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Abstract: Due to unpredictable and fluctuating conditions in real-world control system applications,
disturbance rejection is a substantial factor in robust control performance. The inherent disturbance
rejection capacity of classical closed loop control systems is limited, and an increase in disturbance
rejection performance of single-loop control systems affects the set-point control performance.
Multi-loop control structures, which involve model reference control loops, can enhance the
inherent disturbance rejection capacity of classical control loops without degrading set-point control
performance; while the classical closed Proportional Integral Derivative (PID) control loop deals with
stability and set-point control, the additional model reference control loop performs disturbance
rejection control. This adaptive disturbance rejection, which does not influence set-point control
performance, is achieved by selecting reference models as transfer functions of real control systems.
This study investigates six types of multi-loop model reference (ML-MR) control structures for PID
control loops and presents straightforward design schemes to enhance the disturbance rejection
control performance of existing PID control loops. For this purpose, linear and non-linear ML-MR
control structures are introduced, and their control performance improvements and certain inherent
drawbacks of these structures are discussed. Design examples demonstrate the benefits of the ML-MR
control structures for disturbance rejection performance improvement of PID control loops without
severely deteriorating their set-point performance.

Keywords: multi-loop model reference control; PID controllers; disturbance rejection control

1. Introduction

Control systems encounter unpredictable disturbances in real-world control applications. In order
to maintain optimal control performance, real control systems should be designed to be robust enough
against environmental disturbances, which are mainly unpredictable in character. From a practical
point of view, performance degradations of classical control systems are largely caused by their
dependence on predetermined system models. In the controller design phase, classical PID controllers
are tuned to produce optimal control of a predetermined nominal plant model, which is indeed an
idealized representation of a real-world system. The mathematical models of real systems can maintain
their validity for predefined operating conditions and ranges, and only observable dynamics of the
systems in these range and conditions can be represented by system models. Hence, they omit some
inaccessible system dynamics and unknown disturbances, which are not rigorously investigated in the
modeling stage. To enhance the representative capability of mathematical modeling, it is well-known
that non-linear modeling [1], fractional-order modeling [2], and stochastic modeling [3] methods are
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often used. However, nowadays, optimal PID tuning methods still rely on integer order dynamics and
linear system design approaches for the sake of simplicity and practical effectiveness. Therefore, the
coverage potential of these modeling types to represent real-world conditions is quite limited, while
mathematical models can represent the behavior of real systems in some presumed idealized conditions.

In general, optimal controller design in classical control has been addressed using integer order
plant models and linear dynamics. Consequently, the designed controller law becomes mathematically
optimal only for those ideal and linearized models operating in numerical simulation environments.
However, when they are implemented in real-world conditions, practitioners commonly encounter
the fact that the calculated controller coefficients are not practically optimal for real processes and
fine-tuning efforts are needed for these controllers to achieve acceptable control performance. Firstly,
non-ideal realization of controller function inherently deteriorates control optimality. Secondly,
a number of factors such as unmodelled dynamics, noise, environmental disturbance, ageing of system
components, and parametric perturbations may have a significant influence on control performance.
Therefore, it is obvious that model-based optimal controller design methods should adhere to robust
control performance requirements in the controller design stage, including considerations of disturbance
rejection performance and insensitivity to model parameter variation. The current study focuses on
enhancement of the disturbance rejection performance of classical control loops. The disturbance
model is assumed to be additive input disturbance that has unknown characteristics. The disturbance
rejection capacity of a classical negative feedback PID control loop is inherently bound [4]. A feasible
solution to increase disturbance rejection performance beyond the inherent bounds of a PID control
loop is by using a multi-loop control structure [5]. The findings of the current study suggest that
a multi-loop model reference (ML-MR) adaptive control structure could be an effective solution to
improve the disturbance rejection performance of classical PID control loops.

Due to a performance tradeoff between disturbance rejection control and set-point control
performances [4], increasing the disturbance rejection control performance can severely deteriorate
the set-point performance of classical PID control loops. A primary motivation of this study is the
improvement of disturbance rejection control performance without effecting the set-point performance
of existing closed loop PID control systems.

ML-MR control structures are commonly composed of two hieratical loops. These are the reference
model loop, which describes the desired response of a system, and the control loop, which deals with
the stability of control systems. The control loop is the primary loop that maintains the stability of the
system. The secondary loop is the reference model loop, also called the adaptation loop, which handles
the preservation of the desirable control performance of the system, which is described by the reference
model response. When a disturbance acts on the control loop, the adaptation loop contributes to the
control efforts for the reduction of the negative effects of disturbances on system outputs, thus restoring
control performance by means of reference responses that are generated by the reference model.

In literature, numerous ML-MR control structures have been proposed and their improvements in
terms of control performance have been demonstrated. In former works, direct model reference adaptive
control (MRAC) structures have been addressed [5–10]. Direct MRAC structures perform online
self-tuning of controller parameters according to a predefined reference model [5–8]. Updating controller
parameters in control action, known as online controller tuning, may lead to short-term instability and
control performance degradations. Therefore, the stability and robust control performance of MRAC
structures in real conditions remain questionable and direct MRAC control methodologies have not
been accepted or adopted by practitioners [8]. The industrial applications of the MRAC method have
remained limited in comparison to the widespread adoption of classical PID control loops. PID control
loops have been used as industrial standard control systems because of their well-established design
scheme. The simple structure and reliability of PID control law, which facilitates realization in real
systems, are prominent in industrial control applications. Barkana has addressed performance and
stability issues of direct MRAC methods and presented a stable direct MRAC methodology according
to passivity conditions [8]. However, to avoid online controller parameter updates in control action,
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one branch of ML-MR control research studies aims to combine a classical PID control system with
reference model control in a hierarchical multi-loop manner in order to benefit from the stability and
set-point performance of the classical control loop and the robust control performance improvements
of the model reference control (MRC) system.

The topic of multi-loop control involves a wide variety of control systems that employ
multi-loop control structures, including cascaded control loops [11,12], multi-input multi-output
control systems [13], use of additional control loops for performance improvements [14,15], direct
model reference control based on output matching [16,17], direct model reference adaptive control with
online controller tuning [5–10], model reference adaptive control based on Massachusetts Institute of
Technology (MIT) rule [18–23], backstepping-based adaptive PID control [24], and hierarchical ML-MR
adaptive control [25–28]. The current study investigates several configurations of hierarchical ML-MR
adaptive control structures.

