators closely
related to energy and environment. With the increasing promotion of sustainable manufacturing,
energy-aware flexible job shop scheduling (EFJSP) has attracted the interest of scholars. Mokhtari
and Hasani [6] presented a mathematical model to optimize the total completion time, the system
availability and the total energy cost. For such a multi-objective model, an enhanced evolutionary
algorithm was proposed to obtain the optimal scheduling solutions. Lei et al. [7] investigated a
FJSP with the consideration of workload balance and energy consumption. A shuffled frog leaping
algorithm was developed to get the trade-off between the two indicators. Wu and Sun [8] established
a mathematical model to save energy in a flexible job shop by determining when to turn machines
on/off and which speed level to select. A non-dominated sorted genetic algorithm was designed to
solve this complicated problem. Wang et al. [9] developed a two-stage energy-saving optimization
approach for the flexible job shop scheduling problem. Lei et al. [10] investigated a flexible job shop
scheduling problem with the objective of minimizing makespan and total tardiness under an energy
consumption threshold. A two-phase evolutionary algorithm was proposed based on an imperialist
competitive algorithm and a variable neighborhood search algorithm. Meng et al. [11] addressed
the flexible job shop scheduling problem with a criterion to reduce the total energy consumption.
Six mixed-integer linear programming models were presented in the study, whose correctness and
effectiveness were tested by using CPLEX solver through numerical experiments. Jiang and Deng [12]
established a mathematical model for the energy-aware flexible job shop scheduling problem to
minimize the energy cost and the earliness/tardiness cost. A bi-population based discrete cat swarm
optimization algorithm was developed to solve the problem. Yin et al. [13] proposed a mathematical
model for the flexible job shop with a variable machining speed to optimize productivity, energy
efficiency and noise reduction. A multi-objective genetic algorithm was proposed to deal with the
model. Song et al. [14] presented a mathematical model of a flexible job shop, considering energy
consumption and preventive maintenance and proposed a non-dominated sorting genetic algorithm II
(NSGA-II) to optimize the maximum completion time, the total processing energy cost and the total
maintenance energy cost. Liu et al. [15] introduced an integrated green flexible job shop scheduling
problem with the consideration of crane transportation. A hybrid algorithm, called as GA–GSO–GTHS,
was developed based on a genetic algorithm (GA), a glowworm swarm optimization (GSO) algorithm
and a green transport heuristic strategy (GTHS). Zhang et al. [16] built a new mathematical model of the
flexible job shop under a time of use strategy to minimize the makespan and electricity consumption
cost. A hybrid algorithm based on the biogeography-based optimization algorithm and variable
neighborhood search was proposed to solve the bi-objective problem. Zhang et al. [17] studied an
energy-saving flexible job shop scheduling problem to minimize the makespan and the total energy
consumption. A modified shuffled frog-leaping algorithm (SFLA) was employed to solve the model.
Lu et al. [18] proposed a discrete water wave optimization algorithm to solve an energy-conscious
FJSP with various machining speeds.

With regards to the above literature, the relevant research on the energy-aware FJSP is still in the
initial stage of exploration. Extensive work is yet to be carried out to narrow the gap between theoretical
research and practical production. In the practical production, each machine can be operated by
different workers belonging to an eligible worker set. In other words, for each machine, an appropriate
worker needs to be chosen from the eligible worker set before processing jobs on it. In this case,
the processing time of each job is dependent on both the assigned machine and the selected worker.
Therefore, the worker can be also viewed as a kind of limited resource to be scheduled in the workshop.
Such a problem is always categorized as a dual-resource constrained flexible job shop scheduling
problem (DRCFJSP) [19]. However, in the previous research, the environmental metrics were not
considered in the DRCFJSP. Nowadays, with increasing wage costs, the rational use of limited workers

Algorithms 2020, 13, 44 3 of 16

has become more and more important. Therefore, the integration of energy-aware scheduling and
dual-resource constraints in the FJSP, named the energy-aware dual-resource constrained flexible job
shop scheduling problem (EDRCFJSP), is a new issue which deserves to be studied.

To the best of the authors’ knowledge, there are few studies related to the EDRCFJSP that
are more complex and that require more hard work to solve than the traditional FJSP [20]. Thus,
an effective scheduling algorithm is highly desirable for the solving of the problem under study.
In recent years, swarm intelligence algorithms have been developed and widely used for solving
various optimization problems [21–28]. In this paper, a swarm intelligence algorithm, namely the
migrating birds optimization (MBO), is introduced to deal with the addressed problem, which was
originally proposed for quadratic assignment problems [29]. Since then, the MBO algorithm has been
successfully applied to various optimization problems, such as the production scheduling problem [30],
closed loop layout [31], knapsack problem [32], travelling salesman problem [33] and task allocation
problem [34]. However, as far as the we know, there is no application of the MBO algorithm on
the EDRCFJSP. In addition, the MBO is a kind of neighborhood search algorithm, which makes
it easy to adopt for the production scheduling problem. Thus, according to the characteristics of
the addressed problem, we present a modified MBO algorithm (MMBO) for solving the EDRCFJSP.
Some effective technologies are included alongside the original MBO, such as population initialization,
problem-based neighborhood structures, local search strategy and an age-based re-initialization
mechanism. Experimental data demonstrate the effectiveness of the proposed algorithm for solving
the EDRCFJSP.

The rest of this paper is organized as follows. In Section 2, mathematical model of EDRCFJSP is
established. In Section 3, the proposed MMBO algorithm is described in detail. Section 4 shows the
related experimental data and Section 5 provides conclusions and future works.

2. Mathematical Model of EDRCFJSP

2.1. Problem Description

In the workshop, n independent jobs are supposed to be processed on m machines with w workers.
For each job i, Ji operations need to be processed following a given processing order, i.e., the precedence
order between operations of the same job is fixed and known. Each operation must be processed
by a machine selected from the operation’s eligible machine set. In addition, each machine must be
operated by a worker selected from the machine’s eligible worker set. The processing time of each
operation is dependent on the assigned machine and the selected worker. Moreover, different energy
consumption may be needed by different machines and workers. Thus, the EDRCFJSP problem can be
decomposed into three sub-problems: machine assignment (MA), worker selection (WS) and operation
permutation (OP). The optimization goal is to minimize the total energy consumption in the workshop.
Some assumptions should be considered as follows:

(1) Jobs, machines and workers are ready at the time zero;
(2) Each machine can process, at most, one operation at a time;
(3) Each worker can operate, at most, one machine at a time;
(4) For each operation, preemption is not permitted;
(5) Any two operations belonging to different jobs are independent of each other;
(6) A worker cannot be changed when he/she is processing jobs;
(7) Each machine cannot be completely turned off unless all jobs assigned to it are finished;
(8) The transportation times of jobs and moving times of the workers between different machines

are ignored.

