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Abstract: In the paper we deal with the problem of non-linear dynamic system identification in the
presence of random noise. The class of considered systems is relatively general, in the sense that it is
not limited to block-oriented structures such as Hammerstein or Wiener models. It is shown that the
proposed algorithm can be generalized for two-stage strategy. In step 1 (non-parametric) the system
is approximated by multi-dimensional regression functions for a given set of excitations, treated as
representative set of points in multi-dimensional space. ‘Curse of dimensionality problem’ is solved
by using specific (quantized or periodic) input sequences. Next, in step 2, non-parametric estimates
can be plugged into least squares criterion and support model selection and estimation of system
parameters. The proposed strategy allows decomposition of the identification problem, which can be
of crucial meaning from the numerical point of view. The “estimation points” in step 1 are selected to
ensure good task conditioning in step 2. Moreover, non-parametric procedure plays the role of data
compression. We discuss the problem of selection of the scale of non-parametric model, and analyze
asymptotic properties of the method. Also, the results of simple simulation are presented, to illustrate
functioning of the method. Finally, the proposed method is successfully applied in Differential
Scanning Calorimeter (DSC) to analyze aging processes in chalcogenide glasses.

Keywords: system identification; hammerstein system; wiener system; non-parametric methods;
kernel regression

1. Introduction

The problem of non-linear system modeling has been intensively examined over the past four
decades. Owing to many potential applications (see [1]) and interdisciplinary scope of the topic,
both scientists and engineers look for more precise and numerically efficient identification algorithms.
First attempts at generalization of linear system identification theory for non-linear models were based
on Volterra series representation ([2]). Traditional Volterra series-based approach leads to relatively
high numerical complexity, which is often not acceptable from practical point of view. To cope with this
problem regularization or tensor network techniques have been proposed recently ([3,4]). However,
strong restrictions are imposed on the system characteristics (e.g., smoothness of nonlinearity, and short
memory of the dynamics). Alternatively, the concept of block-oriented models was introduced ([5]).
It was assumed that the system can be represented, or approximated with satisfactory accuracy, with the
use of structural models including interconnected elementary blocks of two types—linear dynamics
and static nonlinearities ([6]). The most popular structures in this class are Hammerstein system
(see e.g., [7–12]) with static nonlinearity followed by linear dynamics, and the Wiener system [13–18])
including the same blocks connected reversely.

Traditionally, identification method needs two kinds of knowledge—set of input–output
measurements and a priori parametric formula describing system characteristics and including finite

Algorithms 2020, 13, 328; doi:10.3390/a13120328 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0002-1701-5095
https://orcid.org/0000-0002-9957-8069
https://orcid.org/0000-0002-6759-2421
http://www.mdpi.com/1999-4893/13/12/328?type=check_update&version=1
http://dx.doi.org/10.3390/a13120328
http://www.mdpi.com/journal/algorithms


Algorithms 2020, 13, 328 2 of 16

number of unknown parameters ([6,19]). Usually, the polynomial model of static characteristics and the
difference equation with known orders are assumed. This convention leads to relatively fast convergence
of parameter estimates, but the risk of systematic approximation error appears, if the assumed model is
not correct. As an alternative, the theory of non-parametric system identification ([20–23]) was proposed
to solve this problem. The algorithms work under mild prior restrictions, such as stability of linear
dynamic block and local continuity of static non-linear characteristics. Although the estimates converge
to the true characteristics, the rate of convergence is relatively slow in practice, as a consequence of
assumptions relaxation.

This paper represents the idea of combined, i.e., parametric-non-parametric, approach (see e.g., [24–30]),
in which both parametric and non-parametric algorithms support each other to achieve the best
possible results of identification for moderate number of measurements and to guarantee the
asymptotic consistency (i.e., convergence to the true system characteristics), when the number of
observations tends to infinity. Since the preliminary step of structure selection is treated rather
cursorily in the literature, generalizations of the approach towards wider classes of systems seem to
be of high importance from practical point of view. The paper was also motivated by the project of
Differential Scanning Calorimeter ([31]) developed in the team, and particularly, modeling of heating
process for examination the properties of chalcogenide glasses.