Hierarchical ML-MR adaptive PID control has been investigated, and certain benefits of this
structure related to fault tolerance [25] and disturbance rejection [26] have been discussed. This structure
can be easily applied to the existing closed loop PID control systems, thus transforming the PID control
systems into model reference adaptive PID control systems. This presents a significant potential to
improve the robust control performance of industrial PID control systems without largely modifying the
existing PID loops. Although a growing research trend has been initiated for the use of ML-MR adaptive
PID structures to improve the control performance of the closed loop PID control family [25–27],
this control structure is still in the early stages of development. There is a need for further research
efforts to establish design methodologies and reveal some practical benefits and drawbacks. Therefore,
this study aims to investigate the benefits and drawbacks of ML-MR PID-MIT control [25,28] and
addresses design and performance improvement problems in ML-MR structures. To this end, this
paper revisits recent multi-loop model reference adaptive PID control techniques, and analytical tuning
and performance issues are considered. In analytical optimal tuning of PID controllers, we adopt the
integral time absolute error (ITAE) design rule that was proposed by Tavakoli et al. for control of the
first order plus dead time dynamic systems. This design rule is based on dimensional analysis, which
has been widely utilized to solve complex high-dimensional problems by reducing the number of
variables to an essential set [29]. The main reason to use the Tavakoli–Tavakoli ITAE design rule for
optimal tuning of PID control loops is that the method limits overshoot with faster establishment of
set-point control in time delay systems [29].

The organization of this paper is given as follows. Section 2 details the mathematical background of
the multi-loop model reference PID-MIT (ML-MR PID-MIT) control, and presents analytical equations
for theoretical background and analytical tuning. After discussing some inherent drawbacks of ML-MR
PID-MIT structures (e.g., nonlinearity and amplitude dependence of disturbance rejection performance),
several ML-MR control structures are investigated to resolve these drawbacks in the following sections.
In these sections, two types of hierarchical ML-MR control structures are considered.

(i) Reference modeling of closed loop control loops: These types of MRC structures use a reference
model to describe the desired response of closed loop control systems. Section 3 presents a multi-loop
model reference PID-MIT control with controller gain modification (ML-MR PID-MIT-CGM) that
allows dynamic disturbance rejection via adaptively adjusting Reference to Disturbance Ratio (RDR)
performance. To deal with the drawbacks of nonlinearity from the MIT rule, a multi-loop model
reference PID integral (ML-MR PID-I) control, which performs a linear adaptation rule, is introduced
in this section. Section 4 introduces a multi-loop model reference PID-IM control structure (ML-MR
PID-IM) that is proposed as an internal model linear adaptation rule to implement an internal model
control (IMC) approach.

(ii) Reference modeling of plants: These types of MRC structures use a reference model to describe
desired responses of a process or a plant function. Section 5 presents the multi-loop model reference
MIT-PID control, which employs the model reference control rule only for plant function adaptation
(ML-MR MIT-PID-PFA) in contrast to ML-MR MIT-PID in Section 2. The main advantages of this type
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of structure come from the fact that all adaptation efforts aim for approximation of plant or process
models compared to the reference model. This property is advantageous for time delay systems.
Section 6 presents a multi-loop model reference PID-PID control with plant function adaptation
(ML-MR PID-PID-PFA). This structure employs a linear adaptation rule for plant function and it can
improve control performance for time delay systems.

Illustrative design examples cover control the problems of an automatic voltage regulator model,
the liquid level of reboilers, large time delay experimental process models, and Twin-Rotor Multi-input
multi-output System (TRMS) experimental setup.

2. Multi-Loop Model Reference PID-MIT (ML-MR PID-MIT) Control: Analytical Tuning and
Nonlinearity

The ML-MR PID-MIT control structure has been proposed to enhance the robust control
performance of existing closed loop control systems. Its application has been discussed in several
works [25–28]. This structure is essentially composed of two hierarchical control loops: the inner loop
is a classical PID control loop that is a stable and well-tuned control loop, while the outer loop is a
adaptation loop that performs the MIT rule. The outer loop is appended to the inner loop to enhance
the robust control performance of the inner loop according to regulation of a reference model. Figure 1
shows a block diagram of the ML-MR PID-MIT control structure. It has two error signals per loop:

(i) Control error: When the controller of the inner loop is tuned properly, the value of the control
error, which is written as ec = ur − y, moves to zero, and thus ensures the control system output
settles to the reference input (the signal ur is the modified reference input controlled by the MIT
rule and y is the system output).

(ii) Model error: Discrepancy between the reference model output and controlled system output
is defined as the model error, which is written as em = y − ym (the signal ym is the output of
reference model). The objective of the outer loop is to shape the reference input signal (r) such that
the model error converges to zero. The convergence of the model error to zero implies that the
inner loop resembles the response of the reference model Tm(s). The reference model describes
the desired response of the control system that forms the inner loop.
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Figure 1. Block diagram of multi-loop model reference PID-MIT (ML-MR PID-MIT) control structure
with input shaping.

Let us consider a PID control system as the inner control loop. The PID controllers are
three-coefficient standard industrial controllers and optimal tuning of the PID coefficients (kp, ki,
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kd) enhances step performance by reducing overshoots and settling time. The transfer function of PID
controllers is widely expressed in the parallel form as:

C(s) = kp +
ki
s
+ kds (1)

For a given plant (process) function G(s), the transfer function of the inner loop can be written by:

T(s) =
C(s)G(s)

1 + C(s)G(s)
(2)

Previous studies on the ML-MR PID-MIT control structure aim to maintain the initial well-tuned
control performance of an existing closed loop control system. For this reason, the reference model is
taken as the transfer function of the inner loop; that is, Tm(s) = T(s). Accordingly, any performance
deterioration in the inner loop leads to an increase in model errors. The recovery of temporal
performance deterioration is carried out by shaping the reference input of the inner loop via ur = θr.
The adaptation gain θ is determined according to the well-known MIT rule [21], which implements
continuous gradient descent optimization of the cost function:

J =
1
2

em
2 (3)

The feed-forward MIT rule is expressed in the continuous domain as [18–21]:

dθ
dt

= −γ
dJ
dθ

, (4)

where the parameter γ is the learning rate, which is an important parameter for the convergence speed
and stability of the gradient descent optimization. Taking Laplace transform of Equation (4), one
obtains:

θ = −γ
1
s

dJ
dθ

= −γ
1
s

em
dem

dθ
(5)

To find the sensitivity derivative dem
dθ , the model error is written in the form of em = y − ym =

T(s)θr− Tm(s)r. Then, the sensitivity derivative of the system is obtained:

dem

dθ
= T(s)r (6)

Here, one can substitute the reference input with r = ym/Tm(s) in Equation (6) and rearrange the
sensitivity derivative as:

dem

dθ
=

T(s)
Tm(s)

ym (7)

By using it in Equation (5), the MIT rule for the update of the adaptation coefficient θ to minimize
cost function J is obtained as [25,26,28]:

θ = −γ
1
s

(
T(s)

Tm(s)
ymem

)
(8)

When one configures Tm(s) = T(s), the adaptation gain θ is simplified to:

θ = −γ
1
s

ymem, (9)

which is implemented in the outer loop in Figure 1 [25,26,28].
Application of ML-MR PID-MIT control for the existing control loop was defined as

follows [25,26,28]:
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Step 1: Identify the transfer function model of the existing closed loop PID control system by
means of closed loop model identification methods and use this transfer function as a reference model.

Step 2: Enclose the existing closed loop control system via the outer loop. The outer loop employs
Equation (9) and the reference model control.

To create a design from scratch for a first order system model in the form of G(s) = K
τs+1 e−Ls,

an analytical tuning scheme for the ML-MR PID-MIT control structure can be proposed as follows:
Step 1: Design a closed loop PID control system according to the Tavakoli–Tavakoli PID tuning

rule that can be rearranged for a standard PID controller function in parallel form as follows [29]:

kp = (1/K)
0.8

(L/τ) + 0.1
, ki = kp

1
(0.3L + τ)

, kd = kp
0.06L

(L/τ) + 0.04
(10)

This optimal tuning rule implements ITAE and its control performance have been shown
previously [29]. The optimal PID controller function of the inner loop can be written for the Tavakoli-
Tavakoli optimal PID tuning rule as:

C(s) = (1/K)
0.8

(L/τ) + 0.1

(
1 +

1
(0.3L + τ)s

+
0.06L

(L/τ) + 0.04
s
)

(11)

Step 2: The reference model is a theoretical model that represents the optimally tuned closed loop
control system. Therefore, the transfer function of reference model can be expressed as:

Tm(s) =
C(s)G(s)

1 + C(s)G(s)
(12)

In MATLAB and Simulink control system simulations, we implemented this reference model as a
numerical model of the PID control loop, as illustrated in the diagram in Figure 2.
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Figure 2. Block diagram of the ML-MR PID-MIT control structure and a solution for numerical
realization of reference models.

Step 3: Implement the ML-MR PID-MIT control structure as shown in Figure 2. The learning rate
γ = |ki| can be selected to comply with integral dynamics of the PID control loop.

It is important to note two characteristic features of this structure. Firstly, the performance of the
ML-MR PID-MIT control structure is sensitive to the time delay component of the system. As the time
delay of the system increases, the adaptation performance of the MIT rule decreases because large
delay in the system response easily misleads gradient descent optimization of the MIT rule. Figure 3
shows this effect for the ML-MR PID-MIT control structure design for control of the plant functions
with zero time delay (G1(s) = 2

s+1 ) and 0.3 s time delay (G2(s) = 2
s+1 e−0.3s) [29]. The system responses

in the figure demonstrate that the ML-MR PID-MIT control structure can significantly improve the
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disturbance rejection performance of classical PID control for zero delay systems. However, when the
time delay of the plant increases, improvement in disturbance rejection control decreases.
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Figure 3. Comparison of disturbance rejection performance of ML-MR PID-MIT control and classical
PID control for G1(s) and G2(s) plants.

Secondly, due to multiplication terms ur = θr and ymem, the ML-MR PID-MIT control structure
presents a nonlinear control characteristic. The origin of the nonlinearity in the adaptation gain θ
is the nonlinear cost function, which involves the square of model error in Equation (3). This yields
a nonlinear term ymem = ym(y − ym) = ymy − y2

m. Therefore, ML-MR PID-MIT control can exhibit
some characteristic properties that do not appear in linear control systems. A noteworthy property is
that the time response of the PID-MIT control shows amplitude dependence. In the case of reference
input r(t) = 0, this results in ym � 0; in this case, the outer loop is not functional, so that ymem = 0 in
Equation (9). As the amplitude of the reference input signal r(t) grows, the amplitude of ym increases,
and this effect indeed amplifies the model error due to the term of ymem. Accordingly, this makes the
MIT rule of the outer loop more sensitive to model errors and the system responds more effectively in
cases where the model mismatches between reference model and control loops. To demonstrate this
effect, an illustrative example for control of the plant function G(s) = 2

s+1 is carried out.
Figure 4 shows time response ML-MR PID-MIT control structure that is designed for plant function

G(s) = 2
s+1 [29]. The learning rate γ is set to −4, and the PID controller is configured to kp = 4, ki = 4,

and kd = 0 according to the Tavakoli–Tavakoli PID tuning rule in this simulation. When the amplitude
of r(t) moves to one (r(t) = 1), the ML-MR PID-MIT control structure becomes more effective and
contributes to the disturbance rejection control performance of the inner loop (classical PID control
loop). However, when the amplitude of r(t) moves to zero (r(t) = 0), the ML-MR PID-MIT control
structure is not functional, and its disturbance rejection control performance becomes the same as the
disturbance rejection performance of the classical PID controller. The overlapping of time responses at
set-point zero in the figure apparently confirms this effect.
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3. Multi-Loop Model Reference PID-MIT with Controller Gain Modification (ML-MR
PID-MIT-CGM): Adaptive RDR Adjustment for Dynamic Disturbance Rejection and the Linear
Adaptation Rule

The disturbance rejection capacity of a closed loop control system can be expressed with the
reference to disturbance ratio (RDR) spectrum, which presents a measure for the additive input
disturbance rejection performance of a control system for each frequency component [4,30]. The analysis
demonstrated that the RDR performance of a closed loop control system depends on the spectral power
density of the controller function [4]. The RDR spectrum of the PID controller is expressed in the form
of [4]:

RDRPID(ω) = k2
p + (kdω−

ki
ω
)

2
(13)

The increase of low frequency RDR values improves the disturbance rejection control for low
frequency and steady disturbance signals. An increase in high frequency RDR values improves the
transient disturbance rejection performance. However, as mentioned previously, the tradeoff between
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disturbance rejection control and set-point control performance bounds the RDR performance of the
closed loop PID control systems [4]. A large increase in RDR values deteriorates the step response
performance; this results in very high overshoots and consecutive ripples, which delay the convergence
of the controlled system output to the set-point. Further increases in RDR values finally lead to
instability of the control systems [4]. Therefore, the unstable state of the closed loop control systems
limits the improvement of their RDR performances. A solution for this problem is adaptive adjustment
of RDR performance; RDR performance should be increased for disturbance incidents in the inner
loop. In order to adjust the RDR performance of the PID control loop adaptively, a variable gain PID
controller is proposed by multiplying the PID controller function with the adaptation coefficient θ.
This modified PID controller function allows adjustment of the DC gain of the classical PID controller
by means of the coefficient θ. The transfer function of this controller can be expressed as:

Cθ(s) = θ(kp +
ki
s
+ kds) (14)

The RDR spectrum of this RDR-adjustable PID controller can be obtained as:

RDRPIDθ(ω) = θ2(k2
p + (kdω−

ki
ω
)

2
) (15)

This expression of the RDR spectrum apparently shows that the proposed variable gain PID
controller Cθ(s) allows modification of the RDR spectrum via adaptation gain θ. This enables adaptive
adjustment of the disturbance rejection performance of the inner loop by the outer loop. Since the
gain θ amplifies the control error inside the inner loop, the value of the adaptation gain θ should be
configured to remain positive, and hence is written by:

θ =

∣∣∣∣∣γ1
s

ymem

∣∣∣∣∣ (16)

Figure 5 shows the RDR spectrum of the controller Cθ(s) for several values of the gainθ. This figure
reveals that the proposed variable gain PID controller Cθ(s) enables modification of the RDR spectrum
via the gain θ, and this asset allows adaptive adjustment of disturbance rejection performance in the
control loop. For θ = 1, the Cθ(s) controller exhibits disturbance rejection performance equal to the
performance of the classical PID controllers. When θ > 1, the disturbance rejection performance of
Cθ(s) increases, as illustrated in the RDR spectrum in Figure 5. It should be noted that the variable
gain PID control may cause instability, particularly for time delay systems, because higher values
of the gain θ result in greater amplification of the integral gain, which may cause instability in the
control systems as a consequence of accumulation of integral element control errors during the delay
period of the system response. This limits the application domain of the proposed method to stable
and almost-zero time delay plant functions.

The application steps for ML-MR PID-MIT with controller gain modification (ML-MR
PID-MIT-CGM) for existing control loops can be given as follows:

Step 1: Obtain a transfer function model of an optimal control loop and use this transfer function
as a reference model of the MRC loop (Tm(s) = T1(s)).

Step 2: Enclose the existing closed loop control system by the outer loop, as shown in Figure 6.
Apply the MIT rule for controller gain modification of the closed loop PID control system to adjust
the RDR.

To show an application of the ML-MR PID-MIT-CGM control structure, an Automatic Voltage
Regulator (AVR) control example is presented in this section. Figure 7 shows a block diagram of the
proposed ML-MR PID-MIT-CGM control structure for the AVR control example. The learning rate γ is
set to 10.
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improvement of the disturbance rejection performance of an optimal closed loop PID control of an
AVR model.
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Bendjeghaba et al. implemented an improved harmony search algorithm for optimal tuning
of closed loop PID control of an AVR model. The optimal PID controller was obtained by
Bendjeghaba et al. in [31] as:

C(s) = 0.6739 +
0.5076

s
+ 0.2699s (17)

We used this optimal PID controller for the AVR model in Figure 7. Figure 8a,b show responses
of Bendjeghaba et al.’s optimal PID control loop and ML-MR PID-MIT-CGM control structure for
square waveform input disturbances. The figure clearly shows disturbance rejection performance
improvements for the ML-MR PID-MIT-CGM control at simulation times of 15 and 35 s, where the
set-point is equal to 1. At these instances, the adaptation gain θ of the outer loop actively responds
to step-up and step-down disturbances, and it increases the RDR performance of the inner loop by
increasing θ, as illustrated in Figure 9. This effect provides a better disturbance rejection control than
the classical PID control loop. Due to the amplitude dependence of the MIT rule, contributions of the
ML-MR PID-MIT-CGM control to the disturbance rejection performance begin to vanish in the vicinity
of the set-point 0. Consequently, the system can respond slightly better for step-up and step-down
disturbances at the simulation times of 65 and 85 s compared to the optimal PID loop proposed by
Bendjeghaba et al.
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Figure 8. Improvement of the disturbance rejection performance of the classical optimal PID loop by
the proposed ML-MR PID-MIT-CGM control structure for the AVR control system model. (a) Step
response and (b) change of model error.
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Figure 9. (a) Evolution of the adaptation gain θ of the ML-MR PID-MIT-CGM control structure.
(b) Corresponding adaptive modification of the RDR spectrum of the Cθ(s) controller in order to
reject disturbances.

Figure 9 describes how ML-MR PID-MIT-CGM control responds to disturbance incidents. For a
disturbance incident, the gain θ increases, as shown in Figure 9b. This results in an increase of PID
coefficients, and accordingly an increase in the RDR rates in the spectrum, as shown in Figure 9b.
Therefore, the RDR performance of the optimal PID control loop of Bendjeghaba et al. is adaptively
modified by adaptation gain θ, while the disturbances affect the system response. This figure verifies
an important asset of the proposed ML-MR PID-MIT-CGM control structure: It adaptively adjusts
the disturbance rejection control performance and retains the set-point control performance of the
optimal PID loops in absence of disturbance incidents. Thus, it overcomes the inherent shortcoming
that is caused by the performance tradeoff between set-point control and disturbance rejection control.
This property can significantly contribute to the practical robust control performance of classical control
loops and can be viewed as an elegant solution for increasing the disturbance rejection performance
without deteriorating the set-point performance of control systems. However, there will be a few
drawbacks in the PID-MIT structures for linear control system applications. The nonlinearity of the MIT
rule leads to dependence of disturbance rejection performance on the level of the set-point. Another
drawback for linear control applications is that the performance of the PID-MIT-CGM control structure
is very sensitive to the time delay of plants. A sufficiently large time delay may easily lead to instability
in the systems.

