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Abstract: From brick-and-mortar stores to omnichannel retail, the efficient selection of products
to be displayed on store tables, advertising brochures, or online front pages has become a critical
issue. One possible goal is to maximize the overall ‘attractiveness’ level of the displayed items,
i.e., to enhance the shopping experience of our potential customers as a way to increase sales and
revenue. With the goal of maximizing the total attractiveness value for the visiting customers
over a multi-period time horizon, this paper studies how to configure an assortment of products
to be included in limited display spaces, either physical or online. In order to define a realistic
scenario, several constraints are considered for each period and display table: (i) the inclusion of
both expensive and non-expensive products on the display tables; (ii) the diversification of product
collections; and (iii) the achievement of a minimum profit margin. Moreover, the attractiveness
level of each product is assumed to be dynamic, i.e., it is reduced if the product has been displayed
in a previous period (loss of novelty) and vice versa. This generates dependencies across periods.
Likewise, correlations across items are also considered to account for complementary or substitute
products. In the case of brick-and-mortar stores, for instance, solving this rich multi-period product
display problem enables them to provide an exciting experience to their customers. As a consequence,
an increase in sales revenue should be expected. In order to deal with the underlying optimization
problem, which contains a quadratic objective function in its simplest version and a non-smooth one
in its complete version, two biased-randomized metaheuristic algorithms are proposed. A set of
new instances has been generated to test our approach and compare its performance with that of
non-linear solvers.

Keywords: omnichannel retail stores; product display problem; multi-period decisions; dynamic
attractiveness; biased-randomized heuristics

1. Introduction

As discussed in Verhoef et al. [1], customers today are changing the way they decide where, how,
and even when to buy. With the rise of Internet-based technologies and mobile devices, different
shopping channels have appeared and attracted customers’ attention. Hence, e-commerce not only
offers customers the possibility of browsing through different stores in an online environment, but
also the ability to get information, opinions, and a vast availability of stock. Omnichannel commerce
is a fully-integrated approach to e-commerce that provides customers with a unified experience
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across different shopping platforms, e.g., a personal computer, a physical retail center, or a mobile
device. In an omnichannel environment, retailers at brick-and-mortar stores have to compete with
other channels, and especially with the ‘showrooming’ behavior of customers. Showrooming occurs
when customers go to a brick-and-mortar store to ‘touch and feel’ the product, but then complete the
purchase online. Even when customers are in the position of choosing where and when to buy, most
brands still generate a noticeable part of their sales revenue at brick-and-mortar stores, so they play
a relevant role in capturing customers’ attention.

One of the strategies used by brick-and-mortar retailers to engage more customers is to offer
them a variety of attractive products over a multi-period time horizon, which typically covers several
weeks. As pointed out by Galino and Moreno [2], in order to achieve this goal the retailer needs to
decide which combination of products has to be shown at the store, so that the combined attractiveness
value is maximized. Some authors define attractiveness as the capacity to cause interest and attract the
attention of another party [3]. According to Ellegaard and Ritter [4], value creation, interaction process,
and emotions define the perceived attractiveness of one actor to another actor. The value creation
refers to the potential value, while the interaction process deals with trust and commitment. Finally,
emotions are the irrational part of decision making, which is not accessible by rational arguments.
In this way, the attractiveness can be seen as an inter-linked concept which combines value, trust,
commitment, and satisfaction [5]. According to Caro and Martínez-de Albéniz [6], “for many products,
consumers tend to make different purchasing decisions over time. For example, most people would
usually avoid eating the exact same meal in the exact same restaurant every day. This observed
pattern has been called variety-seeking behavior”. The same authors state that “in apparel retailing,
part of the success of fast fashion firms such as Zara and H&M relative to the incumbents such
as the Gap can be attributed to more frequent assortment rotation, which generates the feeling of
novelty among consumers”. Similarly, Caro et al. [7] studied the concept of product attractiveness
in retail stores. In their own words: “carrying a static assortment—one that remains the same over
time—becomes ineffective and possibly unprofitable because consumers are quickly bored with the
choices within assortment and they divert their purchases to other consumption options. In other
words, the customers’ preference for a particular product in the assortment decays over time, as it ages
on the shelf”. These authors offer several examples of assortment renewal strategies involving clothing
retailers such as H&M and Chico’s. They also discuss similar patterns in industries such as book
stores and restaurants, which “frequently change the items on their menu to avoid customer satiation”.
A similar concept can be found in Bernstein and Martínez-de Albéniz [8], who claim that “retailers in
industries with short life cycles, such as apparel, have started updating their product offering with
significant frequency. In particular, fast-fashion retailers such as Zara or H&M update their assortments
periodically to induce frequent visits to their stores”. As exposed in Ferreira and Goh [9], “assortment
rotation... has recently been used by both brick-and-mortar and online retailers as a strategy for
gaining competitive advantage. A notable category of retailers who have employed this strategy
successfully are fast-fashion retailers such as Zara and H&M, who have differentiated themselves from
other retailers by rotating their assortment multiple times throughout the fashion industry standard
6-month selling season”. All in all, the attractiveness value of some products might decay as they
are repeatedly displayed. Hence, the retailer must release new products. Similarly, if customers
see the same products exposed in a store during several consecutive time periods (days or weeks),
their willingness to visit that store will decrease. Accordingly, some popular retailers introduce new
products into their stores almost on a daily basis. These dependencies across periods are considered in
our work, which constitutes one of the main original contributions of our approach. Schnurr et al. [10]
addresses novelty, placement, and consumers’ opinions as essential factors on the definition of product
attractiveness: (i) unfamiliar—or new—products are perceived as more attractive and, consequently,
of higher quality when placed in an attractive context; and (ii) the higher the attractiveness score
of a product, the higher are the consumers’ intentions to purchase it. In this work, given a product
included in a display table, we define its individual attractiveness value as the probability that the
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product captures the attention (e.g., is selected and analyzed) of a standard customer visiting the
shop. Being a probability, it will always be a value between 0 and 1 (or, equivalently, a score between
0 and 100). Attractiveness can also be measured by visual properties, and this is directly related
to the existence of correlation between pairs of products (e.g., products that are complementary or
substitute). Thus, retailers have to take into account customers’ purchases that occur in channels other
than brick-and-mortar stores. Apart from experts’ opinion, a large amount of data can be obtained from
customers’ behavior and preferences in an omnichannel environment. These data can provide retailers
with vital information, such as which products generate a higher attraction level among customers
of a certain retail store. Hence, identifying the best assortment of products to display has to be made
considering customers’ preferences [11]. Selling strategies for retail stores should have the ability
to offer customers a set of different surprising experiences. Using display tables to suggest a set of
correlated articles in retail stores is one way to achieve the aforementioned goal. In the apparel sector,
for example, a yellow sweater may be positively correlated with a white pair of jeans but negatively
correlated with orange trousers (since yellow and orange are not colors that match according to certain
fashion trends). Likewise, a skirt might be positively correlated with a top and negatively correlated
with a pair of jeans, since both cloth pieces are bottom parts. Again, these dependencies across items
should be considered. In practice, data gathered in an omnichannel database could be one of the most
efficient ways to determine the correlations between pairs of products.

The problem of selecting, over a multi-period horizon, the most attractive configuration of
products to be displayed in a limited space (e.g., a physical table at the store, an advertising brochure,
or a website front page), is related to well-known problems such as the product recommendation
problem [12], the shelf space allocation problem [13], and the assortment problem [14]. Figure 1
shows a simple example to illustrate the product display problem and its possible solutions. In this
case, the solution consists of a 2-period time horizon. In each period, there are 3 display tables with
a capacity of 5 items each. Each display table and item is represented by its identifier (ID). Hence, for
instance, in period h1, display table 2 will be composed of items 11, 29, 45, 18, and 5.