Main contribution of the paper lays in the following aspects:

• proposed identification algorithm is run without any prior knowledge about the system structure
and parametric representation of nonlinearity,

• non-parametric multi-dimensional kernel regression estimate was generalized for modeling
of non-linear dynamic systems, and the dimensionality problem was solved by using special
input sequences,

• the scheme elaborated in the paper was successfully applied in Differential Scanning Calorimeter
for testing parameters of chalcogenide glasses.

The paper is organized as follows. In Section 2 the general class of considered systems and
the identification problem is formulated in detail. Next, in Section 3.1, purely non-parametric,
regression-based approach is presented, and its disadvantages are discussed. Then, to cope with
dimensionality problem, the idea of some specific input sequences is presented in Section 3.2. Owing to
that, the system characteristics are identified only for some selected points, but the convergence is
much faster. The idea of combined, two-stage strategy is introduced in Section 4. It allows use of
prior knowledge to expand the model on the whole input space. Also, the results of simple simulation
are included in Section 5 to illustrate and discuss some practical aspects of the approach. Finally,
in Section 6, the algorithm is successfully applied in Differential Scanning Calorimeter to model aging
properties of modern materials (chalcogenide glasses).

2. Problem Statement

2.1. Class of Systems

We consider discrete-time non-linear dynamic system with general representation

yk = F
(
{uk−i}∞

i=0
)
+ zk, (1)

where {uk−i}∞
i=0 is bounded random input sequence (|uk| < umax), zk is zero mean random disturbance.

The transformation F () is Lipschitz with respect to all arguments, and has the property of exponential
forgetting (fading memory), i.e., if we put uk−i = 0 for i ≥ s and define the cut-off sequence as

uk−i ,

{
uk−i, as i = 0, 1, ..., s− 1

0, as i ≥ s
, (2)



Algorithms 2020, 13, 328 3 of 16

We assume that it holds that

∆ (s) ,
∣∣F ({uk−i}∞

i=0
)
−F

(
{uk−i}∞

i=0
)∣∣ ≤ cλs, (3)

with some unknown c = const, and 0 < λ < 1. Similar class of fading memory systems, in which the
output depends less and less on historical inputs, was considered in [32]. The goal is to identify the
system (build the model F̂ ()) using the sequence of N input–output measurements {(uk, yk)}N

k=1.
In considered system class, hysteresis is not admitted.

2.2. Examples

In this section, we show that some systems (popular in applications) fall into above description as
special cases.

2.2.1. Hammerstein System

For Hammerstein system (see Figure 1), described by the equation

yk =
∞

∑
i=0

γiµ (uk−i) + zk (4)

with the Lipschitz non-linear characteristic, i.e., such that

|µ (ua)− µ (ub)| ≤ l |ua − ub| , (5)

and asymptotically stable dynamics, i.e., |γi| ≤ cHλi, we get

∆ (s) =

∣∣∣∣∣ ∞

∑
i=s

γi (µ (uk−i)− µ (0))

∣∣∣∣∣ ≤ lumax

∣∣∣∣∣ ∞

∑
i=s

γi

∣∣∣∣∣ ≤ cλs. (6)

{ }∞
=0jjγ()μku kw

kz

ky

Figure 1. Hammerstein system.

2.2.2. Wiener System

Analogously, for Wiener system (Figure 2), where the stable linear dynamics is followed by the
Lipschitz static non-linear block

yk = µ

(
∞

∑
i=0

λiuk−i

)
+ zk, (7)

We get

∆ (s) =

∣∣∣∣∣µ
(

∞

∑
i=0

γiuk−i

)
− µ

(
s−1

∑
i=0

γiuk−i

)∣∣∣∣∣ (8)

≤ l

∣∣∣∣∣ ∞

∑
i=s

γiuk−i

∣∣∣∣∣ < cλs. (9)

Remark 1. Analogously, it can be simply shown that also Wiener–Hammerstein (L–N–L) and
Hammerstein–Wiener (N–L–N) sandwich systems belong to the assumed class.
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Figure 2. Wiener System.

