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Abstract: We implement and test the performances of several approximation algorithms for
computing the minimum dominating set of a graph. These algorithms are the standard greedy
algorithm, the recent Linear programming (LP) rounding algorithms and a hybrid algorithm
that we design by combining the greedy and LP rounding algorithms. Over the range of test
data, all algorithms perform better than anticipated in theory, and have small performance ratios,
measured as the size of output divided by the LP objective lower bound. However, each have
advantages over the others. For instance, LP rounding algorithm normally outperforms the other
algorithms on sparse real-world graphs. On a graph with 400,000+ vertices, LP rounding took less
than 15 s of CPU time to generate a solution with performance ratio 1.011, while the greedy and
hybrid algorithms generated solutions of performance ratio 1.12 in similar time. For synthetic graphs,
the hybrid algorithm normally outperforms the others, whereas for hypercubes and k-Queens graphs,
greedy outperforms the rest. Another advantage of the hybrid algorithm is to solve very large
problems that are suitable for application of LP rounding (sparse graphs) but LP formulations become
formidable in practice and LP solvers crash, as we observed on a real-world graph with 7.7 million+
vertices and a planar graph on 1,000,000 vertices.

Keywords: minimum dominating set; linear programming; experimentation

1. Introduction

Domination theory has its roots in the k-Queens problem in the 18th century. Later, in 1957,
Berge [1] formally introduced the domination number of a graph. A subset of vertices S in a graph G is
a dominating set if every vertex not in S is adjacent to some vertex in S. A dominating set of smallest
cardinality is called a minimum dominating set. The cardinality of a minimum dominating set is called
domination number of G and is denoted by γ(G). The vertices colored red in Figure 1 constitute a
minimum dominating set in the graph Q3, or the three dimensional cube.

For the remainder of the paper, we assume familiarity with general concepts of graph theory
as in [2], the theory of algorithms as in [3], and linear and integer programming concepts as in [4],
respectively. We refer the reader to the book by Haynes, Hedetniemi, and Slater [5] as a general
reference in domination theory. The problem of computing the domination number of a graph is
well studied, and has extensive applications, including the design of telecommunication networks,
facility location, and social networks.

Computing γ(G) is known to be an NP-hard problem, even in restricted cases, including unit disc
graphs and grids [6], and hence the researchers have focused on approximation and finding a small
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dominating set. A simple greedy algorithm is known to approximate γ(G) to within a logarithmic
factor from the optimal value. It is known that improving the logarithmic approximation factor is also
NP-hard [7]. Hence, no algorithm for approximating γ(G) can improve the asymptotic worst-case
performance ratio of the greedy algorithm. Different variations of this algorithm are proposed and
some are tested in practice. See the work of Chalupa [8], Campan et al. [9], Eubank et al. [10],
Sanchis [11], and Siebertz [12].

Figure 1. Minimum dominating set for Q3.

There are other approximation algorithms for very specific classes of graphs, including planar
graphs, which have better than constant performance ratio in the worst case but are more complex
than the algorithms described here. See [12] for a brief reference to some related papers.

Very recently, Bansal and Umboh [13] and Dvořák [14] showed that an appropriate rounding of
solutions to the linear programming (LP) formulations for computing γ(G) provides dominating sets
whose cardinalities are at most 3 · a(G) · L∗ and (2 · a(G) + 1) · L∗, respectively, in polynomial time.
Here, a(G) is the arboricity of G, and L∗ is the value of the optimal solution to the linear programming,
which is a lower bound on γ(G). Hence, for graphs with bounded arboricity, one can improve the
logarithmic performance ratio of the greedy algorithm to a constant.