Display table

Display

table ID

Selected

article ID

h                                                                              h1                2

Figure 1. A solution representation for a simple multi-period product display problem.

When selecting a set of products to be displayed, one should always consider customer preferences
and willingness to buy [15]. Current online display systems provide a list of products that are either
based on the user’s past behavior or on decisions made by similar users. This strategy has been
widely applied in e-commerce, where it has generated raised sales as well as customer satisfaction
[16]. Companies such as Amazon use a method called collaborative filtering. Here, ratings and
purchases made by similar users are considered to suggest products to online customers [17]. This
product selection problem is also relevant for brick-and-mortar stores, since they might benefit
from an optimal selection of products to be displayed over a multi-period time horizon. The main
contributions of this paper are described next: (i) a novel mathematical formulation for the multi-period
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product display problem with dynamic attractiveness levels is proposed in order to clearly define
the problem under consideration—while analyzing a case study, the assumptions of this model were
discussed with professionals of the retail sector, who were also students in an MBA offered at our
business school—(ii) in order to solve this optimization problem in the context of a retail store with
several display tables, biased-randomized (BR) versions of the greedy randomized adaptive search
procedure (GRASP) and the iterated local search (ILS) are introduced; (iii) a set of novel benchmark
instances, considering realistic constraints and different product characteristics, is proposed to test
the quality of our approach when compared with non-linear solvers; and (iv) based on the outcomes
of our experiments, a series of practical recommendations are provided. A complete introduction to
biased-randomization techniques can be found in Grasas et al. [18]. A review of GRASP algorithms
can be found in Festa and Resende [19], while a description of the ILS metaheuristic framework can
be found in Lourenço et al. [20]. Finally, a recent study on the combination of biased-randomization
techniques with GRASP is available in Ferone et al. [21]. Regarding the constraints considered in
this work, they include diversity of fashion collections, selling-price categories, and marginal-profit
categories. Likewise, dependencies across both periods and items are considered in our study. The rest
of the paper is arranged as follows: Section 2 presents a literature review of related research; Section 3
describes the problem in more detail and provides a mathematical formulation for it; Section 4
introduces the proposed biased-randomized algorithms; Section 5 includes an explanation of the
computational experiments carried out to test the quality of our approach, while Section 6 contains an
analysis of the results; finally, Section 7 highlights the main conclusions of this work and proposes
some lines for future research.

2. Related Work

This section has been divided into two subsections, each dealing with different problems strongly
related to the product display problem considered in this paper.

2.1. The Product Assortment and Product Recommendation Problems

The product assortment problem involves finding the optimal combination of products to include
in a limited portfolio of items to be manufactured or sold. One of the first works on the product
assortment problem is due to Sadowskit [22]. Since then, many researchers have explored this field, as
illustrated in the survey made by Pentico [14]. This author classified the literature according to the
following characteristics: demand, demand pattern, dimensions, number of stock sizes, substitution
cost structure, and stocking pattern stability. In this sense, different authors studied the way customers
make decisions and how that affects the stock offered or shown. Mahajan and van Ryzin [23] considered
that customers choose only among products that are still in stock. Caro et al. [7] and Ulu et al. [24]
developed models in which the assortment needs to be adapted over time. As identified by
Mantrala et al. [25], product assortment not only has the constraints of physical space and retailers’
budget, but an attractiveness factor—as perceived by customers—should also be taken into account.
Caro et al. [7] considered a problem in which the attractiveness of products decays over time once they
are introduced to the selected assortment. A related study on space and store operations is provided
by Mou et al. [26], who considered how product attractiveness decreases with time. They also discuss
the need for retailers to gather information from different channels in order to better plan their stock
assortment.

Related to this, Honhon et al. [11] studied product substitution after a stock-out of a first-choice
item occurs. Here, customers choose the products that are available at the time of their visit to a physical
store. Similarly, other authors analyzed the management of multi-item retail inventory systems
with demand substitution [27] and the dynamic assortment planning with demand learning [28].
According to the former authors, profitability depends on incorporating substitution effects in
inventory management. Substitution increases the demand for other items and affects optimal
stock levels. According to the latter authors, it is vital for retailers to select which products to
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offer due to the limited display capacity in the physical stores. Hence, these authors described
different stock assortment policies and introduce a model for dynamic assortment planning. Similarly,
Honhon et al. [11] proposed a dynamic programming algorithm to determine the optimal assortment
in a single-period problem with stock out-based substitution. Rajamma et al. [29] described a method
for determining inventory depth and variety breadth, as well as the mix between basic and seasonal
clothing in fashion retail. Strategic decisions on the right variety and depth of in-store stock have been
developed by Mantrala et al. [25]. They provided reviews on how to customize retail assortment at the
store level, rather than simply using a centrally planned assortment for all stores. A complete review
of stock assortment is provided by Kök et al. [30].

The product recommendation problem has received increasing attention recently. According to
Liu and Shih [31], “recommender systems rely on customer purchase history to determine customer
preferences and to identify products that customers may purchase”. Li et al. [32] proposed a framework
for a localized product recommendation system associated with automatic vending machines. Their
system offers suitable recommendations of localized products to customers in different locations.
They developed a hybrid technique using a metaheuristic approach, a clustering technique, as well
as classification and statistical methods. The importance of product recommendation in today’s
omnichannel retailing world is also mentioned by Balakrishnan et al. [33]. They adopted an intuitive
co-clustering algorithm for locating useful patterns in a 0-1 matrix, which studies the buying behavior
of customers using historical data on past purchases. In order to handle the product recommendation
problem for e-commerce applications, Baykal et al. [34] proposed a co-operation framework for
multiple role-based reasoning agents. Choi and Cho [35] presented a similar product-finding algorithm
for the collaborative business companies that share a product taxonomy table and have exchangeable
product information. Choi et al. [36] proposed an online product recommendation system, which
combines implicit rating-based collaborative filtering (CF) and sequential pattern analysis (SPA).
The system derives implicit ratings by applying CF to online transaction data—even when no explicit
rating information is available—and integrates CF and SPA for improving recommendation quality.

Zhao et al. [37] developed a novel product recommender system called METIS. Their system
identifies, almost in real-time, users’ purchase trials from their microblogs. Then, it makes product
recommendations based on matching the users’ demographic information—extracted from their public
profiles—with product demographics learned from these microblogs and additional online reviews.
Zhao et al. [38] proposed a novel solution for ‘cross-site’ and ‘cold-start’ product recommendation,
which recommends products from e-commerce websites to users at social networking sites in cold-start
situations. The term cold-start refers to users who do not have historical records on the items they
have purchased. The authors proposed learning both users’ and product feature representations
via data collected from e-commerce websites, using recurrent neural networks and then applying
a modified gradient boosting trees method to transform users’ social networking features into
user purchase preferences. More recently, Kaminskas et al. [16] addressed a particular product
recommendation problem regarding small-scale retail websites, where the small number of returning
customers makes traditional user-centric personalization techniques inapplicable. Hence, these
authors applied an item-centric product recommendation strategy that combines two well-known
methods—association rules and text-based similarity—for generating recommendations based on
a single ‘seed’ product. Furthermore, their approach was also used to recommend products based on
a set of seed products in a user’s shopping basket. The effectiveness of their recommendation approach
is demonstrated, in the product-seeded and basket-seeded scenarios, through a series of experiments
employing real customer data.