2.2.3. Finite Memory Bilinear System

Another important and often met in application special case is the bilinear system with finite
order m. It is described by the formula

yk = ∑
l0,l1,...,lm−1 :li≥0∩∑i li≤m

cl0,l1,...,lm−1

m−i

∏
i=0

uli
k−i + zk (10)

i.e., for m = 1 we get
yk = c0,0 + c1,0uk + c0,1uk−1, (11)

for m = 2 we have that

yk = c0,0 + c1,0uk + c0,1uk−1 + c1,1ukuk−1 + c2,0u2
k + c0,2u2

k−1. (12)

Since yk does not depend on uk−m, uk−m−1, ..., for s ≥ m we get F
(
{uk−i}∞

i=0
)
= F

(
{uk−i}∞

i=0
)
,

and obviously ∆ (s) = 0.
Considered example falls into the more general class of Volterra representation. Presented approach

works without the knowledge of parametric representation. As regards applicability to the class (1),
for m < ∞ we have finite memory system, i.e., ∆(s) = 0, as s > m. Moreover, since the input is assumed
to be bounded (|uk| < umax), resulting mapping F() fulfills Lipschitz condition (as ordinary polynomial
on compact support).

3. Non-Parametric Regression

3.1. General Overview

Let us introduce the s-dimensional input regressor

u(s)
k =

(
uk, uk−1, ..., uk−(s−1)

)T
, (13)

and the regression function
Rs

(
x(s)
)
= E

(
yk|u

(s)
k = x(s)

)
, (14)

with the argument vector
x(s) = (x0, x1, ..., xs−1)

T . (15)

In particular, for s = 1 we get

R1 (x0) = E (yk|uk = x0) , (16)

and for s = 2
R2(x0, x1) = E (yk|uk = x0 ∩ uk−1 = x1) . (17)

The non-parametric kernel estimate ([20–23,33]) of Rs

(
x(s)
)

has the following form
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R̂s

(
x(s)
)
=

∑N
k=1 ykK

( ∥∥∥u(s)
k −x(s)

∥∥∥
h

)

∑N
k=1 K

( ∥∥∥u(s)
k −x(s)

∥∥∥
h

) , (18)

where ‖·‖ denotes Euclidean norm, K () plays the role of kernel function, e.g.,

K (v) =

{
1, as |v| ≤ 1
0, as |v| > 1

, (19)

and h is a bandwidth parameter, responsible for the balance between bias and variance of the estimate.
The class of possible kernels can obviously be generalized. Nevertheless, previous experiences shows
that the kind of kernel function used for estimation is of secondary importance, whereas behavior of
h(N) with respect to N is fundamental. We limited the presentation to Parzen (window) kernel for
clarity of exposition. It fulfills all general assumptions made for kernels, i.e., it is even, non-negative
and square integrable. The system (1) is thus approximated by the model

R̂s

(
uk, uk−1, ..., uk−(s−1)

)
, (20)

and s can be interpreted as its complexity. Obviously, both h = h(N) and s = s(N) need to be set
depending on the number of measurements N. Observing that

F
(
{uk−i}∞

i=0
)
= R∞

(
u(∞)

k

)
, (21)

the mean squared error of the model R̂s

(
u(s)

k

)
can be expressed as follows

MSE
(

R̂s

(
u(s)

k

))
= E

(
R̂s

(
u(s)

k

)
−F

(
{uk−i}∞

i=0
))2

= E
(

R̂s

(
u(s)

k

)
− R∞

(
u(∞)

k

))2
,

and introducing the true finite-dimensional regression function Rs

(
u(s)

k

)
we get

MSE
(

R̂s

(
u(s)

k

))
= E

{(
R̂s

(
u(s)

k

)
− Rs

(
u(s)

k

))
+
(

Rs

(
u(s)

k

)
− R∞

(
u(∞)

k

))}2
=

E
{

R̂s

(
u(s)

k

)
− Rs

(
u(s)

k

)}2
+ E

{
Rs

(
u(s)

k

)
− R∞

(
u(∞)

k

)}2
+

+2E
{(

R̂s

(
u(s)

k

)
− Rs

(
u(s)

k

)) (
Rs

(
u(s)

k

)
− R∞

(
u(∞)

k

))}
.