As mentioned in the previous section, the MIT rule does not behave linearly due to the terms
of ymem. To eliminate this nonlinearity and to make structural contributions to the PID control loop
independent of the level of signal amplitudes, one can update the term ymem as cem, where the constant
c ∈ R can be typically set to 1. This modification implies that the sensitivity derivative is constant and
can be shown as dem

dθ = c. Hence, Equation (16) is simplified to an integral operator and the adaptation
gain can be written as:

θ =

∣∣∣∣∣γ1
s

em

∣∣∣∣∣ (18)

Using this modified adaptation gain—where Equation (18) replaces the MIT rule in Equation (16)
—produces a new ML-MR control structure, which is called multi-loop model reference PID integral
(ML-MR PID-I) control. The ML-MR PID-I control structure behaves linearly and improves the
disturbance rejection performance independent of the reference input amplitude. Results in Figure 10
demonstrate this effect. Although ML-MR PID-MIT-CGM is very effective around the unity set-point,
its performance degrades at set-point 0, although it is slightly better than the optimal PID loop proposed
by Bendjeghaba et al. However, ML-MR PID-I control presents the same performance as ML-MR
PID-MIT control at the unity set-point and can maintain this performance improvement at set-point 0.
Figure 11 validates this effect by showing the adaptive adjustment of the RDR spectrum at set-point
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levels 1 and 0. As a consequence, for linear control systems with almost zero time delay, the proposed
ML-MR PID-I control structure is capable of improving the disturbance rejection performance without
deteriorating the set-point performance.
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by the proposed ML-MR PID-I control structure for the model. (a) Step response and (b) change of
model error.

The simulation results verify the effectiveness of the ML-MR control loops by showing that
the ML-MR control has a performance capacity beyond the typical disturbance rejection of classical
single-loop control loops. This is a very useful property that improves the robust control performance
in the case of disturbance interference to the control system. The ML-MR PID-MIT-CGM control
structure is more preferable for set-point control of nonlinear systems, where linear ML-MR control
structures are not an effective solution.
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Figure 11. (a) Evolution of adaptation gain θ of the ML-MR PID-I control structure. (b) Adaptive
modification of the RDR spectrum of the Cθ(s) controller for disturbance rejection.

4. Multi-Loop Model Reference PID Internal Model (ML-MR PID-IM) Control Structure: Internal
Model Linear Adaptation Rule

Internal model control (IMC) relies on a mathematical model of a plant or process, which is
referred to as an internal model and performs the control law according to this internal model. It was
reported that IMC can be an effective solution for disturbance rejection and model perturbation
problems [32]. In this section, we consider IMC to design a ML-MR control structure. Previously,
an IMC-PID controller was proposed for improved disturbance rejection of time-delayed processes
by using the reference model of the plant [14]. IMC law can be designed by manipulating transfer
function models of the control system. If the internal model is an accurate enough representation of
the system, the derived control law in the s-domain becomes valid for the real system.

In this section, we assume that the internal model is the PID control loop (the inner loop) and
design an internal model PID controller, such that the outer loop can perform the IMC for the inner
loop. Let us consider the multi-loop control structure that is depicted in Figure 1. To improve the
disturbance rejection performance without influencing the control performance of the inner loop, the
reference model, which is the internal model, is assumed to be the transfer function of the inner loop.

Tm(s) = T1(s) =
C1(s)G(s)

1 + C1(s)G(s)
(19)

One can write the transfer function that involves the internal model controller loop C2(s) and the
theoretical reference model T1(s) as:

T2(s) =
C2(s)T1(s)

1 + C2(s)T1(s)
(20)

Our design objective is to find an internal model controller C2(s) so that the whole system behaves
the same as the theoretical reference model Tm(s), which represents an optimal design of the PID control
loop. In order to achieve this objective, the transfer function condition T2(s) = Tm(s) should be satisfied.
By using Tm(s) = T1(s) (Equation (19)), the transfer function condition becomes T2(s) = Tm(s) = T1(s).
It is used in Equation (20) to satisfy the transfer function condition, which gives:

T1(s) =
C2(s)T1(s)

1 + C2(s)T1(s)
(21)

Then, the controller function C2(s) is written as:

C2(s) =
1

1− T1(s)
(22)
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By using Equation (19) in Equation (22), the C2(s) function is found:

C2(s) = C1(s)G(s) + 1 = L(s) + 1, (23)

where the L(s) function is the open loop transfer function of the inner loop, which is expressed as
L(s) = C1(s)G(s). In this form, the C2(s) function can be directly implementable. Application steps for
existing control loops are summarized as follows:

Step 1: The transfer function model of an optimal control loop is obtained, and this transfer
function is used as the reference model (Tm(s) = T1(s)).

Step 2: The optimal closed loop control system is enclosed by the outer loop, as shown in Figure 12.
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Figure 12. Block diagram of the ML-MR PID-IM control structure.

To demonstrate a possible application for the ML-MR PID-IM control, an example design for level
control problem is presented. The plant model is an approximate model that represents the liquid
level in the reboiler of the steam-heated distillation equipment [14,33]. The liquid level is controlled by

adjusting the control valve on the steam line and the process model is given as G(s) = −1.6(−0.5s+1)
3s(s+1) [14,33].

The optimal PID controller for improved disturbance rejection was given as [33]:

C1(s) = −1.25−
0.2358

s
− 1.8125s (24)

The system model is unstable, and the controller function was obtained with negative coefficients.
By considering Equation (23), the C2(s) function of the ML-MR PID-IM control structure is obtained as:

C2(s) =
(
−1.25−

0.2358
s
− 1.8125s

)
−1.6(−0.5s + 1)

3s(s + 1)
+ 1 (25)

We implemented the ML-MR PID-IM control structure for this system, as shown in Figure 13, and
performed control simulations for square waveform input disturbance.