Product recommendation systems are related to the product assortment problem: a set of
correlated products must be selected to be exposed (or recommended) in an exposition area with
limited capacity. This selection of products should help to improve the experience of customers
when visiting a store. In effect, by exposing an appropriate set of items at the display tables it is
possible to increase the level of attraction of customers to the store, which directly influences the
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customers’ experience and, hence, the sales revenue. Although this Section shows that research has
been undertaken on both product recommendation systems and the product assortment problem, there
is still a lack of work on how to combine different products in retail display tables at brick-and-mortar
stores, especially when considering a multi-period time horizon and dynamic attractiveness values.

2.2. The Shelf Space Allocation Problem

A related issue is the shelf space allocation problem [39,40], which is also linked to the optimal
selection of products to be displayed on shelves with limited space. In this problem, however, several
items of the same product can be selected. According to Hübner and Kuhn [13], there are two different
questions associated with the planning: assortment planning and shelf space planning. The first
relates to listing decisions based on consumer choice, whereas the second deals with the limited
shelf space. Our work considers both aspects, that is, which products should be shown in a limited
space. Retail stores, especially brick-and-mortar ones, need to make decisions on what stock should be
displayed in order to increase the customer’s attention. Despite the proliferation of numerous software
applications in shelf space management, which make use of historical data, new algorithms—as the
ones introduced in this paper—are needed to deal with multi-period and dynamic versions of the
product selection problem. Most of the literature about the shelf space allocation problem refers to
supermarket products [41,42]. Other areas, such as fashion stores, have not received much attention.
Parsons [43] analyzed how the atmosphere in fashion stores influences sales. Gao et al. [44] investigated
how pre-packs are used in retail distribution and how this reduces handling costs. Notice that fashion
and apparel customers do not approach the store with a clear purchase objective, as it would be the
case for food in supermarkets or electronic equipment. Instead, the customer enters the store just to
look and see if something attracts his / her attention. It is the store’s function to appeal to them to
make them buy from the store and not from another shopping channel, e.g., a mobile device, tablet, or
personal computer.

Table 1 summarizes the literature on product recommendation, product assortment, and shelf
space allocation problems according to the solving methodology employed. Among them, we highlight
the use of dynamic programming methods, heuristics/metaheuristics, and data mining/machine
learning strategies such as collaborative filtering, association rules, and sequential pattern analysis.
From the literature review, one can notice that approximate methodologies have gained more
popularity over the years. This fact can be explained by the continuous growth in the size of realistic
instances.

Table 1. Classification of main articles by problem and solving methodology.

Study
Problem Methodology

Product
Recommendation

Assortment Problem
and Stock Optimization

Shelf Space
Allocation Exact Heuristic or

Metaheuristic Other

Sadowskit [22] • •
Mahajan and van Ryzin [23] • •

Choi and Cho [35] • •
Baykal et al. [34] • •

Liu and Shih [31] • • •
Honhon et al. [11] • •

Choi et al. [36] • •
Sauré and Assaf [28] • •

Caro et al. [7] • • •
Gao et al. [44] • •

Li et al. [32] • • •
Zhao et al. [37] • •

Bianchi-Aguiar et al. [42] • •
Flamand et al. [41] • •

Kaminskas et al. [16] • •
Balakrishnan et al. [33] • •
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3. A Formal Description of the Multi-Period Product Display Problem

Consider a warehouse holding a set of products or items. It has to supply a retail store for different
time periods, which define the planning horizon. Each item belongs to a certain collection (e.g., shirts
or jeans in the case of clothes), has a selling price—which might vary with time—and a marginal
profit—which is typically given as a percentage of the selling price. Depending on its selling price,
an item is classified as ‘expensive’ or not. In any given period the retail store contains a set of tables,
each of them displaying a subset of non-repeated items. Each item has an initial attractiveness value,
estimated from experts’ opinions and/or historical observations in an omnichannel environment—such
as the number of times it has been selected and analyzed in the past, the feedback provided by the
customers, etc. The attractiveness value can also depend upon other items currently being displayed
in the table, since relations (or dependencies) between pairs of products may need to be considered.

Among all the available products in the warehouse, a subset of different items should be selected
to be displayed on the retail display tables. The dependency between each pair of items is registered
in a dependency matrix. An inter-period dependency is also considered. The attractiveness value of
each item is reduced by a known quantity (typically expressed as a percentage) every time the product
is repeatedly shown in two (or more) consecutive periods. In other words, if an item is repeatedly
exposed during several consecutive periods of time, its novelty disappears and, as a consequence,
its attractiveness value is reduced. On the other hand, whenever an item has not been shown in the
previous period, its attractiveness value is increased due to the novelty effect. The goal is then to solve
a multi-period product display problem with dynamic attractiveness levels. In this problem, a subset
of items has to be selected to be displayed at each table-period combination in order to maximize the
aggregated attractiveness level over all periods. In order to make the problem more realistic, a number
of additional constraints are also considered in this paper:

1. Collection constraint: the subset of items assigned to each table should cover at least a minimum
number of goods from each collection, lc ≥ 0.

2. Price constraint: a minimum number of products at each table, lp ≥ 0, should belong to the
expensive category.

3. Profit constraint: the profit margin of each table should be greater than a threshold defined by
the manager, lm ≥ 0.

A set of consecutive time periods H is considered, together with a finite set of items, I, which
are hosted in a warehouse. Each item i ∈ I is associated with a base price pi > 0, a marginal benefit
mih ≥ 0 (which might be different at each period h ∈ H), and an initial attractiveness value vi0 > 0.
The final selling price of each item i ∈ I at period h ∈ H is given by p′ih ≥ pi, i.e., mih = p′ih − pi. These

items belong to a set of collections C = {c1, c2, · · · , c|C|}, where I =
|C|⋃
k=1

ck. The subset of expensive

items is given by Ip = {i ∈ I/pi ≥ p0}, where p0 is a threshold price value defined by the manager.
At each period h ∈ H, a subset Sh items must be exposed using a set of homogeneous tables T,

with each table containing a total of n > 0 items. The decision variable xith is equal to 1 if item i is
selected for table t in period h, and to 0, otherwise. Thus, the set of non-repeated selected items for
each table t ∈ T in period h ∈ H is given by Sth = {i ∈ I/xith = 1}, being Sh =

⋃
t∈T

Sth. A matrix

D = [dij]i,j∈I provides the existing interaction value, dij ∈ R, between any pair of items i, j ∈ I. These
intra-period dependencies account for the fact that some items might be positively or negatively
correlated with others (i.e., showing them together might generate synergies or, on the contrary, might
reduce their aggregated attractiveness). Apart from this intra-period dependencies between pairs
of items, inter-period dependencies are also considered to account for the product’s novelty (or the
lack of it). Accordingly, the attractiveness value of every item is a dynamic input, i.e., it is reduced
or increased by a certain percentage factor depending on whether the item was displayed or not in
the previous period. Thus, ∀h ∈ {1, 2, . . . , |H|}, the attractiveness value of item i in period h, vih, is
recursively defined as:
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vih = f (vi(h−1), xit(h−1), a, b, u, w) =

{
Max{a, (1− u)vi(h−1)} ∑t∈T xit(h−1) = 1
Min{b, (1 + w)vi(h−1)} ∑t∈T xit(h−1) = 0

,

where 0 ≤ a < b are bounds for the attractiveness values and u, w ≥ 0 are decreasing or increasing
percentage factors, respectively.