Since both E
{

Rs

(
u(s)

k

)
− R∞

(
u(∞)

k

)}2
→ 0 as N → ∞ and

(
Rs

(
u(s)

k

)
− R∞

(
u(∞)

k

))
→ 0 as

N → ∞, these components can be set arbitrarily small by using appropriate scale s. Owing to above,
for fixed s we focus on the first component of the MSE error of the form

ERR = E
{

R̂s

(
u(s)

k

)
− Rs

(
u(s)

k

)}2
= bias2R̂s

(
u(s)

k

)
+ varR̂s

(
u(s)

k

)
, (22)

where

biasR̂s(u
(s)
k ) , ER̂s(u

(s)
k )− Rs(u

(s)
k ), (23)

varR̂s(u
(s)
k ) , E

{
R̂s(u

(s)
k )− ER̂s(u

(s)
k )
}2

. (24)

It can simply be shown that
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biasR̂s

(
x(s)
)

= o (h(N)) , (25)

bias2R̂s

(
x(s)
)

= o
(

h2(N)
)

, (26)

The bias order follows directly from Lipschitz condition, and the fact that
∥∥∥u(s)

k − x(s)
[p]

∥∥∥ ≤ h for all
k’s selected by kernel. Moreover,

varR̂s

(
x(s)
)

= o
(

1
Nhs (N)

)
. (27)

For window kernel, Lipschitz function F , and strictly positive input probability density function
around the estimation point, probability of selection in s-dimensional space can be obviously evaluated
from below by chs, where c is some constant. Hence, expected number of successes is proportional
to Nchs (not less than). The variance order is thus a simple consequence of Wald’s identity. Hence,
to assure the convergence R̂s

(
x(s)
)
→ Rs

(
x(s)
)

, as N → ∞ in the mean square sense, the following
conditions must be fulfilled

h→ 0 and Nhs → ∞, as N → ∞, (28)

which leads to typical setting

h(N) ∼ N−α, where α ∈
(

0,
1
s

)
. (29)

To obtain the best asymptotic trade-off between squared bias and variance and comparing its
orders we get

h2(N) =
1

Nhs (N)
, (30)

hs+2(N) =
1
N

, (31)

hopt (N) ∼ N−
1

s+2 , (32)

ERR ∼ N−
2

s+2 . (33)

Moreover, to assure the balance between the estimation error and approximation error of order
o(λs), connected with neglecting the tail {uk−i}∞

i=s we get

N−
2

s(N)+2 = λs(N), (34)

− 2
s(N) + 2

log N = s(N) log λ, (35)

−2
s(N) (s(N) + 2)

=
log λ

log N
, (36)

s2 (N) + 2s (N) =
2

log 1
λ

log N, (37)

where 2
log 1

λ

= const. Owing to above, the scale s (N) must not be faster than
√

log N, i.e.,

sopt(N) = O
(√

log N
)

. (38)

which illustrates slowness of admissible model complexity increasing in general case. The property (38)
commonly known as “curse of dimensionality problem” illustrates the main drawback of multi-dimensional
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non-parametric regression approach to system modeling in traditional form. The reason is that probability
of kernel selection

P

K


∥∥∥u(s)

k − x(s)
∥∥∥

h

 = 1

 = P
{∥∥∥u(s)

k − x(s)
∥∥∥ ≤ h

}
∼ hs (39)

decreases rapidly when s grows large. We also refer the reader to the proof of Theorem 3 in [26],
where a detailed discussion concerning an analogous problem can be found.

3.2. Dimension Reduction

To cope with the problem shown in (39) we consider two cases of some specific input excitation
processes to speed up the rate of convergence.

3.2.1. Discrete Input

In case 1 we assume that in each s-element input sub-sequence uk, uk+1, ..., uk+s−1, there exists
d inputs with discrete distribution on finite set of possible realizations. Consequently, all the points
u(s)

k ∈ Rs lay on a finite number of separable and compact subspaces with the internal dimension

s∗ = s− d, (40)

and for x(s) = u(s)
k we have

ERR ∼ N−
2

s∗+2 . (41)

For each measurement point probability of kernel selection behaves like chs∗ , where s∗, (s∗ < s),
is internal dimension of this subspace. In particular, for d = s (all input variables quantized) we get
ERR ∼ N−1. The sets of possible input sequences for s = 2 are illustrated in Figure 3 and 4.