Figure 14 shows responses of the ML-MR PID-IM control structure and Chen et al.’s optimal
PID control loop. Results in Figure 14 clearly demonstrate that the ML-MR PID-IM control structure
improves the disturbance rejection performance of Chen et al.’s optimal PID control loop without
influencing its set-point performance. In the absence of disturbance, responses of the ML-MR PID-IM
control structure overlap with responses of the optimal PID control loop. The set-point performance of
the ML-MR PID-IM control is almost the same as the performance of the optimal PID control loop
proposed by Chen et al. This is an important advantage for robust control performance so that the
proposed ML-MR control structures can improve the disturbance rejection while maintaining the
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set-point performance of the existing PID control loops. A limitation of the ML-MR PID-IM control is
that it is not an effective solution for large time delay plant dynamics and inaccurate plant models.
High time delays can severely affect the performance of the ML-MR PID-IM control scheme.
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the proposed ML-MR PID-IM control structure for liquid level control in the reboiler model. (a) Step
response and (b) change of model error.
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5. Multi-Loop Model Reference MIT-PID with Plant Function Adaptation (ML-MR
MIT-PID-PFA): Nonlinear Adaptation Rule for Time-Delayed Systems

To improve the disturbance rejection capacity of time delay systems, model reference control is
adopted for plant functions in a similar manner to classical IMC [14]. Any mismatch in responses from
the real system and mathematical models of plants is assumed to be disturbance and is rejected by
contributions of the MIT rule. In this configuration, the MIT rule forms the inner loop. The outer loop
deals with the stability and set-point control. Therefore, this type of ML-MR control structure can be
more effective for time delay systems because the adaptation loop only handles model mismatches
between real plants and their mathematical models.

Given a first order plus dead time plant function in the form of G(s) = K
τs+1 e−Ls, an analytical

design scheme for the ML-MR MIT-PID-PFA control structure can be suggested as follows.
Step 1: Identify a model of the plant function and take the reference model of the MRC loop as the

plant function (Tm(s) = G(s)).
Step 2: Enclose the MRC loop with an optimal closed loop PID controller loop, as shown in

Figure 15. Use the Tavakoli–Tavakoli PID tuning rule, which is expressed by Equation (10), for optimal
operation of the PID controller function C(s).

Algorithms 2020, 13, x FOR PEER REVIEW 20 of 29 

An example design for the first order plus time delay plant model is given in the following 
section. 

 

Figure 15. Block diagram of the ML-MR MIT-PID-PFA control structure. 

6. Multi-Loop Model Reference PID-PID with Plant Function Adaptation (ML-MR 
PID-PID-PFA): Linear Adaptation Rule for Time-Delayed Systems 

To obtain a linear adaptation rule, the MIT rule, which leads to nonlinearity, is changed to 
classical PID controller. ML-MR PID-PID-PFA control is implemented, as illustrated in Figure 16. 

 
Figure 16. Block diagram of ML-MR PID-PID-PFA control structure. 

The design steps of the ML-MR PID–PID-PFA control structure for a first order time delay plant 

in the form of Lse
s
KsG −

+
=

1
)(

τ
 can be carried out as follows. 

Step 1: Identify the model of the plant function and take the reference model of the MRC loop as 
the plant function ( )()( sGsTm = ). 

Step 2: Enclose the MRC loop with the optimal closed PID controller loop, as shown in Figure 
16. Tavakoli-Tavakoli PID tuning rule, which is expressed by Equation (10), is used for the both PID 
controller functions. 

−
+

y

me

cer u−+

θ

++

d

)(sC )(sG−+

)(sC

Reference Model 
my

)(sTm

)(sG

−
+

Closed Loop PID Control

y

s
γ− me

cer

u
−+

θ

++

d

Reference Model
my

)(sTm

)(sG

)(sC )(sG

Outer Loop

Inner Loop 

Figure 15. Block diagram of the ML-MR MIT-PID-PFA control structure.

An example design for the first order plus time delay plant model is given in the following section.

6. Multi-Loop Model Reference PID-PID with Plant Function Adaptation (ML-MR
PID-PID-PFA): Linear Adaptation Rule for Time-Delayed Systems

To obtain a linear adaptation rule, the MIT rule, which leads to nonlinearity, is changed to classical
PID controller. ML-MR PID-PID-PFA control is implemented, as illustrated in Figure 16.

The design steps of the ML-MR PID–PID-PFA control structure for a first order time delay plant
in the form of G(s) = K

τs+1 e−Ls can be carried out as follows.
Step 1: Identify the model of the plant function and take the reference model of the MRC loop as

the plant function (Tm(s) = G(s)).
Step 2: Enclose the MRC loop with the optimal closed PID controller loop, as shown in Figure 16.

Tavakoli-Tavakoli PID tuning rule, which is expressed by Equation (10), is used for the both PID
controller functions.
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To demonstrate the effectiveness of the ML-MR MIT-PID-PFA and ML-MR PID-PID-PFA control
structures, we used them to enhance the first order plus deadtime plant model, which was given by
Monje et al. [34].

G(s) =
3.13

433.33s + 1
e−50s (26)

This plant function is a first order dynamical model of the Basic Process Rig 38–100 Feedback
Unit (produced by Feedback Instruments Ltd) experimental platform [34]. This system presents a 50 s
time delay with a time constant of 433.33 s and is considered a large time delay process. Monje et al.
designed an optimal fractional order PID (FOPID) controller for this system as follows:

CFOPID(s) = 0.6152 +
0.01

s0.8968 + 4.3867s0.4773 (27)