With this notation, the addressed problem can be formulated as follows:

Max ∑
h∈H

∑
t∈T

∑
i∈I

vihxith + ∑
h∈H

∑
t∈T

∑
i∈I

∑
j∈I/i<j

dijxithxjth. (1)

Subject to:

∑
i∈I

xith = n ∀t ∈ T, ∀h ∈ H (2)

∑
t∈T

xith ≤ 1 ∀i ∈ I, ∀h ∈ H (3)

∑
i∈ck

xith ≥ lc ∀ck ∈ C, ∀t ∈ T, ∀h ∈ H (4)

∑
i∈Ip

xith ≥ lp ∀t ∈ T, ∀h ∈ H (5)

∑
i∈I

mihxith ≥ lm ∀t ∈ T, ∀h ∈ H (6)

vih = f (vi(h−1), xit(h−1), a, b, u, w) ∀i ∈ I, ∀h ∈ H \ {0} (7)

xith ∈ {0, 1} ∀i ∈ I, t ∈ T, h ∈ H (8)

vih ∈ [a, b] ∀i ∈ I, h ∈ H (9)

The objective function (1) maximizes the total attractiveness of the planning horizon by
considering the individual attractiveness of the items and the intra-period dependencies between each
pair of selected items in each displaying table and period. Equation (2) ensures that the number of
items on each table t ∈ T does not exceed a pre-defined value n. Equation (3) guarantees that each item
i cannot be selected more than once in a given period h ∈ H. Equation (4) confirms that, inside each
period, each table covers at least lc items from each collection ck. Equation (5) guarantees that, inside
each period, each table contains at least lp expensive items. Equation (6) ensures, for each period, that
the profit margin of each table should be greater than lm. Equation (7) introduces the inter-periods
dynamic component in the attractiveness value of the items. Notice that this equation transforms the
objective function into a non-smooth one due to the definition of the vih values. Equation (8) states
that all decision variables are binary. Finally, Equation (9) bounds the values that variable vih can take.
A ‘relaxed’ version of this problem can be obtained when no bounds are imposed on the attractiveness
values of each item. In that case, the objective function becomes quadratic since Equation (10) can be
rewritten as:

vih = vi(h−1)(1− u) ∑
t∈T

xit(h−1) + vi−1(1 + w) ∑
t∈T

(1− xit(h−1)) ∀i ∈ I, ∀h ∈ H \ {0} (10)

4. Our BR-GRASP and BR-ILS Solving Approaches

In this paper, biased-randomized versions of the well-known GRASP [45] and the ILS [20]
metaheuristics are proposed to solve the multi-period product display problem with dynamic
attractiveness. Both algorithms consist of some common stages: (i) a construction stage, in which
a feasible initial solution is built taking into account the constraints; and (ii) an improvement stage,
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in which a local search is applied to the initial solution in order to enhance its quality. Apart from
these two common stages, the ILS incorporates a perturbation phase and an acceptance criterion phase.
As discussed in Resende and Ribeiro [46] and Grasas et al. [47], both GRASP and ILS are relatively
easy-to-implement and flexible metaheuristic frameworks that have shown their efficiency in solving
different optimization problems, including both deterministic and stochastic ones. They typically do
not require many parameters or time-consuming fine-tuning processes. The previous properties make
them especially suitable for industrial applications. Moreover, they have been successfully combined
with biased-randomization techniques in multiple occasions [21,48–50].

In the BR-GRASP approach, a solution is built iteratively, element by element, and then improved
via a local search procedure. This two-step process is repeated until a number of iterations (or
a maximum running time) is reached. Then, the best-found solution is returned. On the other
hand, the BR-ILS starts from a base solution, which is repeatedly perturbed (modified using
a destruction-reconstruction process), enhanced via a local search procedure, and finally evaluated by
an acceptance criterion until a stop condition is met. In both the BR-GRASP and the BR-ILS, a partial
solution is constructed for each new period (taking into account the current configuration of the display
tables). Then, this partial solution is improved through a local search procedure. The low-level details
of these algorithms are provided next.

4.1. Introducing BR into GRASP and ILS

The use of Monte Carlo sampling techniques to enhance the performance of constructive
heuristics was proposed by Faulin and Juan [51]. In our approach, more advanced biased-randomized
techniques—based on the use of a geometric probability distribution—are used every time a new
solution is constructed or partially reconstructed after a perturbation phase. BR techniques differ from
standard selection strategies, which are usually based on a greedy criterion or on the use of a uniform
probability distribution to select the next candidate from a list. Thus, for example, in a classical GRASP
framework, a restricted list of candidates (RLC) is considered, and a uniform probability distribution
is used to choose a candidate from this RLC. However, in a BR-GRASP, an unrestricted candidate list
(UCL) is employed. This UCL is sorted according to some logical criterion, and a geometric distribution
is used to select the next element from this sorted UCL [21]. The geometric distribution uses a single
parameter, β, which is proportional to the probability of selecting the first element in the UCL. All
elements in the UCL receive a probability of being selected, which is higher the closer the element is
to the top of the sorted UCL. The same concept is also employed during the solution–construction
processes inside our BR-ILS algorithm.

Pseudocode 1 illustrates this solution-construction process. All items (set I) are included in the
UCL, which is sorted in descending order according to the ‘adjusted’ attractiveness value of each item,
i.e., the original attractiveness value in the corresponding period is corrected to consider dependencies
with respect to other items already in the display table. Then, the geometric distribution is used to
randomly build a solution by selecting one ‘promising’ item at a time. Once selected, the element is
removed from the UCL, the adjusted attractiveness values and profit margin of the remaining elements
are updated, and the UCL is sorted again.
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Pseudocode 1: Construction stage with biased randomization.
Data: Distribution parameter β for the geometric probability distribution

1 s← ∅
2 Initialize candidate list set: UCL← I
3 Order UCL according to sorting criterion c(.)
4 while solution s is not completed do
5 Randomly select pos ∈ {1, ..., |UCL|} according to distribution Geom(β)

6 s← s ∪ {UCL[pos]}
7 UCL← UCL\{UCL[pos]}
8 Re-order UCL
9 end

10 return s

The efficiency of similar BR strategies has been extensively discussed in different studies, such as
Dominguez et al. [52,53], Juan et al. [54], and Martin et al. [55].

4.2. Constructing an Initial Solution for the Current Period

For each period in the planning horizon, an initial solution is built by adding products to the
display tables. We assume that these tables are empty at the beginning of the period. Each product is
assumed to have an initial attractiveness value at the beginning of the first period. This attractiveness
value is based on historical observations and, possibly, expert judgment.

Using the BR strategy previously described, a subset of items is assigned to a given display table.
First, a subset Sth is built by selecting n products for table t in period h. At this point, the collection
constraint is incorporated into the construction procedure by selecting a minimum number of items
from each collection. Next, the price-related constraint and the profit-margin constraint are checked
for the Sth subset. If both constraints are satisfied, the next table is considered. Otherwise, the solution
is repaired. During the repair process, an item is randomly selected from Sth and replaced by another
item not in Sth. In the case of the price constraint, for instance, this swapping process is based on
the replacement of items from one price category (e.g., non-expensive) by products belonging to
another one (e.g., expensive). In the case of the profit-margin constraint, the swapping process is based
on the replacement of items with a low-profit margin by products with a high-profit margin. This
process is repeated until a feasible configuration of tables is eventually achieved for the current period.
After obtaining a feasible configuration for the current period, an improvement stage is applied as
described next.