The greedy algorithm is simple, fast, and is tested in practice. One anticipates that it outperforms
the LP-based approach if CPU time is the criteria. Nonetheless, its performance ratio in the worst
case is logarithmic even for planar graphs which have arboricity at most 3; see example 1 in the
Appendix A. For sparse graphs, the recent LP rounding methods referenced above have a bounded
performance ratio, which is better than greedy, but to our knowledge, and in contrast to the greedy
algorithm, the performance of the LP-based approaches have not been tested in practice. Furthermore,
one would expect that for large graphs, the LP formulations would become formidable. Can one
hope that a combination of these methods would give a better result than each individually, and if so,
in what scenarios?

In this paper, we compare and contrast the performance of the greedy algorithm, the LP rounding
algorithm, and a hybrid algorithm that combines the greedy and LP approaches. Our hybrid algorithm
first solves the problem using the greedy algorithm and finds a dominating set, then takes a portion of
vertices in this set and forces their values to be 1 in the linear programming formulation, solves the
resulting linear program, and finally properly rounds the solution.

Our Findings

Through experimentation, all algorithms perform better than anticipated in theory,
particularly with respect to the performance ratios, measured as the value of solution divided by the
computed LP objective lower bound. However, each may offer advantages over the others depending
on the nature of the data.
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LP rounding does well on sparse real-world graphs, consistent with theory, and normally
outperforms the other algorithms. On a graph with 400,000+ vertices, LP rounding took less than
15 s of CPU time to generate a solution with performance ratio 1.011, while the greedy and hybrid
algorithms generated solutions of performance ratio 1.12 in similar time. It is remarkable that the
hybrid algorithm can solve the problem for very large sparse graphs, where the LP formulation
becomes formidable in practice. For instance, it solved a real-world graph with 7.7 million+ vertices
in 106 s of CPU time with a performance ratio of 2.0075. The LP solver crashed on this problem.
We indicate that the simplex-based LP package used in our experiments performed very fast, although,
in theory, simplex is not necessarily polynomially time bounded.

For hypercubes and k-Queens graphs (which are not sparse) greedy outperforms the rest,
consistent with theory, both in terms of speed and performance ratio. In particular, on the
12-dimensional hypercube, greedy finds a solution with performance ratio 1.7 in 0.01 s. On the
other hand, the LP rounding and hybrid algorithms produce solutions with performance ratio 13 and
3.3 using 7.5 and 0.08 s of CPU time, respectively. It is notable that greedy gives optimal results in
some cases where the domination number is known. Specifically, the greedy algorithm produces an
optimal solution on hypercubes with dimensions d = 2k − 1 where k = 1, 2, 3, and 4. For synthetic
graphs - generated k-trees (G is a k−tree if it has tree width k and the addition of any edge increases
the tree width by one), and k-planar graphs (G is k−planar if it can be drawn in the plane with no edge
crossed by more than k other edges) - the LP rounding is outperformed by the other two algorithms,
and the hybrid algorithm outperforms greedy.

This paper is organized as follows. In Section 2, we set our notations and summarize related
materials for the greedy algorithm. The LP rounding and hybrid algorithms are explained in sections
three and four, respectively. Section 5 (Environment, implementations and datasets), contains our
materials and methods. Section 6 contains the results for synthetic graphs (k-planar graphs and k-trees).
Sections 7 and 8 contain the results for hypercubes and k-Queens graphs, and real-world graphs,
respectively. In Section 9, we exclusively describe how the hybrid algorithm can be applied to very
large sparse graphs, where the LP formulation becomes formidable. We present our conclusions in
Section 10.

2. Preliminaries

Throughout this paper G = (V, E) denotes an undirected graph on vertex set V and edge set E
with n = |V| and m = |E|. Two vertices x, y ∈ V where x 6= y are adjacent (or they are neighbors) if
xy ∈ E. For any x ∈ V, the degree of x, denoted by deg(x) is the number of vertices adjacent to x in
G. For any x ∈ V, let N(x) denote the set of all vertices in G that are adjacent to x. Let N[x] denote
N(x) ∪ {x}. Arboricity of G, denoted by a(G), is the minimum number of spanning acyclic subgraphs
of G that E can be partitioned into. By a theorem of Nash-Williams, a(G) = maxSd mS

nS−1e, where nS
and mS are the number of vertices and edges, respectively, of the induced subgraph on the vertex
set S [15]. Consequently, m ≤ a(G)(n− 1), and thus a(G) measures how dense G is. It is known that
a(G) can be computed in polynomial time [16].