We implemented the ML-MR MIT-PID-PFA and ML-MR PID-PID-PFA control structures for this
system by following the design steps given above. For control performance comparison purposes,
we implemented a classical optimal PID control system with the Tavakoli–Tavakoli PID tuning rule
(kp = 1.1862, ki = 0.0026, kd = 22.8885), a classical optimal PID control loop with MATLAB optimal
tuning (kp = 0.8029, ki = 0.002, kd = −35.3930), and an optimal FOPID control system with Monje
et al.’s tuning rule. The set-point of this experimental system was originally 0.47 [34] and a step
disturbance with an amplitude of 0.47 at 1000 s was applied to the input of the plant model. The results
of the control system simulations are shown in Figure 17. The simulation results reveal that both
the set-point and disturbance rejection performances of the ML-MR PID-PID-PFA structure re better
than other controllers. The lowest overshoot and fastest settling results were achieved by the ML-MR
PID-PID-PFA structure. It is noteworthy to observe that the control performance of the ML-MR
PID-PID-PFA structure is superior to the optimal FOPID control system. This finding is a clear
indication of the potential for multi-loop PID controllers to surpass the control performance of the
FOPID controllers. The FOPID controllers have been considered as substitutes for classical PID control
and have been extensively studied in the last decade, showing performance improvements of FOPID
controllers over classical PID controllers. A major complication in practice for FOPID controllers is
their realization complexity. Fractional order controllers can be implemented by using integer order
models because near-ideal realization of fractional order derivatives and integral elements in digital
systems is highly computationally expensive [2]. Recently, analog circuit realizations of fractional
order controllers have been shown, with results promising low-cost and low-complexity solutions
for practical realization of FOPID controllers [35,36]. Recent works have shown the robust control
performance improvement of MR-ML control structures with FOPID controllers [25,26], indicating an
avenue for robust control system research.
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Figure 17. Control performance of various control systems for robust performance optimal control of a
large time delay plant model [34].

It is useful to investigate the frequency dependence of disturbance rejection performance. For this
purpose, the performances of the classical closed loop PID control structure and ML-MR PID-PID-PFA
control structure were compared in the control problem of the Basic Process Rig 38–100 Feedback
Unit experimental platform [34] using sinusoidal waveform disturbance signals at several frequencies.
The PID controller was tuned according to the ITAE design rule proposed by Tavakoli et al. Table 1

shows the mean absolute error (MAE) of the control error signal ( 1
T

T∫
0

∣∣∣ec(t)
∣∣∣dt) from simulations.

For step disturbance, the ML-MR control structure reduces 50% the MAE of classical PID control system.
In general, environmental disturbances are altered slowly and involve low frequency components.
For very low frequency disturbance signals, the MAE of the ML-MR PID-PID-PFA control structure
decreases down to 25% of the MAE of the classical PID control system. As the disturbance frequency
increases, the MAE performance of the ML-MR PID-PID-PFA control structure equals the classical PID
control structure. Figure 18 shows some of the simulation results and confirms these findings.

Table 1. Mean absolute error (MAE) of control error signals obtained from control simulations for step
and sinusoidal waveform disturbances.

Angular Frequencies
ω (rad/s)

Step
Disturbance 0.001 0.005 0.01 0.05 0.1 0.5

Classical PID Control
(Tavakoli et al.) 0.0470 0.0868 0.1748 0.1605 0.0560 0.0267 0.0145

ML-MR PID-PID-PFA 0.0234 0.0216 0.1037 0.1465 0.0690 0.0250 0.0140
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Figure 18. Comparisons of disturbance rejection performances of classical PID control and ML-MR
PID-PID-PFA control structures for (a) step disturbance, (b) sinusoidal disturbance with a frequency of
0.001 rad/s, (c) sinusoidal disturbance with a frequency of 0.01 rad/s, and (d) sinusoidal disturbance
with a frequency of 0.1 rad/s.

In former studies, a ML-MR control structure using the MIT rule was experimentally verified for
control of an experimental magnetic levitation system [26] and control of an experimental electrical
rotor [28]. We conducted an experimental study to validate the contribution of the ML-MR PID-PID-PFA
control structure to the disturbance rejection performance of classical PID control systems. A twin-rotor
multi-input multi-output (MIMO) system (TRMS) is a popular rotor control test platform that is
preferred for electrical rotor control experiments [37,38]. The TRMS is composed of two electrical
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rotors [39]. These are pitch and yaw rotors, as illustrated in Figure 19. The angles of the rotors are
controlled by regulating the input voltages of the DC electric motors. This adjusts the rotational speed
of the propellers so that the rotors can hover.
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Figure 19. Experimental twin-rotor multi-input multi-output system (TRMS) setup [39].

Figure 20 shows the experimental results. After settling the pitch angle to 0.5 rad, an input
disturbance with a unit step waveform was applied at 25 s. One can observe that the step-point control
performances of the classical PID controller and ML-MR PID-PID-PFA control structure are almost
the same. The slight differences are mainly caused by internal system noise and limitations of the
reference model in representing whole dynamics in the main rotor of the TRMS experimental setup.
When disturbance is applied to the system, the response of ML-MR PID-PID-PFA control structure
differs from the response of the PID controller and better rejects the disturbance at the system output,
as shown in the figure.
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Figure 20. Experimental results obtained for control of the main rotor of TRMS setup.

One of major technical complications that was observed in the experimental study was the model
mismatch problem in the real system. We used a nonlinear model of TRMS that is a good representation
of experimental systems. However, inherent limitations of mathematical modeling and changes of
operating conditions reduce the model consistency and lead to model mismatching problems. Since
the response of reference model does not adequately match with the response of the real TRMS setup,
the PID controller of the adaptation loop, which generates the adaptation gain θ, can cause instability
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in the system for the same PID controller coefficients for the control loop. This stability problem can be
solved by retuning the PID controller to the adaptation loop.

7. Discussions and Conclusions

This study investigated some contemporary ML-MR adaptive control structures that are applicable
for classical PID control loops. These structures are the ML-MR PID-MIT, ML-MR PID-MIT-CGM,
ML-MR PID-I, ML-MR PID-IM, ML-MR MIT-PID-PFA, and ML-MR PID-PID-PFA control structures.
Design problems of these ML-MR structures were addressed, and straightforward design and
implementation strategies were presented. The performance evaluations, advantages, and drawbacks
of these ML-MR structures were discussed according to control simulation results. Simulation
results indicated significant disturbance rejection performance improvements in four different control
application examples. The performance comparisons with several single-loop optimal control loops
theoretically show that improvement of the disturbance rejection control without affecting the set-point
performance is possible with presented ML-MR control structures. Some noteworthy properties of the
presented ML-MR adaptive control structures are listed in Table 2.

Table 2. Some properties of the presented ML-MR control structures.