4.3. Improving the Solution of the Current Period

Pseudocode 2 illustrates the improvement procedure applied to each table in the current period.
It starts from the first table t in the given period h. An item i is randomly selected from t and removed.
Then it is replaced by another randomly-selected item j ∈ I among those that can be inserted without
violating any constraint. As a result, a new table t′ is generated. The adjusted attractiveness value of t′

is updated taking into account the dependencies between pairs of items. If the adjusted attractiveness
value of t′ is greater than that of t, the latter table is updated and the counter is reset. Otherwise,
another item is randomly chosen until a maximum number of iterations is achieved without any
improvement. The same process is applied to the remaining tables in the current period h. At each
iteration of the constructive procedure, the articles’ attractiveness and profit margins are conveniently
updated for the next periods of the planning horizon.
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Pseudocode 2: Improving the configuration of tables in period h.
Data: period h, maximum number of iterations without improvement itermax

1 articleToRemove← null
2 articleToInsert← null
3 for each table t ∈ T of h do
4 counter ← 0
5 while counter < itermax do
6 t′ ← t
7 itemToRemove← random item i ∈ St′h
8 itemToInsert← random non-selected article j ∈ I that keeps the feasibility of t′

9 Remove itemToRemove from t′

10 Insert itemToInsert into t′

11 Update total attractiveness and correlation of t′

12 if tableAttractiveness(t′) > tableAttractiveness(t) then
13 t← t′

14 counter ← 0
15 else
16 counter ← counter + 1
17 end
18 end
19 end

4.4. Perturbation Stage in the BR-ILS

Both the construction of an initial solution and the improvement process are employed in the
BR-GRASP and the BR-ILS. However, the BR-ILS also makes use of a base solution which is modified
via a perturbation stage. In our case, the perturbation is characterized by a destruction-reconstruction
process as described in Pseudocode 3. After selecting a starting period, hstart, all posterior periods are
destroyed and then re-built, using the previously described constructive and improvement stages.

The starting period is chosen according to a varying percentage of destruction, k ∈ (0, 1]. Hence,
for example, if k = 0.1 then the last 10% of the periods are destroyed and reconstructed (due to the
dependencies across periods, if a period is rebuilt all posterior periods need to be recomputed).

Pseudocode 3: Perturbation stage
Data: percentage of destruction k

1 hstart ← |H| − k ∗ |H|
2 newSol ← baseSol
3 for each period h ∈ H of newSol starting from hstart do
4 newSol ← newSol\{h}
5 h∗ ← reconstruction(h)
6 h∗ ← improvement(h∗)
7 newSol ← newSol ∪ {h∗}
8 end
9 if newSol is better than baseSol then

10 baseSol ← newSol
11 end

4.5. Acceptance Criterion Stage in the BR-ILS

Finally, the ILS metaheuristic also incorporates an acceptance criterion to reduce the probability of
getting trapped in a local minimum (Pseudocode 4). In our case, we use the demon-based acceptance
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criterion described in Juan et al. [56]. In this criterion, newly generated solutions are compared with
the base solution, and the former is updated in two cases: (i) when the new solution is better than the
base solution; or (ii) when the new solution is worse than the base solution, but the difference in value
is lower than the improvement (credit) obtained in the last update of the base solution.

Pseudocode 4: Credit-based acceptance criterion.

1 delta← cost(newSol)− cost(baseSol);
2 if delta ≤ 0 then
3 credit← −delta
4 baseSol ← newSol
5 if cost(baseSol) < cost(bestSol) then
6 bestSol ← baseSol
7 end
8 end
9 if 0 < delta ≤ credit then

10 credit← 0
11 baseSol ← newSol
12 end

5. Computational Experiments

This section describes the experimental setup designed to evaluate the performance of our
BR-GRASP and BR-ILS algorithms. To the best of our knowledge, this is the first work solving a rich
and realistic version of the multi-period product display problem with dynamic attractiveness. Hence,
we had to generate a complete set of benchmarks with different characteristics to comprehensively
evaluate and test the proposed algorithms. These characteristics are: number of articles (|I|), number
of display tables (|T|), number of collections (|C|), and number of items per display table (n).

For small-sized instances (aimed at being solved using non-linear exact methods), we set |I| ∈
{25, 50, 75, 100}, |T| ∈ {2, 3, 4}, |C| = 5, |H| ∈ {2, 3, 4}, and n = 6. Each of these instances was named
according to these specifications. Thus, for example, instance 75i-5c-4p-4t-6it consists of 75 items,
5 collections, 4 periods, 4 tables per period, and 6 items per table. Similarly, for the large-sized instances
we set |I| ∈ {500, 1000, 1500, 2000}, |T| ∈ {5, 10}, |C| = 4, |H| = 12, and n = 10. Each of these
instances was named according to these specifications. Thus, for example, instance a500m5i1 consists
of 500 products and 5 tables. The last index represents different instances using the same combination
of items and tables. For the purpose of numerical experimentation, most of the specific inputs in
these instances (e.g., initial attractiveness values, dependencies between pairs of products, item prices,
and associated collection) have been randomly generated. In order to facilitate reproducibility of the
experiments, all these instances and inputs are publicly available at https://www.researchgate.net/
publication/330675091_instancesMPPDPDA.

Although all input data is available in the previous link, an overview of these inputs is provided
next for the case of the large-sized instances. The final selling price of each product is generated
according to a uniform distribution in the range [10, 150] (monetary units). The profit-margin
percentage for each product follows a uniform distribution in the range [10%, 35%]. The price and
profit margin are considered to generate the absolute profit, which is used to check whether the
respective constraints are satisfied. The initial attractiveness value for each item and the between-items
dependencies are generated according to a uniform distribution in the range [10, 100] and [−35, 35],
respectively. Regarding the considered constraints, the subset of selected products at each table should
cover at least 20% of each collection. Regarding prices, the items are categorized into two different
categories: those with a cost inferior to 60 monetary units are considered as non-expensive items.
The rest are considered expensive. In our experiments, we required that the selected subset at each
table should include at least 50% of expensive products. Finally, for each table, the profit margin

https://www.researchgate.net/publication/330675091_instancesMPPDPDA
https://www.researchgate.net/publication/330675091_instancesMPPDPDA
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per table is set at 100 monetary units or more. To account for the ‘novelty factor’, when a product
is displayed on a table during a given period, its attractiveness value is decreased by 10% for the
next period (always considering that the minimum attractiveness value that a product can reach is
bounded by the modeling parameter a ≥ 0). Conversely, if a product is not displayed at a given period,
its attractiveness value increases by 3% for the next period (up to a maximum value given by the
modeling parameter b > a).

After some initial tests, a geometric probability distribution with a parameter β randomly
chosen in the interval (0.80, 0.99) was used for the biased-randomization process during the
solution-construction stage. The stopping criterion for the BR-GRASP and BR-ILS is defined by
a maximum computing time, tmax, defined as: tmax = 0.5 · |I| · |T| · |H|. In practice, this represents
approximately 15 seconds of execution for instances composed of 500 articles, 5 tables, and a planning
horizon of 12 days, for example. Regarding the improvement stage, the stopping criterion is set to
itmax = 1000 iterations without observing any improvement. Our algorithms were coded in Java and
run on a standard PC with an Intel Core i5 CPU at 2.7 GHz and 8 GB RAM.

Tables 2 and 3 summarize the experimental setup and parameters for the computational
experiments. Note that a new parameter, r, is introduced. This parameter refers to the percentage of
profit margin (and price) reduction in specific sales periods.

Table 2. Problem parameters.

|H| hs he r u w lc lp lm b a

12 11 12 10% 10% 3% 20% 50% 100 150 0

Table 3. Methodologies Parameters

α β tmax itmax k

0.1 [0.8, 1) 0.5 · |I| · |T| · |H| 1000 {0.1, 0.3, 0.4, 0.55, 0.7, 0.8, 1}

6. Analysis of Results

As discussed in Section 3, the relaxed version of the problem is non-linear. It might be solved
using non-linear exact methods, at least up to a certain size. Hence, in order to compare the solutions
generated by our BR-GRASP algorithm with the ones provided by the non-linear solver, we first run
a set of small-sized instances. In a second experiment, the proposed large-sized instances are employed
to test our methodologies under more realistic (large-scale and non-smooth) scenarios.