Let D ⊆ V. D is a dominating set if for every x ∈ V \ D there exists y ∈ D such that xy ∈ E.
The domination number of G, denoted by γ(G), is the cardinality of a smallest dominating set of G.
A dominating set of cardinality γ(G) is called a minimum dominating set. Additional definitions will be
introduced when required.

Greedy Approximation Algorithm

A simple greedy algorithm attributed to Chvátal [17] and Lovász [18] (for approximating the
set cover problem) is known to approximate γ(G) within a multiplicative factor of H(∆(G)) from its
optimal value, where ∆(G) is the maximum degree of G and H(k) = ∑k

i=1(1/i) is the k−th harmonic
number. Note that ln(k + 1) ≤ H(k) ≤ ln(x) + 1. The algorithm initially labels all vertices uncovered.
At iteration one, the algorithm selects a vertex v1 of maximum degree in G, places v1 in a set D,
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and labels all vertices adjacent to v1 as covered. In general, at iteration i ≥ 2, the algorithm selects a
vertex vi ∈ V − {v1, v2, . . . , vi−1} with the largest number of uncovered vertices adjacent to it , adds vi
to D, and labels all of the uncovered vertices adjacent to vi as covered. The algorithm stops when D
becomes a dominating set. It is easy to implement the algorithm in O(n + m) time. It is known that
approximating γ(G) within a factor (1− ε)ln(∆) from the optimal is NP-hard [7]. Hence, no algorithm
for approximating γ(G) can improve the asymptotic worst-case performance ratio achieved by the
greedy algorithm.

The appendix includes two examples of worst-case graphs (one sparse and one dense) for the
greedy algorithm, which are derived from an instance of the set cover problem provided in [19].
For both instances, the O(ln(∆)) performance ratio is tight.

3. Linear Programming Approach

One can formulate the computation of γ(G) as an integer programming problem IP1 stated below.
However, since integer programming problems are known to be NP-hard [20], the direct application
of the integer programming method would not be computationally fruitful. Next observe that by
relaxing the integer program IP1, one obtains the linear program LP1 shown below.

IP1:
Minimize I = ∑v∈V xv

Subject to ∑u∈N[v] xu ≥ 1, ∀v ∈ V
xv ∈ {0, 1}, ∀v ∈ V

LP1:
Minimize L = ∑v∈V xv

Subject to ∑u∈N[v] xu ≥ 1, ∀v ∈ V
0 ≤ xv ≤ 1, ∀v ∈ V

Definition 1. Throughout rest of this paper we denote by L∗ and I∗ the values of L and I in LP1, and IP1,
respectively, at optimality.

Please note that L∗ ≤ γ(G) = I∗.

Linear Programming Rounding

Algorithm R1 is due to Bansal and Umboh [13].

Algorithm R1 ([13])

Solve LP1, and let H be the set of all vertices that have weight at least 1/(3a(G)), where a(G) is the arboricity
of graph G. Let U be the set of all vertices not adjacent to any vertex in H and return H ∪U.

Dvořák [14,21] studied the d-domination problem, i.e., when a vertex dominates all vertices at
distance at most d from it and its combinatorial dual, or a 2d-independent set [22]. In [14] he employed
the LP rounding approach of Bansal and Umboh as a part of his frame work and consequently,
for d = 1, he improved the approximation ratio of algorithm R1 by showing that the algorithm R2

given below provides a 2a(G) + 1 approximation.