Before formulating the problem, some necessary symbols are listed as follows:
n: Number of jobs, i = 1, 2, 3, . . . , n;
m: Number of machines, k = 1, 2, 3, . . . , m;

Algorithms 2020, 13, 44 4 of 16

w: Number of workers, l = 1, 2, 3, . . . , w;
Ji: Number of operations in job i, j = 1, 2, 3, . . . , Ji;
Oi j: The jth operation of job i;
F: The objective function;
E1: The processing energy consumption;
E2: The idle energy consumption;
E3: The setup energy consumption;
E4: The common energy consumption;
Si j: Start time of Oi j;
Ci j: Completion time of Oi j;
pi jkl: Processing time of Oi j on machine k operated by worker l;
PEi jkl: Processing energy consumption coefficient of Oi j on machine k operated by worker l;
SEk: Idle energy consumption coefficient of machine k when it is running in the idle state;
M: A big positive constant number;
S′k: Start time of machine k;
C′k: Completion time of machine k;
Wk: Workload of machine k, which equals the sum of the processing times of jobs assigned to

machine k;
TSTk: Total setup time of machine k;
TUk: Setup energy consumption coefficient of machine k;
CE: Common energy consumption coefficient;
Cmax: Final completion time (makspan) of the workshop;
SUi′ j′i jk: Setup time of machine k when Oi j is processed immediately after Oi′ j′

yi jkl: A binary variable, if Oi j is processed on machine k operated by worker l, yi jkl = 1; otherwise,
yi jkl = 0;

zi ji′ j′k: A binary variable, if Oi j is processed on machine k prior to Oi′ j′ , zi ji′ j′k = 1; otherwise,
zi ji′ j′k = 0.

2.2. Energy Consumption Model

2.2.1. Processing Energy Consumption

The processing energy consumption (E1) denotes the energy consumed by machines for processing
operations, which can be formulated by Equation (1).

E1 =
n∑

i=1

Ji∑
j=1

m∑
k=1

w∑
l=1

PEi jklyi jklpi jkl (1)

2.2.2. Idle Energy Consumption

The idle energy consumption (E2) represents the energy consumed by machines during the time
interval between each pair of consecutive jobs, which can be represented by Equation (2).

E2 =
m∑

k=1

SEk(Ck − Sk −Wk) (2)

Algorithms 2020, 13, 44 5 of 16

2.2.3. Setup Energy Consumption

The energy consumption (E3) defines the energy consumed by machines during the setup process
for each pair of consecutive jobs assigned to the same machine.

E3 =
m∑

k=1

TUkTSTk (3)

2.2.4. Common Energy Consumption

The common energy consumption (E4) is the energy consumed for maintaining the daily operation
of the workshop, such as lighting and air conditioning, which can be calculated by Equation (4).

E4 = CE×Cmax (4)

2.2.5. Total Energy Consumption

The total energy consumption (F) is the sum of the processing energy consumption, the idle
energy consumption, the setup energy consumption and the common energy consumption, which is
shown in Equation (5).

F = E1 + E2 + E3 + E4 (5)

2.3. Problem Modelling

In our previous work, an energy-aware flexible job shop scheduling problem is studied without the
consideration of the dual-resource constraints [12]. Based on the existing model, a new mathematical
model of the EDRCFJSP problem is modeled as below.

minF =
n∑

i=1

Ji∑
j=1

m∑
k=1

w∑
l=1

PEi jklyi jklpi jkl +
m∑

k=1

SEk(Ck − Sk −Wk) +
m∑

k=1

TUkTSTk + CE×Cmax (6)

s.t. Ci j − Si j =
m∑

k=1

w∑
l=1

yi jklpi jkl, i = 1, 2, . . . , n; j = 1, 2, . . . , Ji (7)

Si(j+1) −Ci j ≥ 0, i = 1, 2, . . . , n; j = 1, 2, . . . , Ji − 1 (8)

Si′ j′ + M(1− zi ji′ j′k) ≥ Ci j + SUi ji′ j′k, i, i′ = 1, 2, . . . , n; j, j′ = 1, 2, . . . , Ji; k = 1, 2, . . . , m (9)

Si j + Mzi ji′ j′k ≥ Ci′ j′ + SUi′ j′i jk, i, i′ = 1, 2, . . . , n; j, j′ = 1, 2, . . . , Ji; k = 1, 2, . . . , m (10)

m∑
k=1

w∑
l=1

yi jkl =1, i = 1, 2, . . . , n; j = 1, 2, . . . , Ji (11)

Wk =
n∑

i=1

Ji∑
j=1

w∑
l=1

pi jklyi jkl, k = 1, 2, . . . , m (12)

TSTk =
n∑

i=1

Ji∑
j=1

n∑
i′=1

Ji′∑
j′=1

SUi′ j′i jkzi′ j′i jk, k = 1, 2, . . . , m (13)

C′k = max
{
Ci jyi jkl

}
, i = 1, 2, . . . , n; j = 1, 2, . . . , Ji; k = 1, 2, . . . , m; l = 1, 2, . . . , w (14)

S′k = min
{
Si jyi jkl

}
, i = 1, 2, . . . , n; j = 1, 2, . . . , Ji; k = 1, 2, . . . , m; l = 1, 2, . . . , w (15)

yi jkl ∈ {0, 1}, i = 1, 2, . . . , n; j = 1, 2, . . . , Ji; k = 1, 2, . . . , m; l = 1, 2, . . . , w (16)

Algorithms 2020, 13, 44 6 of 16

zi ji′ j′k ∈ {0, 1}, i, i′ = 1, 2, . . . , n; j, j′ = 1, 2, . . . , Ji; k = 1, 2, . . . , m (17)

Equation (6) is the objective function; Constraint (7) indicates that the processing of each operation
must not be interrupted; Constraint (8) defines the precedence order between operations in a job;
Constraints (9) and (10) ensure that each machine cannot process more than one operation at a time.
For any two operations on the same machine, the processing of the operation cannot be started until its
preceding operation is completed and the setup of the machine is finished; Constraint (11) represents
that each operation is processed by one machine and the assigned machine is operated by one worker.
Constraint (12) shows the workload of each machine; Constraint (13) gives the total setup time of each
machine; Constraint (14) denotes the completion time of each machine; Constraint (15) defines the start
time of each machine; Constraints (16) and (17) show the binary variables.

3. Modified Migrating Birds Optimization

A modified migrating birds optimization (MMBO) algorithm is implemented in this section for
solving the problem. Firstly, a three-vector encoding method is employed to represent the scheduling
solution. Secondly, a population initialization method is developed to generate the initial solutions.
Thirdly, five neighborhood structures are presented to create neighborhood solutions according to the
characteristics of the problem. In addition, a local search algorithm and an aging-based re-initialization
mechanism are developed to avoid premature convergence.

3.1. The Basic MBO Algorithm

MBO is a swarm intelligence algorithm which originates from birds’ migration behavior when
they form a V-shaped formation [29]. In the MBO, each solution corresponds to a bird. In the flock,
one bird is viewed as the leader and the others follow in a line on the right and left sides of the leader
bird. The MBO algorithm consists of four steps: population initialization, improvement of the leader
bird, improvement of the following birds and selection of a new leader bird.