6.1. Small-Sized Instances and Limitations of Non-Linear Solvers

A set of small-sized instances was generated in order to test the performance of our BR-GRASP
algorithm when compared to state-of-the-art non-linear solvers. As explained in the previous section,
these instances differ in the number of articles, number of tables, and the length of the horizon. Table 4
presents the results of a numerical analysis discussing the limitations of these solvers even when
dealing with the relaxed version of the problem. The overall best-known solution (BKS) for each
instance is provided. According to our experiments, only instances with up to 600 binary variables and
200 constraints (e.g., 50 items, four periods, and three tables per period) can be solved in reasonable
computing times using modern non-linear solver engines such as COIN-OR Bonmin and NEOS
Bonmin [57]. Notice that our BR-GRASP algorithm (BR-GR) is very competitive when compared with
the non-linear solver engines, obtaining better or similar solutions in much shorter computing times.
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Table 4. Comparison of results between the non-linear solvers and our BR-GRASP approach (relaxed
version of the problem).

Instance
Instance Details GAP (%) w.r.t. BKS Time (s)

|I| |H| |T| bin var constraints BKS COIN-OR NEOS BR-GR COIN-OR NEOS BR-GR

25i-5c-2p-2t-6it 25 2 2 100 > 50 311.4 4.82 3.21 0.00 19 23 1
25i-5c-3p-2t-6it 25 3 2 150 > 75 440.4 2.04 2.68 0.00 10 23 1
25i-5c-4p-2t-6it 25 4 2 200 > 100 562.9 0.00 1.03 1.49 37 69 4
50i-5c-4p-2t-6it 50 4 2 400 > 200 768.7 0.91 0.00 0.85 196 46 5
50i-5c-4p-4t-6it 50 4 4 800 > 200 1250.3 0.00 2.62 2.58 > 700 > 300 3
75i-5c-2p-2t-6it 75 2 2 300 > 150 392.4 3.52 0.00 2.47 50 79 5
75i-5c-2p-3t-6it 75 2 3 450 > 150 557.7 3.39 1.27 0.00 148 165 5
75i-5c-3p-3t-6it 75 3 3 675 > 225 1033.9 N/A N/A 0.00 > 3600 > 1200 64
75i-5c-3p-4t-6it 75 3 4 900 > 225 1352.1 N/A N/A 0.00 > 3600 > 1200 83

100i-5c-2p-3t-6it 100 2 3 600 > 200 583.1 N/A 1.73 0.00 > 3600 > 120 34
100i-5c-3p-2t-6it 100 3 2 600 > 300 631.6 0.24 0.00 1.35 > 700 > 300 4
100i-5c-3p-4t-6it 100 3 4 1200 > 300 1122.7 N/A N/A 0.00 > 3600 > 1200 64
100i-5c-4p-4t-6it 100 4 4 1600 > 400 1496.9 N/A N/A 0.00 > 3600 > 1200 61

6.2. Large-Sized Instances with Fixed Profit Margins

Due to the satisfactory performance of our biased-randomized approach in small-sized instances,
the BR-GRASP and the BR-ILS were also tested in solving more realistic (large-scale) instances of
the complete (non-smooth) version of the problem. In this case, no variations in the selling price of
the products were considered. A lower bound on the attractiveness value any item can achieve is
imposed. In our experiments, we set a = 0, while b takes a sufficiently large value (i.e., in practice the
attractiveness value of an item grows after each period in which the item has not been displayed). For
each of the 40 generated instances, 10 runs were performed (each run using a different seed for the
pseudo-random number generator). To evaluate the performance of each methodology, we consider
the percentage gap between the best-found solution using that methodology (i.e., the one with the
highest attractiveness value) and the BKS obtained with any solution methodology. Thus, the lower
the gap, the better the performance of the methodology.

The solutions generated by our BR-GRASP and BR-ILS algorithms are compared with those
generated by a greedy strategy, a ‘standard’ GRASP, and a ‘standard’ ILS (i.e., without considering BR
techniques). The greedy methodology approximates human behavior (e.g., an expert manager) when
selecting articles to be displayed. In the standard GRASP algorithm, and after some preliminary tests,
the parameter α which controls the size of the RCL was set to 0.1. The standard ILS algorithm uses
a greedy selection technique to build solutions. Regarding the perturbation stage, the destruction rate
was defined by the set k ∈ {0.1, 0.3, 0.4, 0.55, 0.7, 0.8, 1}.

Table 5 provides the summarized results of the solutions generated by the greedy (G), BR-GRASP
(BR-GR), GRASP (GR), ILS and BR-ILS methodologies. For each instance and methodology, the
following data is provided: the attractiveness value of the best-found solution, the average (AVG)
attractiveness value obtained after 10 runs, as well as its corresponding standard error (SE), the gap
with respect to the BKS, and the average CPU time employed to find the corresponding solutions. The
best-found solution for each instance is presented in bold.
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Table 5. Comparison of the results obtained by the proposed methodologies.

Instance
Best Solution (attractiveness) AVG Attractiveness (SE) GAP (%) w.r.t. BKS AVG Time (sec.)

G BR-GR GR ILS BR-ILS G BR-GR GR ILS BR-ILS G BR-GR GR ILS BR-ILS G BR-GR GR ILS BR-ILS
a500m5i1 100,303 104,887 104,726 103,882 104,447 100,303 (0) 104,540 (71) 104,418 (75) 103,676 (46) 104,131 (63) 4.37 0.00 0.15 0.96 0.42 0 8 7 10 12
a500m5i2 101,106 105,600 105,700 104,344 105,077 101,106 (0) 105,295 (59) 105,258 (83) 104,143 (53) 104,903 (48) 4.35 0.09 0.00 1.28 0.59 0 7 7 11 9
a500m5i3 100,313 104,955 104,721 103,930 104,688 100,313 (0) 104,596 (76) 104,506 (50) 103,614 (51) 104,295 (59) 4.42 0.00 0.22 0.98 0.25 0 8 7 12 12
a500m5i4 100,606 105,026 104,834 103,887 104,597 100,606 (0) 104,735 (59) 104,589 (48) 103,531 (61) 104,290 (59) 4.21 0.00 0.18 1.08 0.41 0 8 7 11 14
a500m5i5 100,633 105,745 105,700 104,647 105,018 100,633 (0) 105,293 (88) 105,165 (84) 104,127 (102) 104,701 (54) 4.83 0.00 0.04 1.04 0.69 0 7 8 10 10

a500m10i1 188,711 196,334 195,685 194,764 195,811 188,711 (0) 195,901 (106) 195,382 (77) 194,194 (113) 195,440 (98) 3.88 0.00 0.33 0.80 0.27 0 15 14 20 23
a500m10i2 189,668 197,098 196,662 195,567 196,288 189,668 (0) 196,734 (99) 196,347 (69) 195,086 (95) 195,957 (57) 3.77 0.00 0.22 0.78 0.41 0 14 15 21 20
a500m10i3 187,187 194,977 194,415 193,682 194,283 187,187 (0) 194,538 (108) 193,989 (66) 193,063 (111) 193,863 (65) 4.00 0.00 0.29 0.66 0.36 0 15 16 18 22
a500m10i4 187,302 196,927 195,653 195,125 195,885 187,302 (0) 196,421 (104) 195,232 (107) 194,526 (106) 195,611 (52) 4.89 0.00 0.65 0.91 0.53 0 15 15 18 20
a500m10i5 186,074 193,498 192,934 192,147 192,835 186,074 (0) 193,147 (83) 192,646 (77) 191,537 (116) 192,415 (93) 3.84 0.00 0.29 0.70 0.34 0 15 15 17 21
a1000m5i1 110,916 113,781 112,947 113,166 113,851 110,916 (0) 113,602 (45) 112,708 (58) 112,958 (58) 113,369 (73) 2.58 0.06 0.79 0.60 0.00 0 15 14 15 24
a1000m5i2 111,172 114,672 113,486 113,737 114,233 111,149 (0) 114,306 (53) 113,263 (37) 113,221 (107) 114,034 (32) 3.05 0.00 1.03 0.82 0.38 0 16 14 20 18
a1000m5i3 110,216 114,088 112,895 112,966 113,453 110,216 (0) 113,675 (73) 112,515 (66) 112,717 (50) 113,266 (58) 3.39 0.00 1.05 0.98 0.56 0 16 16 23 21
a1000m5i4 110,958 114,182 113,100 113,060 113,871 110,958 (0) 113,907 (71) 112,770 (61) 112,841 (51) 113,437 (65) 2.82 0.00 0.95 0.98 0.27 0 16 16 25 24
a1000m5i5 110,969 114,362 113,164 113,054 113,894 110,969 (0) 113,998 (68) 112,859 (52) 112,851 (44) 113,561 (51) 2.97 0.00 1.05 1.14 0.41 0 15 15 15 24