Algorithm R2 ([14])

Solve LP1, and let H be the set of all vertices that have weight at least 1/(2a(G) + 1), where a(G) is the
arboricity of graph G. Let U be the set of all vertices that are not adjacent to any vertex of H and return
H ∪U.

Remark 1. Graph G in Example 1 in the Appendix A is planar, so a(G) ≤ 3. Thus, algorithms R1 and R2 have
a worst-case performance ratio of nine and seven respectively, whereas greedy exhibits a worst-case O(log(n))
performance ratio. Throughout our experiments, rounding algorithms returned an optimal solution of size two
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for both examples, whereas greedy returned a set of size three for Example 1. Furthermore, in Example 2 in the
appendix, it can be verified that a(G) ≥ (p + 2)/2 for graph G and hence in theory the worst-case performance
ratios of the rounding algorithms are not constant either. Interestingly enough, in our experiments, L∗ was
always two for graphs of type Example 2, and LP rounding algorithms also always found a solution of size two,
which is the optimal value. Thus, the performance ratio was always one, and much smaller than the predicted
worst case.

4. Hybrid Approach

Next, we provide a description of the decomposition approach for approximating LP1 and our
hybrid algorithm. Recall that a separation in G = (V, E) is a partition A ∪ B ∪ C of V so that no vertex
of A is adjacent to any vertex of C. In this case, B is called a vertex separator in G. Let X = {xv|v ∈ V}
be a feasible solution to LP1, and let V′ ⊆ V. Then X(V′) denotes ∑v∈V′ xv.

Lemma 1. Let A ∪ B ∪ C be a separation in G = (V, E) and consider the following linear programs:

LP2:
Minimize M = ∑v∈A∪B xv

Subject to ∑u∈N[v] xu ≥ 1, ∀v ∈ A
0 ≤ xv ≤ 1, ∀v ∈ A ∪ B

LP3:
Minimize N = ∑v∈B∪C xv

Subject to ∑u∈N[v] xu ≥ 1, ∀v ∈ C
0 ≤ xv ≤ 1, ∀v ∈ B ∪ C

Then max{M∗, N∗} ≤ L∗.

Proof. Let X = {xv|v ∈ V} be an optimal solution to LP1. Please note that the restrictions of X to
B ∪ C and A ∪ B give feasible solutions for LP3 and LP2 of values X(B ∪ C) and X(A ∪ B), and hence
the claim for the lower bound on L∗ follows.

Please note that in LP2 and LP3 the constraints are not written for all variables, and the rounding
method in [13] may not directly be applied.

Theorem 1. Let G = (V, E), let A ⊂ V, let B = N(A) and let C = V − (A ∪ B). Let X be an optimal
solution for LP3, and let X(C) denote the sum of the weights assigned to all vertices in C. Then there is a
dominating set in G of size at most |A|+ 3a(G)X(C) ≤ |A|+ 3a(G)N∗.

Proof. Let H be the set of all vertices v in C with x(v) ≥ 1
3a , and let U = C− (H ∪ N(H)). Now apply

the method in [13] to C to obtain a rounded solution, or a dominating set D, of at most |U|+ |H| ≤
3a(G)X(C) vertices in C. Finally, note that A ∪ D is a dominating set in G with cardinality at most
|A|+ 3a(G)X(C) ≤ |A|+ 3a(G)N∗.

The Hybrid Algorithm:
Fix 0 < α < 1. Apply the greedy algorithm to G to obtain a dominating set D = {x1, x2, . . . , xd},

and let S = {x1, x2, . . . , xα·d} be the first α · d vertices in D. Now, solve the following linear program
on the induced subgraph of G with the vertex set V − {S}.

Minimize J = ∑
v∈V−{S}

xv (1)

Subject to ∑
u∈N[v]

xu ≥ 1, ∀v ∈ V − {S ∪ N[S]} (2)

0 ≤ xv ≤ 1, ∀v ∈ V − S (3)
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Next, let A = S, B = N(S) and C = V − (A ∪ B), and apply the rounding scheme in algorithms
R1 or R2 to C. Let H and U be the corresponding sets, and output the set S ∪ H ∪U.