First, a given number of birds are randomly generated and one bird is selected as the leader
bird. In order to improve the leading solution, the MBO generates several neighboring solutions by
exploring the leader bird’s neighborhood. If the best solution among these neighbors is better than
the leading solution, the leading solution is replaced by the best neighbor. Then, for each following
bird, it evaluates its own neighboring solutions and a certain number of the best unused neighboring
solutions of its previous solution in the line. The best solution will be the new solution if it is better
than the current one. This updating process progresses from the leader towards the tail of the left
or right lines. Once all solutions in the flock are considered, this updating process will be repeated.
After several tours, the leader bird will be moved to one of the tails, and a solution behind it will take
up the position of the leading solution. Then, another loop starts. The evolutionary procedure will
not stop unless a termination condition is satisfied. The detailed steps of the basic MBO are shown
as follows:

Step 1: Set the parameters of the MBO algorithm, such as the population size popsize, the number
of neighboring solutions k′, the number of shared neighboring solutions x, the number of tours G,
the predefined lifespan ls, and the maximum iteration Kmax.

Step 2: Generate the initial population in a random manner.
Step 3: Set the iteration number K← 1 , the tour number g← 1 , the flag numer f lag← 1 .
Step 4: Randomly generate k′ neighboring solutions of the leader bird. Improve the leader solution

and fill the shared neighboring sets SL and SR, each of which has x elements.
Step 5: For each solution πL in the left line L, randomly generate k′ − x neighboring solutions. NL

represents the set of the k′ − x neighbors. The best solution in NL ∪ SL is used to replace the original
solution. Empty SL and refill it by using x best unused solutions in NL ∪ SL.

Algorithms 2020, 13, 44 7 of 16

Step 6: For each solution πR in the right line R, randomly generate k′ − x neighboring solutions.
NR represents the set of the k′ − x neighbors. The best solution in NR ∪ SR is used to replace the original
solution. Empty SR and refill it by using x best unused solutions in NR ∪ SR.

Step 7: Evaluate the fitness value of each individual and update the current best solution.
Step 8: Set g← g + 1 . If the number of tours G is met, go to Step 9; otherwise, go to Step 4.
Step 9: If f lag = 1, move the leader to the end of L, and set the first solution of L as the new leader,

and let f lag = 0; otherwise, move the leader to the end of R, and set the first solution of R as the new
leader, and let f lag = 1.

Step 10: Set K← K + 1 and check the terminate condition. If K > Kmax is not met, then set g← 1 ,
and go to Step 4; otherwise, go to Step 11.

Step 11: End the procedure.

3.2. Solution Encoding

To implement the application of the algorithm in solving a problem, one of the key tasks is to
adopt an appropriate encoding method, which can represent the necessary information about the
considered problem. The EDRCFJSP is made up of three sub-problems: machine assignment (MA),
worker selection (WS) and operation permutation (OP). Therefore, an encoding method with three
vectors is adopted to represent the scheduling solution, namely the MA vector, the WS vector and
the OP vector, which represent the assignment of operations to machines, the selection of workers for
machines and the processing sequence of operations on machines. The size of each vector is equal to
the numbers of all operations.

Taking a 3 × 3 × 2 (three jobs, three machines and two workers) problem for example, it is
assumed that each job consists of three operations. Therefore, the length of each vector is equal to
nine. The encoding method can be illustrated by Figure 1. For the OP vector, the operation-based
encoding method is used. In this vector, each element with an integer value represents the job index.
The elements with the same values represent different operations in the same job. For the MA vector,
each element with an integer value denotes the assigned machine for an operation. For the WS vector,
each element with an integer value indicates the selected worker for a machine. The elements in the
WS and MA vectors are stored in a given order according to the identification number of the jobs
and operations.

Algorithms 2020, 13, x FOR PEER REVIEW 7 of 16

Step 10: Set 1K K and check the terminate condition. If maxK K is not met, then set

1g , and go to Step 4; otherwise, go to Step 11.

Step 11: End the procedure.

3.2. Solution Encoding

To implement the application of the algorithm in solving a problem, one of the key tasks is to

adopt an appropriate encoding method, which can represent the necessary information about the

considered problem. The EDRCFJSP is made up of three sub-problems: machine assignment (MA),

worker selection (WS) and operation permutation (OP). Therefore, an encoding method with three

vectors is adopted to represent the scheduling solution, namely the MA vector, the WS vector and

the OP vector, which represent the assignment of operations to machines, the selection of workers

for machines and the processing sequence of operations on machines. The size of each vector is equal

to the numbers of all operations.

Taking a 3 3 2 (three jobs, three machines and two workers) problem for example, it is

assumed that each job consists of three operations. Therefore, the length of each vector is equal to

nine. The encoding method can be illustrated by Figure 1. For the OP vector, the operation-based

encoding method is used. In this vector, each element with an integer value represents the job index.

The elements with the same values represent different operations in the same job. For the MA vector,

each element with an integer value denotes the assigned machine for an operation. For the WS vector,

each element with an integer value indicates the selected worker for a machine. The elements in the

WS and MA vectors are stored in a given order according to the identification number of the jobs and

operations.

2 1 1 1 3 3

1 2 2 2 1 1

MA

WS

2 3 1 2 2 3OP

2 3 1

2 2 2

1 3 1

Figure 1. A scheduling scheme for a 3 3 2 energy-aware dual-resource constrained flexible job

shop scheduling problem (EDRCFJSP) with three jobs, three machines and two workers.

3.3. Population Initialization

As a swarm intelligence algorithm, the quality of initial solutions is crucial for the performance

of the algorithm. Here, a two-phase initialization method is proposed to obtain the initial population

by some dispatching rules. In the first phase, two dispatching rules in [35] are employed to generate

the OP vector. Most work remaining (MWR) means that the job with the maximal total processing

time has the highest priority to be scheduled. Random rule (RR) means that the operation

permutation is obtained in a random manner.

In the second phase, two rules are adopted to generate the MA and WS vectors: the modified

assignment rule (MAR) and random rule (RR). The MAR is modified from assignment rule number

one in [35], whose pseudo-code is illustrated in Figure 2. The approach considers both the processing

times and the workload of the machines. For each operation, the procedure includes finding the

combination of the machine and the worker with the minimum processing time, fixing that

assignment, and then adding this time to the entries in the columns with the selected machine. The

RR means that the worker and the machine are randomly selected for the corresponding operation.

Figure 1. A scheduling scheme for a 3× 3× 2 energy-aware dual-resource constrained flexible job shop
scheduling problem (EDRCFJSP) with three jobs, three machines and two workers.

3.3. Population Initialization

As a swarm intelligence algorithm, the quality of initial solutions is crucial for the performance of
the algorithm. Here, a two-phase initialization method is proposed to obtain the initial population by
some dispatching rules. In the first phase, two dispatching rules in [35] are employed to generate the
OP vector. Most work remaining (MWR) means that the job with the maximal total processing time
has the highest priority to be scheduled. Random rule (RR) means that the operation permutation is
obtained in a random manner.