a1000m10i1 212,437 218,018 215,554 216,393 217,147 212,437 (0) 217,608 (86) 214,770 (117) 215,818 (110) 216,752 (80) 2.56 0.00 1.13 0.75 0.40 0 32 30 36 48
a1000m10i2 209,689 215,681 212,682 214,212 215,081 209,689 (0) 215,214 (87) 212,175 (83) 213,865 (67) 214,456 (114) 2.78 0.00 1.39 0.68 0.28 0 30 33 54 36
a1000m10i3 211,045 216,982 214,111 215,294 216,723 211,045 (0) 216,443 (89) 213,544 (94) 214,809 (107) 215,976 (111) 2.74 0.00 1.32 0.78 0.12 0 34 30 38 47
a1000m10i4 210,869 216,560 213,698 215,304 216,233 210,869 (0) 216,190 (109) 213,133 (123) 214,747 (112) 215,721 (73) 2.63 0.00 1.32 0.58 0.15 0 28 30 31 39
a1000m10i5 212,916 217,943 214,600 216,719 217,337 212,916 (0) 217,506 (84) 214,376 (58) 216,105 (144) 216,980 (64) 2.31 0.00 1.53 0.56 0.28 0 29 31 51 41
a1500m5i1 114,511 117,763 115,996 116,406 117,318 114,511 (0) 117,377 (74) 115,742 (50) 116,203 (69) 117,021 (67) 2.76 0.00 1.50 1.15 0.38 0 23 22 30 40
a1500m5i2 116,116 119,709 117,457 118,930 119,328 116,116 (0) 119,422 (42) 117,272 (32) 118,341 (114) 119,007 (63) 3.00 0.00 1.88 0.65 0.32 0 22 21 34 29
a1500m5i3 115,237 118,749 116,645 117,247 118,234 115,237 (0) 118,416 (71) 116,501 (32) 117,069 (43) 117,972 (56) 2.96 0.00 1.77 1.26 0.43 0 23 23 35 38
a1500m5i4 115,523 118,600 116,448 117,569 118,433 115,523 (0) 118,250 (72) 116,241 (56) 117,150 (84) 117,886 (69) 2.59 0.00 1.81 0.87 0.14 0 22 22 33 32
a1500m5i5 115,004 118,189 116,218 116,955 117,785 115,004 (0) 117,846 (76) 115,926 (57) 116,755 (69) 117,530 (54) 2.69 0.00 1.67 1.04 0.34 0 23 20 34 33

a1500m10i1 223,333 228,339 223,706 227,220 228,394 223,333 (0) 227,788 (119) 223,078 (93) 226,430 (125) 227,530 (101) 2.22 0.02 2.05 0.51 0.00 0 46 47 63 64
a1500m10i2 222,677 227,425 222,844 226,245 226,910 222,677 (0) 226,926 (96) 222,310 (78) 225,629 (113) 226,470 (98) 2.09 0.00 2.01 0.52 0.23 0 46 42 51 60
a1500m10i3 222,409 227,296 222,936 225,490 226,682 222,409 (0) 226,912 (119) 222,376 (109) 224,955 (96) 226,308 (91) 2.15 0.00 1.92 0.79 0.27 0 42 45 62 71
a1500m10i4 223,322 228,323 223,507 226,937 228,157 223,322 (0) 228,088 (55) 223,156 (79) 226,553 (96) 227,556 (92) 2.19 0.00 2.11 0.61 0.07 0 45 47 62 60
a1500m10i5 220,092 226,651 222,442 225,253 225,993 220,092 (0) 226,298 (61) 222,058 (68) 224,645 (133) 225,547 (80) 2.89 0.00 1.86 0.62 0.29 0 42 45 64 62
a2000m5i1 117,467 121,200 118,831 119,871 120,632 117,467 (0) 120,624 (74) 118,228 (74) 119,624 (54) 120,326 (60) 3.08 0.00 1.95 1.10 0.47 0 30 31 50 52
a2000m5i2 118,295 120,996 118,308 120,190 120,820 118,295 (0) 120,696 (68) 118,014 (52) 119,833 (81) 120,330 (72) 2.23 0.00 2.22 0.67 0.15 0 32 28 49 37
a2000m5i3 118,151 121,349 118,769 120,134 121,062 118,151 (0) 121,057 (53) 118,535 (57) 119,733 (70) 120,696 (70) 2.64 0.00 2.13 1.00 0.24 0 29 34 39 44
a2000m5i4 118,308 121,848 119,468 120,835 121,471 118,308 (0) 121,489 (76) 119,064 (68) 120,500 (58) 121,168 (57) 2.90 0.00 1.95 0.83 0.31 0 31 31 40 44
a2000m5i5 118,841 121,966 119,270 120,975 121,487 118,841 (0) 121,675 (42) 119,002 (46) 120,589 (74) 121,295 (65) 2.56 0.00 2.21 0.81 0.39 0 30 29 37 46

a2000m10i1 231,988 235,713 229,199 234,075 235,099 231,988 (0) 235,256 (84) 228,886 (62) 233,659 (106) 234,768 (72) 1.58 0.00 2.76 0.69 0.26 0 60 59 85 79
a2000m10i2 230,797 235,691 228,935 233,606 234,478 230,797 (0) 234,750 (135) 228,532 (76) 233,133 (83) 234,044 (62) 2.08 0.00 2.87 0.88 0.51 0 59 62 75 71
a2000m10i3 230,359 235,430 229,583 234,145 234,834 230,359 (0) 235,323 (33) 229,172 (80) 233,493 (184) 234,577 (48) 2.15 0.00 2.48 0.55 0.25 0 62 65 85 91
a2000m10i4 229,622 234,369 228,526 232,734 234,181 229,622 (0) 234,055 (64) 228,248 (55) 232,485 (61) 233,604 (87) 2.03 0.00 2.49 0.70 0.08 1 58 59 69 80
a2000m10i5 229,995 234,959 228,768 232,876 234,346 229,995 (0) 234,618 (98) 228,429 (76) 232,538 (85) 233,976 (69) 2.11 0.00 2.64 0.89 0.26 0 63 63 102 85

AVG - - - - - - - - - - 2.98 0.00 1.41 0.83 0.31 0 28 28 39 40
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From Table 5, we can notice that the BR-GRASP and the BR-ILS (in that order) outperform the
other methodologies. In particular, the BR-GRASP provides the BKS in 37 out of 40 tested instances.
Although the BR-GRASP was not able to find the BKS in some cases, it was able to find solutions with
a minor deviation (less than 0.10%) from it. According to our experiments, the greedy methodology
runs extremely fast, since this methodology does not incorporate a local search mechanism and it is not
embedded inside a multi-start process. Comparing the remaining methodologies, all of them require
similar computing times, although the BR-GRASP reaches high-quality solutions faster than other
approaches.