Remark 2. Please note that with Theorem 1, the hybrid algorithm can be implemented in polynomial time.
Furthermore, |S∪H ∪U| ≤ α.d + 3a(G)N∗ ≤ α.(ln(∆) + 1) + 3a(G)).γ(G), and thus the hybrid algorithm
has a bounded performance ratio.

Remark 3. We choose the value of α by trial and error, normally starting at α = 1/2.

5. Environment, Implementation, and Datasets

We used a laptop with modest computational power—8th generation Intel i5 (1.6 GHz) and
8 GB RAM—to perform the experiments. We implemented the O(n + m) time version of the greedy
algorithm in C++. At the time of writing this paper we did not have access to packages that offer the
polynomially time bounded versions of linear programming. We used IBM Decision Optimization
CPLEX Modeling (DOCPLEX) for Python to solve the LP relaxation of the problem for the LP rounding
and hybrid algorithms.

Our data sources are listed below.
https://github.com/joklawitter/GraphGenerators †
http://www.inf.udec.cl/~jfuentess/datasets/graphs.php ††
http://davidchalupa.github.io/research/data/social.html [8]
https://www.cc.gatech.edu/dimacs10/downloads.shtml [23]
The graph generator at † was used to create the k-planar graphs (graphs embedded in the plane

with at most k crossings per edge) and k-trees (graphs with tree width k with largest number of edges)
up to 20,000 vertices. We also used publicly available Google+ and Pokec social-network graphs,
a publicly available 1,000,000-vertex planar graph ††, and real-world DIMACS Graphs with up to
more than 7,700,000 vertices. Furthermore, we generated the k-Queens graphs, hypercubes (up to
12 dimensions) and graphs in Example A.1 (Figure A1) and Example A.2.

Remark 4. Throughout our experiments, the value of the solution computed by rounding algorithm R2 was
always better than the value of the solution computed by rounding algorithm R1, as predicted in theory. Likewise,
the value of the solution computed by the hybrid algorithm using R2 was always better compared to when R1

was used. Throughout sections six through nine (tables), r denotes the value of the solution computed by R2,
and h denotes the value of the solution computed by the hybrid algorithm associated with R2. We denote by g
the value of the solution computed by the greedy algorithm. Throughout the tables in sections six through nine,
the best computed values are bolded.

6. Performance on k-Planar Graphs and k-Trees

In this section, we compare the performance ratios of the greedy, LP rounding and hybrid
algorithms on k-planar graphs and k-trees. In all cases, the hybrid algorithm performed better than
the others. Greedy performed close to hybrid and LP rounding performed the worst.

The arboricity of each of the planar graphs is at most 3. For k-trees, we use dk− (k/2)(k−1)
n−1 e for

arboricity. For k-planar graphs, k ≥ 1, we use the upper bound of d8
√

ke on arboricity. The k-planar
graphs and k-trees were all made using † described in Section 5. The typical value of α was 1/2,
but increasing it to 3/4 resulted in better performance in some cases. All algorithms were able to
compute dominating sets in less than 2 s in all cases.

6.1. Performance on Sparse k-Planar Graphs and k-Trees

In Tables 1–3, we present the performance of the algorithms on sparse k-planar graphs and
sparse k-trees.

https://github.com/joklawitter/GraphGenerators
http://www.inf.udec.cl/~jfuentess/datasets/graphs.php
http://davidchalupa.github.io/research/data/social.html
https://www.cc.gatech.edu/dimacs10/downloads.shtml
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Table 1. Results for 0-Planar Graphs.

n m L∗ g/L∗ r/L∗ h/L∗

2000 5980 316.93 1.12 1.39 1.11
4000 11,972 620.72 1.16 1.34 1.14
6000 17,978 942.59 1.13 1.29 1.13
8000 23,974 1239.16 1.14 1.40 1.13