In the second phase, two rules are adopted to generate the MA and WS vectors: the modified
assignment rule (MAR) and random rule (RR). The MAR is modified from assignment rule number one

Algorithms 2020, 13, 44 8 of 16

in [35], whose pseudo-code is illustrated in Figure 2. The approach considers both the processing times
and the workload of the machines. For each operation, the procedure includes finding the combination
of the machine and the worker with the minimum processing time, fixing that assignment, and then
adding this time to the entries in the columns with the selected machine. The RR means that the worker
and the machine are randomly selected for the corresponding operation.

Algorithms 2020, 13, x FOR PEER REVIEW 8 of 16

Figure 2. Pseudo-code of the modified assignment rule (MAR).

3.4. Neighborhood Structure

In MBO, the solutions are updated by searching neighborhoods. Thus, six neighborhood

structures are employed in this section to generate neighboring solutions. The first structure attempts

to change the operation sequencing, and the second structure aims to change the machine assignment

and the worker selection. The third structure is used to change the worker selection. The fourth and

the sixth structures are the combination of other structures. In the algorithm, the neighborhood

structures are randomly selected to generate the neighboring solutions.

1NB : Randomly select two elements with different values from the OP vector, and then the

selected elements are exchanged.

2NB : Randomly select an element from the MA vector, and a different machine is randomly

selected from the eligible machine set of the corresponding operation to replace the original one. Then

a new worker is randomly selected from the eligible worker set of the selected machine.

3NB : Randomly select an element from the WS vector and find out the corresponding machine

for the operation. Then, a different worker is randomly selected from the eligible worker set of the

corresponding machine to replace the original one.

4NB : It is a combination of neighborhood structures 1NB and 2NB . The neighboring solution is

obtained by performing the two neighborhood structures simultaneously.

5NB : It is a combination of neighborhood structures 1NB and 3NB . The neighboring solution

is obtained by performing the two neighborhood structures simultaneously.

6NB : It is a combination of neighborhood structures 1NB , 2NB and 3NB . The neighboring

solution is obtained by performing the three neighborhood structures simultaneously.

Create an array D with the size of c b and two arrays A and B with the same length of c .

b is the number of the combinations of machines and workers (=b m w), and c is the number

of operations in the workshop (
1

n

i

i

c J

).

If (Operation 1c can be processed by the combination 1b) then // 1 1,2, ,c c , 1 1,2, ,b b

Set 1 1(,)D c b to be the processing time of operation 1c processed by the combination 1b
Else

 Set 1 1(,)D c b to be a big number

Endif

Set 1i
While (i c)

Obtain the minimum value d in D
If (The number of d is larger than 1) then
 Randomly select one of these elements
End if

Record the row 1c and column 1b of the selected element

 Set 1()A c to be the machine in the combination 1b

 Set 1()B c to be the worker in the combination 1b

 Set all the elements in the row 1c to be in order to avoid the operation being selected

repeatedly

 Find out all the columns that have the same machine with the one in the combination 1b

 Add the processing time of operation 1c machined by the combination 1b to the selected

columns

 1i i

End while

Figure 2. Pseudo-code of the modified assignment rule (MAR).

3.4. Neighborhood Structure

In MBO, the solutions are updated by searching neighborhoods. Thus, six neighborhood structures
are employed in this section to generate neighboring solutions. The first structure attempts to change
the operation sequencing, and the second structure aims to change the machine assignment and the
worker selection. The third structure is used to change the worker selection. The fourth and the sixth
structures are the combination of other structures. In the algorithm, the neighborhood structures are
randomly selected to generate the neighboring solutions.

Algorithms 2020, 13, 44 9 of 16

NB1: Randomly select two elements with different values from the OP vector, and then the selected
elements are exchanged.

NB2: Randomly select an element from the MA vector, and a different machine is randomly
selected from the eligible machine set of the corresponding operation to replace the original one. Then
a new worker is randomly selected from the eligible worker set of the selected machine.

NB3: Randomly select an element from the WS vector and find out the corresponding machine
for the operation. Then, a different worker is randomly selected from the eligible worker set of the
corresponding machine to replace the original one.

NB4: It is a combination of neighborhood structures NB1 and NB2. The neighboring solution is
obtained by performing the two neighborhood structures simultaneously.

NB5: It is a combination of neighborhood structures NB1 and NB3. The neighboring solution is
obtained by performing the two neighborhood structures simultaneously.

NB6: It is a combination of neighborhood structures NB1, NB2 and NB3. The neighboring solution
is obtained by performing the three neighborhood structures simultaneously.

3.5. Aging-Based Re-Initialization Mechanism

As the evolutionary process of the algorithm proceeds, the population may achieve a low diversity
which makes the algorithm stall around a local optimum. To overcome this drawback, an aging-based
re-initialization mechanism is adopted to increase the possibility of jumping out of the local optima
and improving the search ability of the algorithm. In the aging-based re-initialization mechanism,
the ‘age’ is used to describe the updating process of each individual bird. For a newly generated
individual, the age is initially set to one. If there is no improvement after one iteration, the age will be
increased by one. If it is larger than the predefined lifespan ls, the re-initialization procedure is invoked
to reinitialize the individual following the initialization method in Section 3.3.

3.6. Local Search Strategy

To further enhance the search ability, the local search strategy is always embedded into various
intelligence algorithms [36,37]. Here, the local search strategy starts from a given solution and stops
when the predefined maximum number of iterations is met. The detailed steps of the local search are
shown as follow:

Step 1: Obtain the initial solution π, and set ct = 1 and determine the maximum iteration
number ρmax.

Step 2: Randomly select a neighborhood structure to obtain a new solution π′.
Step 3: If TEC(π′) < TEC(π), set π = π′.
Step 3: Set ct = ct + 1.
Step 4: Judge whether ct > ρmax is satisfied. If yes, go to Step 5, otherwise, go to Step 2.
Step 5: End the procedure.

3.7. Procedure of the Proposed Algorithm

To implement the proposed MMBO, some items are designed according to the characteristics
of the problem, such as encoding, population initialization, neighborhood structure, aging-based
re-initialization and local search. Based on these items, the detailed steps of the proposed MMBO are
shown as follows:

Step 1: Set the related parameters of the MMBO algorithm, such as the population size popsize,
the number of neighboring solutions k′, the number of shared neighboring solutions x, the number of
tours G, the predefined lifespan ls, and the maximum iteration Kmax.

Step 2: Generate the initial population following the method in Section 3.3.
Step 3: Set the iteration number K← 1 , the tour number g← 1 , the flag numer f lag← 1 .
Step 4: Randomly generate k′ neighboring solutions of the leader bird. Improve the leader solution

and fill the shared neighboring sets SL and SR, each of which has x elements.

Algorithms 2020, 13, 44 10 of 16

Step 5: For each solution πL in the left line L, randomly generate k′ − x neighboring solutions.
NL represents the set of the k′ − x neighbors. The best solution in NL ∪ SL is used to replace the original
solution. Empty SL and refill it by using x best unused solutions in NL ∪ SL.

Step 6: For each solution πR in the right line R, randomly generate k′ − x neighboring solutions.
NR represents the set of the k′ − x neighbors. The best solution in NR ∪ SR is used to replace the original
solution. Empty SR and refill it by using x best unused solutions in NR ∪ SR.