Figure 2 shows, for each methodology, a boxplot of the percentage gaps with respect to the BKS.
From this Figure, one can conclude that the greedy methodology—which could be assimilated to
a human behavior—represents by far the worst approach. In effect, it shows an average gap of about
3% with respect to the BKS, a gap that can grow up to 5% in some instances. It can be seen that
biased-randomized techniques enhance the ILS and GRASP approaches. The main reason why our
BR-GRASP performs slightly better than our BR-ILS might is the existence of inter-period dependencies.
These inter-period dependencies might sometimes penalize partial-scope destruction-reconstruction
processes (ILS) versus full-scope destruction-reconstruction ones (GRASP), since the former might get
trapped more easily in a local minimum. ANOVA and Fisher tests were run in order to analyze if the
performance differences were statistically significant. As expected, the ANOVA test resulted in the
existence of significant differences among the algorithms (p-value = 0.000). Actually, according to the
Fisher pairwise test, except for the comparison between algorithms BR-GRASP and BR-ILS, all other
differences in performance are statistically significant.

Greedy ILS GRASP BR-ILS BR-GRASP

0
1

2
3

4
5

Methodology

B
e
s
t 
G

A
P

Figure 2. Comparison of percentage gaps w.r.t. the best-known solution (BKS) achieved by each
methodology.

Figure 3 illustrates the convergence behavior with time of the BR-GRASP algorithm for an instance
composed of 500 articles, 5 tables, and 5 periods. The convergence is analyzed by period Pi, i ∈
{1, 2, . . . , 5}, which runs for 1.25 seconds (0.5× 500× 5 milliseconds per period) for this problem.
Notice that all periods present similar convergence behavior with time. Additionally, the range value
of attractiveness is similar across the periods. This is explained by the small increment in attractiveness
(3%) associated with new items, as well as by the large reduction in attractiveness (10%) associated
with items that have lost their novelty effect.
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Figure 3. Convergence chart for the BR-GRASP in a particular instance.

6.3. Large-sized Instances with Varying Profit Margins (Selling Prices)

During the considered horizon, one could consider a reduction in product prices (and margins)
due to the sales period. For running an experiment under these conditions, the parameters hs and he,
which represent the beginning and end of the especial sales period, were set to hs = 11 and he = 12.
The remaining parameters were not changed. Table 6 provides the summarized results of the solutions
generated by our methodologies. For each problem magnitude, the first instance was considered,
and a comparison among the solving methods was provided in terms of percentage gap.

From Table 6, one can notice that the BR versions of GRASP and ILS outperform the other solving
methodologies. In this scenario with varying profit margin, the BR-GRASP is able to provide the BKS
for the eight tested instances. For the remaining methodologies, their performance—in terms of gaps,
SE, and CPU times—is similar to the one presented in Table 5.
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Table 6. Comparison of the results obtained by the proposed methodologies.

Instance
Best Solution (attractiveness) AVG Attractiveness (SE) GAP (%) w.r.t. BKS AVG Time (s)

G BR-GR GR ILS BR-ILS G BR-GR GR ILS BR-ILS G BR-GR GR ILS BR-ILS G BR-GR GR ILS BR-ILS
a500m5i1 100,167 104,906 104,748 103,981 104,422 100,167 (0) 104,497 (73) 104,440 (51) 103,482 (82) 104,104 (66) 4.52 0.00 0.15 0.88 0.46 0 8 8 8 10

a500m10i1 188,711 196,372 195,804 194,621 195,815 188,711 (0) 196,021 (78) 195,541 (78) 193,967 (108) 195,370 (78) 3.90 0.00 0.29 0.89 0.28 0 15 17 15 20
a1000m5i1 110,916 113,875 113,097 113,223 113,515 110,916 (0) 113,630 (53) 112,708 (48) 112,744 (79) 113,292 (54) 2.60 0.00 0.68 0.57 0.32 0 15 14 17 21

a1000m10i1 212,437 217,987 215,415 216,246 217,287 212,437 (0) 217,540 (111) 214,911 (100) 215,857 (95) 217,058 (60) 2.55 0.00 1.18 0.80 0.32 0 30 30 36 40
a1500m5i1 114,397 117,609 115,983 116,460 117,437 114,397 (0) 117,289 (61) 115,750 (47) 116,112 (72) 117,057 (58) 2.73 0.00 1.38 0.98 0.15 0 23 23 41 36

a1500m10i1 223,202 228,676 223,475 226,916 227,794 223,202 (0) 227,827 (159) 223,053 (75) 226,517 (81) 227,418 (68) 2.39 0.00 2.27 0.77 0.39 0 48 44 69 66
a2000m5i1 117,377 120,696 118,292 119,967 120,628 117,377 (0) 120,545 (41) 118,147 (43) 119,599 (59) 120,442 (42) 2.75 0.00 1.99 0.60 0.06 0 33 32 40 30

a2000m10i1 231,988 236,010 229,241 234,086 235,096 231,988 (0) 235,431 (111) 229,029 (60) 233,674 (89) 234,831 (64) 1.70 0.00 2.87 0.82 0.39 0 60 57 65 63
AVG - - - - - - - - - - 2.89 0.00 1.35 0.79 0.29 0 29 28 37 36
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7. Conclusions

Increasing levels of competitiveness among brands as well as among channels of the same
brand make it difficult for retailers in brick-and-mortar stores to engage customers while in the
shop. One of the ways to attract them to the stores is to offer a different experience and a factor of
surprise. Displaying a set of correlated and attractive products on retail display tables that vary often is
a promising way to engage customers with a pleasant experience. From a managerial perspective, being
able to know the selection of products that maximizes the attractiveness level enables a rationalization
of the stock available in the store. Moreover, reducing the time required to make these decisions might
significantly increase the productivity of the managers in charge of them.

In this paper, we propose a rich and realistic multi-period product display problem, as well as
biased-randomized algorithms that allow us to solve it in an efficient way. In the considered problem,
a set of correlated products has to be selected over multiple periods of time in order to maximize the
total attractiveness level of the display tables in a retail store. A number of realistic characteristics and
constraints have been incorporated in the problem to increase the potential applications of our work.
Some of these are: (i) the inclusion of both expensive and non-expensive products on each display
table and horizon; (ii) the achievement of a minimum profit margin per table and horizon; (iii) the
consideration of dynamic (novelty-based) and correlated (combination-based) attractiveness levels;
and (iv) the consideration of dynamic selling prices.

As solution approaches, a biased-randomized GRASP and a biased-randomized ILS have been
proposed. To test these methodologies, a complete set of instances was generated by considering
realistic assumptions and different design factors. In our approach, it is assumed that the attractiveness
value of each product can be estimated using historical data obtained from an omnichannel
environment. The experimental results show that both biased-randomized methodologies are able to
provide, in short computing times, solutions that clearly outperform the human-behavior and other
more standard methodologies. Additionally, a numerical study has shown that our biased-randomized
algorithms are very competitive when compared with non-linear solver engines, obtaining better or
similar solutions in much shorter computing times.

By increasing the attractiveness level of retail display tables in a short time horizon, managers
can reduce customer attrition and, as a consequence, increase sales revenue in their stores. Using
biased-randomized algorithms to maximize the attractiveness of products assigned to display tables in
the considered scenario represents a clear enhancement over current practice, which might typically
require many hours of a dedicated expert to generate even a feasible solution.
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