10,000 29,972 1579.06 1.13 1.27 1.13
12,000 35,973 1874.66 1.13 1.35 1.12
14,000 41,974 2185.35 1.14 1.32 1.14
16,000 47,975 2514.62 1.14 1.33 1.13
18,000 53,971 2811.98 1.15 1.35 1.14
20,000 59,971 3127.20 1.14 1.31 1.13

Table 2. Results for 5-Planar Graphs.

n m L∗ g/L∗ r/L∗ h/L∗

2000 11,465 171.42 1.19 1.65 1.19
4000 23,033 336.57 1.21 1.63 1.21
6000 34,577 510.02 1.24 2.19 1.24
8000 46,130 680.88 1.25 1.91 1.25

10,000 57,786 840.92 1.23 2.10 1.23
12,000 69,220 1019.54 1.23 2.02 1.22
14,000 80,680 1181.05 1.22 1.90 1.22
16,000 92,300 1355.13 1.23 2.03 1.23
18,000 103,862 1516.14 1.24 1.99 1.24
20,000 115,354 1689.35 1.22 2.08 1.21

Table 3. Results for 5-Trees.

n m L∗ g/L∗ r/L∗ h/L∗

2000 9985 39.00 1.05 1.08 1.05
4000 19,985 70.50 1.04 1.06 1.04
6000 29,985 90.83 1.03 1.17 1.03
8000 39,985 132.25 1.03 1.07 1.03

10,000 49,985 158.00 1.03 1.03 1.03
12,000 59,985 209.67 1.02 1.08 1.02
14,000 69,985 225.58 1.04 1.09 1.04
16,000 79,985 270.25 1.02 1.09 1.02
18,000 89,985 291.83 1.02 1.06 1.02
20,000 99,985 339.58 1.04 1.08 1.04

6.2. Performance on Dense k-Planar Graphs and k-Trees

In Tables 4 and 5, we present the algorithms’ performance on k-planar graphs where
k = bln (|V|)c, and k-trees where k = b|V|0.25c, respectively. These graphs are dense.

Table 4. Results for k-Planar Graphs where k = bln (n)c.

n m L∗ g/L∗ r/L∗ h/L∗

2000 12,986 151.97 1.26 2.11 1.24
4000 27,254 289.69 1.27 2.64 1.27
6000 40,885 431.77 1.26 2.50 1.26
8000 54,568 568.01 1.24 2.57 1.24

10,000 71,414 684.20 1.27 2.56 1.26
12,000 85,580 821.65 1.26 2.62 1.26
14,000 100,241 957.77 1.25 2.46 1.25
16,000 114,270 1098.18 1.27 2.21 1.27
18,000 128,725 1238.09 1.27 2.22 1.27
20,000 142,891 1368.44 1.26 2.23 1.25
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Table 5. Results for k-Trees where k = bn0.25c.

n m L∗ g/L∗ r/L∗ h/L∗

2000 13,972 15.00 1.07 1.20 1.00
4000 31,964 10.00 1.00 1.00 1.00
6000 53,955 11.00 1.00 1.00 1.00
8000 71,955 13.00 1.00 1.00 1.00

10,000 99,945 11.19 1.07 2.23 1.07
12,000 119,945 12.00 1.00 1.00 1.00
14,000 139,945 18.50 1.08 1.89 1.08
16,000 175,934 11.25 1.16 1.60 1.16
18,000 197,934 11.00 1.18 2.00 1.18
20,000 219,934 10.50 1.14 1.43 1.14

7. Performance on Hypercubes and k-Queen Graphs

In this section, we present the performance of the greedy, rounding, and hybrid algorithms on
hypercubes from d = 5 to 12 dimensions and k-Queens graphs.

Table 6 contains the results for hypercubes. We use the arboricity for hypercubes a = bd/2 + 1c
for LP rounding and hybrid [24]. For k-Queens graphs, arboricity is unknown, so we use the upper
bound 3(k− 1), where k is the length of the chessboard.