Step 7: Update the current best solution and the age of each individual.
Step 8: Set g← g + 1 . If the number of tours G is met, go to Step 9; otherwise, go to Step 4.
Step 9: Check the age of each individual and perform the re-initialization mechanism when the

age is larger than ls.
Step 10: Perform the local search to the current best individual.
Step 11: If f lag = 1, move the leader to the end of L, and set the first solution of L as the new

leader, and let f lag = 0; otherwise, move the leader to the end of R, and set the first solution of R as the
new leader, and let f lag = 1.

Step 12: Set K← K + 1 and check the terminate condition. If K > Kmax is not met, then set g← 1 ,
and go to Step 4; otherwise, go to Step 13.

Step 13: End the procedure.

4. Computational Results and Discussion

This section reports the computational results to evaluate the performance of the proposed
algorithm. All experiments are implemented by FORTRAN language and run on VMware Workstation
with 2GB main memory under WinXP. To this end, some testing data need to be generated. Here, a set of
instances with the number of jobs n ∈ {10, 20, 30, 50,80} and the number of machines m ∈ {10, 15, 20, 25}
are considered. Twenty instances are generated for each combination of n and m. In addition, some
other parameters are randomly generated in the given range following a discrete uniform distribution
in Table 1. For each instance, ten independent replications are conducted to get statistical results.

Table 1. Some parameters for the EDRCFJSP.

Ji nop w nwk pijkl Eijkl SEk TUl SThzijl CE

[1, 5] [2, m] dm× 0.6e [2, w] [15, 30] [10, 20] [6, 12] [5, 10] [1, 3] [12, 20]

nop represents the number of eligible machines for each operation, nwk denotes the number of
eligible workers for each machine.

4.1. Effectiveness of the Improvement Strategy

In this paper, three improvement strategies are adopted to enhance the performance of the proposed
algorithm, such as population initialization method, aging-based re-initialization mechanism and local
search strategy. Here, we first test the effectiveness of the three improvement strategies. In Table 2,
the first column shows the names of different instances, other columns report the computational data.
‘MMBO’ is our proposed algorithm. ‘MBO1’ is the algorithm where the random rule is only used to
generate the initial population. ‘MBO2’ represents the algorithm where the aging-based re-initialization
mechanism is excluded from the MMBO. ‘MBO3’ is the algorithm where the local search strategy is
excluded from the MMBO. In the table, ‘Best’ represents the best value in the ten runs. ‘Avg.’ denotes
the average result in the ten runs. The average relative percent deviation (ARPD) is measured by
Equation (18).

ARPD =
NR∑

nr=1

100× (Algnr −Min)
Min

/NR (18)

Algorithms 2020, 13, 44 11 of 16

where ‘Min’ is the minimum value obtained by all compared algorithms. ‘Time’ is the average time
(in seconds) of the ten runs. For each instance, boldface represents the best value obtained by all
compared algorithms.

Table 2. Effectiveness analysis of improvement strategies.

Instance m×n×w MMBO MBO1

Best Avg. ARPD Time Best Avg. ARPD Time

RM01 10 × 10 × 6 9588 9865.5 3.53 23.8 9696 10,089.8 5.89 24.0
RM02 10 × 20 × 6 22,347 22,970.0 2.79 66.7 24,080 24,336.4 8.90 64.3
RM03 10 × 30 × 6 33,351 34,018.9 2.88 130.5 34,999 35,830.6 8.36 121.5
RM04 10 × 50 × 6 57,298 58,542.5 2.48 303.5 62,475 63,914.8 11.89 279.2
RM05 10 × 80 × 6 113,813 116,054.4 1.97 667.5 126,105 129,280.6 13.59 658.6
RM06 15 × 10 × 9 8324 8598.8 3.30 30.5 8421 8708.4 4.62 29.0
RM07 15 × 20 × 9 18,334 19,149.9 4.45 84.7 19,437 19,767.8 7.82 72.5
RM08 15 × 30 × 9 29,063 29,906.4 2.98 150.7 30,338 31,387.4 8.08 130.6
RM09 15 × 50 × 9 54,172 55,361.1 2.51 355.9 58,186 58,710.6 8.71 300.1
RM10 15 × 80 × 9 103,491 104,707.1 1.18 820.9 115,624 117,196.6 13.24 729.4
RM11 20 × 10 × 12 8259 8457.5 2.40 37.4 8370 8493.4 2.84 30.0
RM12 20 × 20 × 12 17,736 18,447.0 4.01 103.0 18,863 19106.0 7.72 78.0
RM13 20 × 30 × 12 27,732 28,833.5 3.97 194.9 28,961 29,667.2 6.98 146.5
RM14 20 × 50 × 12 52,213 53,483.0 2.43 426.4 54,483 55,211.8 5.74 344.6
RM15 20 × 80 × 12 98,071 100,441.3 2.42 944.4 107,788 110,569.8 12.74 758.8
RM16 25 × 10 × 15 7704 7828.3 2.12 42.4 7666 7782.4 1.52 32.7
RM17 25 × 20 × 15 16,621 16,964.3 2.07 114.3 16,888 17,551.4 5.60 90.3
RM18 25 × 30 × 15 25,708 26,074.5 2.83 203.6 26,442 26,712.8 5.35 162.1
RM19 25 × 50 × 15 49,020 50,020.3 2.89 436.2 50,874 52,262.4 7.50 374.5
RM20 25 × 80 × 15 96,029 97,181.2 1.20 1099.2 105,785 106,591.2 11.00 823.2

Instance m× n×w MBO2 MBO3

Best Avg. ARPD Time Best Avg. ARPD Time

RM01 10 × 10 × 6 9529 9850.8 3.38 23.5 9706 9918.8 4.09 27.4
RM02 10 × 20 × 6 22,627 23,807.2 6.53 64.5 22,868 23,185.2 3.75 74.0
RM03 10 × 30 × 6 33,065 33,810.7 2.26 117.2 33,583 33,970.8 2.74 132.0
RM04 10 × 50 × 6 57,123 58,310.0 2.08 276.0 57,971 58,585.2 2.56 304.3
RM05 10 × 80 × 6 115,800 117,652.8 3.37 632.8 115,076 117,048.8 2.84 690.7
RM06 15 × 10 × 9 8470 8633.7 3.72 25.9 8407 8603.4 3.36 30.2
RM07 15 × 20 × 9 19,035 19,387.7 5.75 74.2 18,868 19,362.2 5.61 86.5
RM08 15 × 30 × 9 29,042 29,796.7 2.60 122.9 29,379 29,854.4 2.80 152.7
RM09 15 × 50 × 9 54,007 55,111.9 2.05 293.8 54,253 55,768.8 3.26 341.0
RM10 15 × 80 × 9 103,888 104,957.7 1.42 719.6 104,286 105,955.2 2.38 780.8
RM11 20 × 10 × 12 8327 8489.9 2.80 28.7 8287 8404.6 1.76 35.5
RM12 20 × 20 × 12 17,864 18,519.7 4.42 85.3 17,803 18,283.8 3.09 102.5
RM13 20 × 30 × 12 27,916 28,451.3 2.59 147.1 28,247 28,491.6 2.74 165.1
RM14 20 × 50 × 12 53,014 53,582.4 2.62 338.2 52,355 53,707.6 2.86 419.2
RM15 20 × 80 × 12 98,552 100,016.5 1.98 788.4 98,248 99,705.2 1.67 859.5
RM16 25 × 10 × 15 7672 7796.3 1.70 29.1 7666 7816.0 1.96 42.0
RM17 25 × 20 × 15 16,770 16,994.2 2.25 79.8 16,685 17,266.4 3.88 109.3
RM18 25 × 30 × 15 25,478 25,818.9 1.83 140.4 25,356 25,763.2 1.61 193.3
RM19 25 × 50 × 15 48,616 49,959.3 2.76 319.1 49,870 50,074.0 3.00 466.1
RM20 25 × 80 × 15 97,474 98,483.8 2.56 777.5 96,966 97,951.4 2.00 1037.6