ML-MR Control
Structures Character

Dependence to
Set-Point

Level

Negative Effects
on Set-Point
Performance

Applicability for Time
Delay Systems

Indications in
Simulation

Results

ML-MR PID-MIT Nonlinear Dependent None None Figures 3 and 4
ML-MR

PID-MIT-CGM Nonlinear Dependent None None Figure 8

ML-MR PID-I Linear Independent None None Figure 10
ML-MR PID-IM Linear Independent None None Figure 14

ML-MR
MIT-PID-PFA Nonlinear Dependent None Applicable to some degree Figure 17

ML-MR
PID-PID-PFA Linear Independent None Applicable to some degree Figure 17

Some notable remarks: * ML-MR adaptive control structures are applicable in all classical control loops in order to
improve the disturbance rejection performance without modifying the parameters of the existing control system or
degrading the set-point performance. This is an important advantage of hierarchical ML-MR structures in control
engineering. * Integration approaches of the model reference control loop into classical control loops are carried out
in two steps: outer loop integration uses closed loop control systems as reference models, such as ML-MR PID-MIT,
ML-MR PID-MIT-CGM, ML-MR PID-I, and ML-MR PID-IM controls; and inner loop integration uses models of
plant or process functions as reference models, such as ML-MR MIT-PID-PFA and ML-MR PID–PID-PFA. Outer
loop integrations cover the whole closed control loop to deal with disturbances, and several works have indicated
that these type integrations are preferable solutions for improving fault tolerance and disturbance rejection in the
whole control loop [25–28]. Inner loop integration only encloses the plant function, and hence it can be employed
to deal with external disturbances or parametric perturbations that influence the controlled system. * ML-MR
PID-MIT-CGM and ML-MR PID-I structures can adaptively increase the RDR performance of the closed control
loops without affecting set-point performance. The ML-MR PID-IM control structure benefits from having an
internal model controller design, however it should be noted that its performance is very sensitive to the accuracy of
plant and controller models. * Large-time delay systems that set the point and disturbance rejection performance
of ML-MR PID-PID-PFA control structures can surpass the disturbance rejection performance of a single-loop
optimal FOPID control system. These results reveal that the disturbance rejection capacity of closed loop PID
control loops can be exceeded by combining them with ML-MR control structures. ML-MR control structures
are a feasible way to resolve performance tradeoff between set-point and disturbance rejection control structures.
* Stability analysis of linear ML-MR control structures is relatively straightforward and is performed by obtaining
the transfer function of the whole structure and checking for pole placements for left half-plane (LHP) stability.
The satiability of a nonlinear ML-MR structure, such as ML-MR PID-MIT control, along with the stability and
convergence conditions, are derived on the basis of the bounded input and bounded output stability state of the
model error (see Appendix A). * Results in this study are based on simulation models. The reference models perfectly
match the controlled systems. It is very important to note that model mismatches due to limitations in mathematical
modeling and parametric model perturbations in real systems may have severe effects on the control performance
and stability of the presented ML-MR adaptive control structures in real-world applications. The sensitivity of
these structures to model mismatching should be carefully investigated in future works. The fragility of the system
stability due to model imprecision should be carefully considered when designing real control systems. Moreover,
the resolution of sensors and I/O ports of control cards are important in practical applications. * This study is
a theoretical demonstration of six different ML-MR adaptive control structures. Future works should address
experimental performance evaluations and practical realization issues of ML-MR adaptive control structures.
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The most prominent contributions of the introduced hierarchical ML-MR control structures are:

(i) The proposed ML-MR adaptive control structures can be applied to existing control loops without
modifying any parameters of the control loops. These structures do not require online return of
the control loop, which may result in instant performance degradation while altering controller
coefficients. Therefore, ML-MR control structures provide more consistent control performance
than conventional MRAC structures that are used to perform online return of the control loop.

(ii) The proposed ML-MR adaptive control structures increase the disturbance rejection performance
without deteriorating the set-point control quality. This is an important contribution to the
solution of performance tradeoffs between disturbance rejection and set-point control.
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Appendix A

Since the inner PID control loop is designed as a stable system, convergence of the model error
em = y− ym < ε ∈ R ensures the bounded input and bounded output stability of the ML-MR PID-MIT
control structure. In this manner, we can investigate the convergence condition of em.

Lemma A1. For the ML-MR PID-MIT control structure, the model error becomes zero (em = 0) when the
adaptation gain θ is equal to 1 and T(s) = Tm(s).

Proof A1. Let us consider model error em = y− ym = T(s)θr− Tm(s)r for the ML-MR PID-MIT control
structure and apply the condition of θ = 1 and T(s) = Tm(s). Accordingly, one can show that:

em = T(s)θr− Tm(s)r = Tm(s)r− Tm(s)r = 0

�

Theorem A1 (Stability of the ML-MR PID-MIT Control Structure). For a stable system model T(s) =
Tm(s), the model of the ML-MR PID-MIT control structure is stable only if the model error function is as follow:

em = −
1
γ

(
s2 +

s2

C(s)G(s)

)
, (A1)

where the bounded input and bounded output are stable. For the below equation the model error converges to zero.

lim
s→0+

(
s3 +

s3

C(s)G(s)

)
= 0, (A2)
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Proof A2. Let us consider the adaptation rule of the ML-MR PID-MIT control structure, which is given
by Equation (9) as θ = −γ 1

s ymem. The model can be written as:

em =
sθ
−γym

(A3)

The output of the reference model ym can be written as ym = Tm(s)r(s). For set-point control
stability, one considers the step response of the system. Therefore, the reference input is assumed to be
a step function by using r(s) = 1

s in Equation (A3).

em =
s2θ

−γTm(s)
(A4)

According to Lemma 1, the convergence of the model error to zero (em = 0) is possible for θ = 1
in the case of Tm(s) = T(s). By applying this condition, the model error is written as:

em =
s2

−γT(s)
(A5)

The function T(s) is the transfer function of the inner loop, which is stable due to optimal tuning
of the PID control system. When the T(s) function given by Equation (2) is used in Equation (A5),
one obtains

em = −
1
γ

(
s2 +

s2

C(s)G(s)

)
(A6)

The inner loop is configured to be stable, therefore the output of the inner loop is bounded for
y < ξ ∈ R for a step reference input. When the model error em of the system given by Equation (A6) is
shown to be stable, the bounded input and bounded output of the ML-MR PID-MIT control structure
become stable, so that em = y− ym < ε ∈ R is satisfied. In order to ensure convergence of the model
error to zero, a final value theorem can be applied as:

lim
s→0+

sem = 0 (A7)

Then, one obtains the convergence condition as follows:

lim
s→0+

(
s3 +

s3

C(s)G(s)

)
= 0. (A8)

�
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