For both Table 6 and 7, greedy performs the best, followed by hybrid. Rounding algorithms
perform the worst by far. This is not surprising as LP rounding approaches are known to in general
perform worse on dense graphs than sparse graphs. The chosen value of α was always 1/2. Solutions
were computed in under 8 s for all graphs and algorithms.

Table 6. Results for Hypercubes.

Dimension n L∗ g/L∗ r/L∗ h/L∗

5 32 5.33 1.50 3.00 1.50
6 64 9.14 1.75 7.00 1.75
7 128 16.00 1.00 1.00 1.00
8 256 28.44 1.13 9.00 1.13
9 512 51.20 1.25 7.07 2.99

10 1024 93.09 1.38 11.00 2.70
11 2048 170.67 1.50 6.59 2.85
12 4096 315.08 1.63 13.00 3.14

Table 7. Results for k-Queens.

k m L∗ g/L∗ r/L∗ h/L∗

15 5180 4.89 2.05 36.40 6.75
17 7616 5.50 1.82 44.03 8.91
19 10716 6.10 1.97 50.78 9.67
21 14560 6.71 1.94 56.91 11.17
23 19228 7.32 1.91 62.83 10.11
25 24800 7.93 2.02 69.61 10.34
27 31356 8.54 1.87 74.48 11.13
29 38976 9.15 1.97 78.81 11.70

8. Performance on Real-World Graphs

In this section, we present the performance of LP rounding, greedy, and hybrid on the real-world
social network graphs from DIMACS [23], Google+ [8], and Pokec [8]. All of these graphs are sparse,
but their arboricity is unknown. Since arboricity is unknown, we experiment with the threshold applied
during LP rounding. Through experimentation, the best threshold which we found for rounding was
2/a′, where a′ = dm/(n− 1)e. We denote the value of the solution computed by the LP rounding
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algorithm with this threshold as r′ and the value of the solution computed by the hybrid algorithm
with this threshold as h′. The chosen value of α was 1/2 in all cases.

Table 8 contains the results for three sparse social network graphs from DIMACS. LP rounding
performs better than the greedy and hybrid approaches, with greedy ranking last out of the
algorithms tested.

Table 8. Results for DIMACS Graphs.

Graph n m L∗ g/L∗ r′/L∗ h′/L∗

coAuthorsDBLP 299,067 977,676 43,969.00 1.02 1.00 1.02
coPapersCiteseer 434,102 16,036,720 26,040.92 1.12 1.01 1.12
citationCiteseer 268,495 1,156,647 43,318.85 1.04 1.02 1.04

In Tables 9 and 10, we compare r′, h′, and g on the Google+ and Pokec graphs. The performance
ratios, although different, happen to be very close. Thus, we list the actual sizes of the dominating sets
returned by the algorithms.

Compared to the best results from [8], which used a randomized local search algorithm that is
run for up to one hour, LP rounding approaches generally produced, with the exception of a few cases,
a smaller or as good solution using significantly less cpu-time at less than 0.5 s for each graph.

Table 9. Results for Google+ Graphs.

n m L∗ g r′ h′

500 1006 42 42 42 42
2000 5343 170 176 170 176

10,000 33,954 860 900 864 893
20,000 81,352 1715 1817 1716 1800
50,000 231,583 4565 4849 4585 4790

Table 10. Results for Pokec Graphs.

n m L∗ g r′ h′

500 993 16 16 16 16
2000 5893 75 75 75 75

10,000 44,745 413 413 413 413
20,000 102,826 921 928 921 923
50,000 281,726 2706 2773 2712 2743

9. Very Large Sparse Graphs

Table 11 contains the results on a 7 million+ vertices graph (Great Britain street network) and
a 1 million vertices planar graph, where we used Lemma 1 to compute Z = max{M∗, N∗}. The LP
solver crashed when it was directly applied to the Great Britain street network and took over 3.5 h
of CPU time to compute an answer on the 1 million vertices planar graph. Through a search for α,
we came up with α = 3/4 for hybrid. The hybrid algorithm’s performance ratio to Z was better than
greedy’s. Greedy took 14 s to produce a solution while hybrid took 107 s on the street network graph.
On the 1 million vertices planar graph, greedy took 4 s and hybrid took 19 s.