Algorithms 2020, 13, 44 12 of 16

For the MMBO, the parameters are set according to the recommendations by Duman et al. [13],
which are shown as follows: the population size popsize = 51; the number of neighboring solutions
k′ = 3; the number of the shared neighboring solutions x = 1; and the number of tours G = 10.
In addition, we set ls = 50, ρmax = 10 and the maximum iteration Kmax = 500. To be fair, MBO1, MBO2
and MBO3 are set with the same parameters. According to Table 2, it can be observed that: (1) the
MMBO algorithm obtains the 12 best values in comparison with the best value and outperforms other
compared algorithms. The second-best algorithm, namely MBO2, can obtain the six best values; (2) the
MMBO algorithm yields the eight best values in comparisons with both the average value and the
ARPD value, which performs better than other algorithms. The second-best algorithm, namely MBO2,
can obtain the seven best values in comparisons with both the average value and the ARPD value; (3) in
comparisons with the ‘time’ value, the MMBO has a longer computational time than other algorithms
due to the introduction of the improvement strategies.

To test whether the differences from the algorithms in Table 2 are significant or not, an analysis
of variance (ANOVA) is conducted in Table 3, where all the algorithms are viewed as the factors.
The results demonstrate that there is a statistically significant difference between the compared
algorithms since the p value is smaller than 0.05.

Table 3. Analysis of variance (ANOVA) for the average relative percent deviation (ARPD) of the
compared algorithms in Table 2.

Source DF Sum of Squares Mean Square F Value p Value

Factor 3 383.63937 127.87979 35.40111 2.0095 × 10−14

Error 76 274.53557 3.61231
Total 79 658.17494

4.2. Effectiveness of the Proposed MMBO

To test the effectiveness of the MMBO algorithm, it is compared with three existing algorithms,
named the variable neighborhood structure (VNS) [19] and the improved whale optimization algorithm
(IWOA) [38]. The VNS was developed to solve the DRCFJSP and can be directly employed to deal
with the problem under study. The IWOA was developed for the energy-efficient job shop scheduling
problem. The scheduling solution representation and the individual position vector are used to adapt
the IWOA to the considered problem. The parameters of the compared algorithm are set as follows:
For the VNS, the parameters are set as those in [19], i.e., θ = 0.5, trst = 35,000 and itermax = 65,000.
For the IWOA, the population size is 50, and the maximum iteration is 2000, which are the same
as those of the MMBO algorithm. To obtain the computational results of the VNS and the IWOA,
ten independent replications are conducted with these two algorithms for each instance. As seen from
Table 4, the MMBO has the longest computational time, but it can yield 20 values in comparison with
the Best, Avg. and ARPD values. Figures 3 and 4 show that the proposed MMBO algorithm has a good
convergence property.

Algorithms 2020, 13, 44 13 of 16

Table 4. Comparison results of different algorithms.

Instance m×n×w MMBO VNS IWOA

Best Avg. ARPD Time Best Avg. ARPD Time Best Avg. ARPD Time

RM01 10 × 10 × 6 9588 9865.5 2.89 23.8 9839 10,244.8 6.85 7.3 11,089 11,307.0 17.93 8.1
RM02 10 × 20 × 6 22,347 22,970.0 2.79 66.7 24,096 25,186 12.70 10.3 29,258 30,355.6 35.84 21.4
RM03 10 × 30 × 6 33,351 34,018.9 2.00 130.5 36,103 37,296.4 11.83 14.7 41,631 44,732.8 34.13 39.7
RM04 10 × 50 × 6 57,298 58,542.5 2.17 303.5 63,475 64,937.2 13.33 27.6 80,901 85,493.2 49.21 91.9
RM05 10 × 80 × 6 113,813 116,054.4 1.97 667.5 127,773 131,051.2 15.15 61.9 183,505 186,510.6 63.87 212.9
RM06 15 × 10 × 9 8324 8598.8 3.30 30.5 8822 8985.2 7.94 8.5 9851 10,147.8 21.91 8.5
RM07 15 × 20 × 9 18,334 19,149.9 4.45 84.7 21,079 21,417.8 16.82 11.4 23,143 24,873.4 35.67 23.3
RM08 15 × 30 × 9 29,063 29,906.4 2.90 150.7 31,382 32,548.0 11.99 15.6 40,030 41,550.4 42.97 41.1
RM09 15 × 50 × 9 54,172 55,361.1 2.20 355.9 59,499 61,390 13.32 28.0 77,961 82,297.4 51.92 100.0
RM10 15 × 80 × 9 103,491 104,707.1 1.18 820.9 118,048 121,022.6 16.94 65.6 167,560 172,486 66.67 213.8
RM11 20 × 10 × 12 8259 8457.5 2.40 37.4 8729 8939.0 8.23 7.6 9314 9851.8 19.29 8.9
RM12 20 × 20 × 12 17,736 18,447.0 4.01 103.0 19,958 20,384.6 14.93 11.0 24,348 25,053.4 41.26 24.9
RM13 20 × 30 × 12 27,732 28,833.5 3.97 194.9 30,359 31,759.2 14.52 15.6 38,457 40,512.6 46.09 43.1
RM14 20 × 50 × 12 52,213 53,483.0 2.43 426.4 58,905 59,957 14.83 31.2 81,699 85,436.0 63.63 105.7
RM15 20 × 80 × 12 98,071 100,441.3 2.42 944.4 110,985 113,107.0 15.33 67.4 155,883 168,369.8 71.68 237.1
RM16 25 × 10 × 15 7704 7828.3 1.61 42.4 8117 8359.0 8.50 8.0 8976 9318.2 20.95 9.6
RM17 25 × 20 × 15 16,621 16,964.3 2.07 114.3 18,304 19,131.0 15.10 12.4 23,126 23,744.2 42.86 25.8
RM18 25 × 30 × 15 25,708 26,074.5 1.43 203.6 29,204 29,598.0 15.13 16.6 37,902 38,599.6 50.15 47.2
RM19 25 × 50 × 15 49,020 50,020.3 2.04 436.2 55,360 56,950.6 16.18 31.3 76,848 80,789.4 64.81 106.6
RM20 25 × 80 × 15 96,029 97,181.2 1.20 1099.2 107,528 111,204.6 15.80 71.7 161,517 170,567.4 77.62 258.5

Algorithms 2020, 13, 44 14 of 16

Algorithms 2020, 13, x FOR PEER REVIEW 14 of 16

Figure 3. Convergence curve of the compared algorithms in Instance RM09.

Figure 4. Convergence curve of the compared algorithms in Instance RM14.

To test whether the differences from the algorithms in Table 4 are significant or not, an analysis

of variance (ANOVA) is conducted in Table 5, where all the algorithms are viewed as the factors. The

results demonstrate that there is a statistically significant difference between the compared

algorithms since the p value is smaller than 0.05.

Table 5. ANOVA for ARPD of the compared algorithms in Table 4.

Source DF Sum of Squares Mean Square F Value p Value

Factor 2 1555.056 777.528 115.41936 0

Error 57 383.98322 6.73655

Total 59 1939.03922

5. Conclusions

This study investigated an energy-aware dual-resource constrained flexible job shop scheduling

problem (EDRCFJSP). The energy consumption model is first built to represent the energy

consumption in the workshop. A mathematical model is subsequently established to optimize the

total energy consumption. To deal with the problem, a modified migrating birds optimization

algorithm (MMBO) is proposed according to the characteristics of the considered problem. Extensive

experiments are conducted to demonstrate the effectiveness of the MMBO algorithm. As seen from

the comparison results, the proposed improvement strategies can effectively enhance the search

ability of the algorithm. In addition, the proposed MMBO algorithm outperforms the existing

algorithms in comparison with three computational indicators, which shows the effectiveness of the

Figure 3. Convergence curve of the compared algorithms in Instance RM09.

Algorithms 2020, 13, x FOR PEER REVIEW 14 of 16

Figure 3. Convergence curve of the compared algorithms in Instance RM09.

Figure 4. Convergence curve of the compared algorithms in Instance RM14.

To test whether the differences from the algorithms in Table 4 are significant or not, an analysis

of variance (ANOVA) is conducted in Table 5, where all the algorithms are viewed as the factors. The

results demonstrate that there is a statistically significant difference between the compared

algorithms since the p value is smaller than 0.05.

Table 5. ANOVA for ARPD of the compared algorithms in Table 4.

Source DF Sum of Squares Mean Square F Value p Value

Factor 2 1555.056 777.528 115.41936 0

Error 57 383.98322 6.73655

Total 59 1939.03922

5. Conclusions

This study investigated an energy-aware dual-resource constrained flexible job shop scheduling

problem (EDRCFJSP). The energy consumption model is first built to represent the energy

consumption in the workshop. A mathematical model is subsequently established to optimize the

total energy consumption. To deal with the problem, a modified migrating birds optimization

algorithm (MMBO) is proposed according to the characteristics of the considered problem. Extensive

experiments are conducted to demonstrate the effectiveness of the MMBO algorithm. As seen from

the comparison results, the proposed improvement strategies can effectively enhance the search

ability of the algorithm. In addition, the proposed MMBO algorithm outperforms the existing

algorithms in comparison with three computational indicators, which shows the effectiveness of the

Figure 4. Convergence curve of the compared algorithms in Instance RM14.

To test whether the differences from the algorithms in Table 4 are significant or not, an analysis
of variance (ANOVA) is conducted in Table 5, where all the algorithms are viewed as the factors.
The results demonstrate that there is a statistically significant difference between the compared
algorithms since the p value is smaller than 0.05.

Table 5. ANOVA for ARPD of the compared algorithms in Table 4.

Source DF Sum of Squares Mean Square F Value p Value

Factor 2 1555.056 777.528 115.41936 0
Error 57 383.98322 6.73655
Total 59 1939.03922

5. Conclusions

This study investigated an energy-aware dual-resource constrained flexible job shop scheduling
problem (EDRCFJSP). The energy consumption model is first built to represent the energy consumption
in the workshop. A mathematical model is subsequently established to optimize the total energy
consumption. To deal with the problem, a modified migrating birds optimization algorithm (MMBO)
is proposed according to the characteristics of the considered problem. Extensive experiments are
conducted to demonstrate the effectiveness of the MMBO algorithm. As seen from the comparison
results, the proposed improvement strategies can effectively enhance the search ability of the algorithm.

Algorithms 2020, 13, 44 15 of 16

In addition, the proposed MMBO algorithm outperforms the existing algorithms in comparison with
three computational indicators, which shows the effectiveness of the algorithm in solving the problem
under study. However, compared with the existing algorithms, MMBO has a longer computational time.

In a future work, the EDRCFJSP will be further studied to make it more closely resemble realistic
production. Some realistic constraints will be considered, such as controllable machining speeds, time
of use (TOU) electricity price policy, job deterioration effects and transportation constraints. In addition,
some uncertain events should be considered, such as machine breakdown and the arrival of new jobs.
Furthermore, some efforts are necessary in the design of more efficient algorithms.

Author Contributions: Methodology, H.L. and H.Z.; writing—original draft, H.L. and T.J.; Writing—review &
editing, H.Z.; Funding acquisition, T.J. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Shandong Provincial Natural Science Foundation, grant number
ZR2016GP02 and the Project of Shandong Province Higher Educational Science and Technology Program,
grant number J17KA199.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Jiang, T.; Zhang, C.; Zhu, H.; Deng, G. Energy-efficient scheduling for a job shop using grey wolf optimization
algorithm with double-searching mode. Math. Probl. Eng. 2018, 2018. [CrossRef]

2. Jiang, T.; Zhang, C.; Sun, Q.M. Green job shop scheduling problem with discrete whale optimization
algorithm. IEEE Access 2019, 7, 43153–43166.

3. Lu, Y.; Jiang, T. Bi-population based discrete bat algorithm for the low-carbon job shop scheduling problem.
IEEE Access 2019, 7, 14513–14522.

4. Jiang, T.; Zhang, C. Application of grey wolf optimization for solving combinatorial problems: Job shop and
flexible job shop scheduling cases. IEEE Access 2018, 6, 26231–26240.

5. Jiang, T.; Zhang, C. Adaptive discrete cat swarm optimisation algorithm for the flexible job shop problem.
Int. J. Bio-Inspired Comput. 2019, 13, 199–208.

6. Mokhtari, H.; Hasani, A. An energy-efficient multi-objective optimization for flexible job-shop scheduling
problem. Comput. Chem. Eng. 2017, 104, 339–352.

7. Lei, D.; Zheng, Y.; Guo, X. A shuffled frog-leaping algorithm for flexible job shop scheduling with the
consideration of energy consumption. Int. J. Prod. Res. 2017, 55, 3126–3140.

8. Wu, X.; Sun, Y. A green scheduling algorithm for flexible job shop with energy-saving measures. J. Clean. Prod.
2018, 172, 3249–3264.

9. Wang, H.; Jiang, Z.; Wang, Y.; Zhang, H.; Wang, Y.-H. A two-stage optimization method for energy-saving
flexible job-shop scheduling based on energy dynamic characterization. J. Clean. Prod. 2018, 188, 575–588.