Table 11. Results for Large Graphs.

Graph n m Z g h′ g/Z h′/Z

Great-Britain Street Network 7,733,822 1,357,189 1,357,189 2,732,935 2,724,608 2.014 2.008
Large Planar Graph 1,000,000 2,999,978 84,616 180,686 176,295 2.135 2.083
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10. Conclusions

Our findings indicate that all of these algorithms perform better than anticipated in theory,
particularly with respect to the performance ratio. The LP rounding does well on sparse real-world
graphs, consistent with theory, and normally outperforms the other algorithms. For hypercubes
and k-Queens graphs (which are not sparse) greedy outperforms the rest, consistent with theory,
both in terms of speed and performance ratio. For synthetic graphs (generated k-trees and k-planar
graphs), LP rounding is outperformed by the other two algorithms, and the hybrid algorithm
outperforms greedy.

Throughout our experimentation, the hybrid algorithm was never the worst. The hybrid
algorithm’s success in solving large sparse problems suggests that more research in this area will be
fruitful with respect to characterizations of parameter α. In particular, a theoretical research direction
would be attempting to tighten the upper bound on the value of the solution computed by the hybrid
algorithm, as stated in Remark 2. Can the upper bound on the value of the solution be shown to be
better than (2a + 1) ∗ γ(G) with the appropriate choice of α?
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The following abbreviations are used in this manuscript:

LP Linear Programming
IP Integer Programming

Appendix A

Example A1. Let p ≥ 2 be an integer and for i = 1, 2, . . . , p, let Si be a star on 2i vertices. Consider a graph
G on n = 2p+1 vertices whose vertices are the disjoint union of the vertices of the Si’s (i = 1, 2, . . . , p) plus
two additional vertices t1 and t2. Now, place edges from t1 and t2 to the first half of the vertices in each Si
(including the root), and the second half of the vertices in each Si, respectively. Please note that the root of each
Si has degree 2i and the degree of both t1 and t2 is 2p − 1. Initially, greedy chooses the root of Sp which can
cover 2p + 1 vertices (including itself). Generally, at iteration i ≥ 2, there is a tie between the root of Sp+1−i
and t2 since each can cover 2p−2 uncovered vertices. If tie breaking does not result in selecting t2, there will
be a tie in every iteration until the algorithm returns the set of Si’s (i = 1, 2, . . . , p). This dominating set has
cardinality p = log(∆)− 1, but γ(G) = 2, since {t1, t2} is a minimum dominating set. Please note that G is
a planar graph.
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Figure A1. Construction of Example 1.

Example A2. Let p ≥ 2 be an integer, and let G be a graph with vertices V1 ∪ V2, where V1 =

{s1, s2, . . . , sp, t1, t2} and V2 = {v1, v2, . . . , v2p+1−2}. Now make V1 a clique and V2 an independent set
of vertices, respectively. Next, consider a linear ordering L on V2: for i = 1, 2, . . . , p, the set of neighbors of si in
V2, denoted by Wi, has cardinality 2i and is disjoint from Wk, for any k ≤ i. Finally, for i = 1, 2, . . . , p place
edges between t1 and the first half of the vertices in each Wi, and place edges between t2 and the second half of
the vertices in each Wi. Now note that the greedy algorithm will be forced to pick the vertices sp, sp−1, . . . , s1,
in that order, but the minimum dominating set in G is {t1, t2} and ∆ = 2p + p + 1.
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