10. Lei, D.; Li, M.; Wang, L. A two-phase meta-heuristic for multiobjective flexible job shop scheduling problem
with total energy consumption threshold. IEEE Trans. Cybern. 2018, 49, 1097–1109.

11. Meng, L.; Zhang, C.; Shao, X.; Ren, Y. MILP models for energy-aware flexible job shop scheduling problem.
J. Clean. Prod. 2019, 210, 710–723.

12. Jiang, T.; Deng, G. Optimizing the low-carbon flexible job shop scheduling problem considering energy
consumption. IEEE Access 2018, 6, 46346–46355.

13. Yin, L.; Li, X.; Gao, L.; Lu, C.; Zhang, Z. A novel mathematical model and multi-objective method for the
low-carbon flexible job shop scheduling problem. Sustain. Comput. 2017, 13, 15–30.

14. Song, W.J.; Zhang, C.Y.; Lin, W.W.; Shao, X.Y. Flexible job-shop scheduling problem with maintenance
activities considering energy consumption. Appl. Mech. Mater. 2014, 521, 707–713.

15. Liu, Z.; Guo, S.; Wang, L. Integrated green scheduling optimization of flexible job shop and crane
transportation considering comprehensive energy consumption. J. Clean. Prod. 2019, 211, 765–786.

16. Zhang, H.; Dai, Z.; Zhang, W.; Zhang, S.; Wang, Y.; Liu, R. A new Energy-Aware flexible job shop scheduling
method using modified Biogeography-Based optimization. Math. Probl. Eng. 2017, 2017, 7249876.

17. Zhang, X.; Ji, Z.; Wang, Y. An improved SFLA for flexible job shop scheduling problem considering energy
consumption. Mod. Phys. Lett. B 2018, 32, 1840112.

http://dx.doi.org/10.1155/2018/8574892

Algorithms 2020, 13, 44 16 of 16

18. Lu, Y.; Lu, J.; Jiang, T. Energy-conscious scheduling problem in a flexible job shop using a discrete water
wave optimization algorithm. IEEE Access 2019, 7, 101561–101574.

19. Lei, D.; Guo, X. Variable neighbourhood search for dual-resource constrained flexible job shop scheduling.
Int. J. Prod. Res. 2014, 52, 2519–2529.

20. Meng, L.; Zhang, C.; Zhang, B.; Ren, Y. Mathematical modeling and optimization of energy-conscious flexible
job shop scheduling problem with worker flexibility. IEEE Access 2019, 7, 68043–68059.

21. Kalra, M.; Singh, S. A review of metaheuristic scheduling techniques in cloud computing. Egypt. Inform. J.
2015, 16, 275–295.

22. Strumberger, I.; Bacanin, N.; Tuba, M.; Tuba, E. Resource Scheduling in Cloud Computing Based on a
Hybridized Whale Optimization Algorithm. Appl. Sci. 2019, 9, 4893.

23. Sreenu, K.; Sreelatha, M. W-Scheduler: Whale optimization for task scheduling in cloud computing.
Clust. Comput. 2019, 22, 1087–1098.

24. Strumberger, I.; Minovic, M.; Tuba, M.; Bacanin, N. Performance of elephant herding optimization and tree
growth algorithm adapted for node localization in wireless sensor networks. Sensors 2019, 19, 2515.

25. Yang, X.S. Swarm intelligence based algorithms: A critical analysis. Evol. Intell. 2014, 7, 17–28.
26. Suganuma, M.; Shirakawa, S.; Nagao, T. A genetic programming approach to designing convolutional neural

network architectures. In Proceedings of the Genetic and Evolutionary Computation Conference, Berlin,
Germany, 15–19 July 2017; pp. 497–504.

27. Tuba, M.; Bacanin, N. Improved seeker optimization algorithm hybridized with firefly algorithm for
constrained optimization problems. Neurocomputing 2014, 143, 197–207.

28. Strumberger, I.; Tuba, E.; Bacanin, N. Dynamic tree growth algorithm for load scheduling in cloud
environments. In Proceedings of the 2019 IEEE Congress on Evolutionary Computation (CEC), Wellington,
New Zealand, 10–13 June 2019; pp. 65–72.

29. Duman, E.; Uysal, M.; Alkaya, A.F. Migrating Birds Optimization: A new metaheuristic approach and its
performance on quadratic assignment problem. Inf. Sci. 2012, 217, 65–77.

30. Meng, T.; Pan, Q.K.; Li, J.Q.; Tuba, M. An improved migrating birds optimization for an integrated
lot-streaming flow shop scheduling problem. Swarm Evol. Comput. 2018, 38, 64–78.

31. Niroomand, S.; Hadi-Vencheh, A.; Şahin, R.; Vizvári, B. Modified migrating birds optimization algorithm
for closed loop layout with exact distances in flexible manufacturing systems. Expert Syst. Appl. 2015, 42,
6586–6597.

32. Ulker, E.; Tongur, V. Migrating birds optimization (MBO) algorithm to solve knapsack problem. Procedia
Comput. Sci. 2017, 111, 71–76.

33. Tongur, V.; Ülker, E. The analysis of migrating birds optimization algorithm with neighborhood operator
on traveling salesman problem. In Intelligent and Evolutionary Systems; Springer: Cham, Switzerland, 2016;
pp. 227–237.

34. Oz, D. An improvement on the Migrating Birds Optimization with a problem-specific neighboring function
for the multi-objective task allocation problem. Expert Syst. Appl. 2017, 67, 304–311.

35. Pezzella, F.; Morganti, G.; Ciaschetti, G. A genetic algorithm for the flexible job-shop scheduling problem.
Comput. Oper. Res. 2008, 35, 3202–3212.

36. Jovanovic, R.; Voß, S. Fixed Set Search Applied to the Minimum Weighted Vertex Cover Problem.
In International Symposium on Experimental Algorithms; Springer: Cham, Switzerland, 2019; pp. 490–504.

37. Jovanovic, R.; Tuba, M.; Voß, S. Fixed set search applied to the traveling salesman problem. In International
Workshop on Hybrid Metaheuristics; Springer: Cham, Switzerland, 2019; pp. 63–77.

38. Jiang, T.; Zhang, C.; Zhu, H.; Deng, G. Energy-efficient scheduling for a job shop using an improved whale
optimization algorithm. Mathematics 2018, 6, 220–239.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Mathematical Model of EDRCFJSP
	Problem Description
	Energy Consumption Model
	Processing Energy Consumption
	Idle Energy Consumption
	Setup Energy Consumption
	Common Energy Consumption
	Total Energy Consumption

	Problem Modelling

	Modified Migrating Birds Optimization
	The Basic MBO Algorithm
	Solution Encoding
	Population Initialization
	Neighborhood Structure
	Aging-Based Re-Initialization Mechanism
	Local Search Strategy
	Procedure of the Proposed Algorithm

	Computational Results and Discussion
	Effectiveness of the Improvement Strategy
	Effectiveness of the Proposed MMBO

	Conclusions
	References