3.2.2. Periodic Input

In case 2 we assume the input is periodic with the period N0, i.e., uk = uk+N0 for each

k = 1, 2, ..., N − N0. Then, the value of the regressor u(s)
k (see (13)) evaluates to one of N0 distinct

points in Rs, n ∈ Z,

x(s)
[1] =


us

us−1
...

u1

 , ..., x(s)
[N0]

=


uN0+s−1

uN0+s−2
...

uN0

 (42)

with probabilities

P
{

u(s)
k = x(s)

[p]

}
=

1
N0

, p = 1, 2, ..., N0 (43)

Measurements are uniformly distributed on the finite set of N0 distinct points

x(s)
[1] , ..., x(s)

[p] , ...x(s)
[N0]

(44)

Narrowing of h(N) does not affect the kernel estimator asymptotically (i.e., s∗ = 0). Consequently,
we get the best possible convergence rate ERR ∼ N−1. However, it must be admitted that estimators
are calculated only for finite number of points, and, increasing N0 causes increase of variance of the
regression estimator for particular points x(s)

[p] (as the number of selected data is of order N/N0).
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uk

uk1

uk

uk1a b

Figure 3. Input space for s = 2 and d = 1, (a) k odd, (b) k even.

uk

uk1

Figure 4. Input space for s = 2 and d = 2.

4. Hybrid/Combined Parametric-Non-Parametric Approach

Since the special input excitations allows for fast recovering the system characteristics only in
some points, additional prior knowledge is needed to extend the model for arbitrary process {uk}.
In this section we assume that the transformation F

(
{uk−i}∞

i=0
)

belongs to the given (a priori known),

finite dimensional class of systems F
(

u(s)
k , θ

)
F
(
{uk−i}∞

i=0
)
⊂ F

(
u(s)

k , θ
)

(45)

with unknown parameter vector θ. In the proposed methodology, one of the input excitations
described in Section 4 is applied. The system is identified on the finite set of N0 representative
points x(s)

[1] , x(s)
[2] , ..., x(s)

[p] , ..., x(s)
[N0]

, where x(s)
[p] ∈ Rs, and p = 1, 2, ..., N0. Let us denote by θ∗—the true

and unknown vector of system parameters. We assume that θ∗ is identifiable, i.e., the following
property holds

F
(
{uk−i}∞

i=0
)
= F

(
u(s)

k , θ
)
⇐⇒ θ = θ∗. (46)

Moreover, let the quality index

Q (θ) = E
[
yk − F

(
u(s)

k , θ
)]2

(47)
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be convex for θ ∈ Ξ, where Ξ is some neighborhood of the true θ∗

θ∗ = arg min
θ

Q (θ) . (48)

The following two-step algorithm is proposed.
Step 1. (non-parametric) Using the input–output observations {(uk, yk)}N

k=1 for p = 1, 2, ..., N0

compute the estimates
R̂s(x

(s)
[1] ), ..., R̂s(x

(s)
[p]), ..., R̂s(x

(s)
[N0]

), (49)

Step 2. (parametric) Minimize the empirical version of the least squares criterion (47)

θ̂ = arg min
θ

1
N0

N0

∑
p=1

(
R̂s

(
x(s)
[p]

)
− F

(
x(s)
[p] , θ

))2
. (50)

Lemma 1. Let F
(

u(s)
k , θ

)
be Lipschitz with respect to all uk−l ’s included in u(s)

k and all parameters in θ. If the

error of non-parametric estimate behaves like
∥∥∥R̂s

(
x(s)
[p]

)
− F

(
x(s)
[p] , θ∗

)∥∥∥ = O (N−τ) in the mean square sense,
for all p = 1, 2, ..., N0, then ∥∥∥θ̂ − θ∗

∥∥∥ = O
(

N−τ
)

(51)

in the parametric step 2.

Proof. The property (51) can be proven following the lines of the proof of Theorem 1 in [25].

Remark 2. Fulfillment of (46) and the method of non-linear optimization in (50) are strictly dependent on the
specifics of the problem. In active experiment, when the input can be generated arbitrarily, appropriate selection

of the points
{

x(s)
[p]

}N0

p=1
can significantly simplify operations in Step 2 (see example below).

Example 1. For the system
yk = eθ1uk + θ2ukuk−1 + zk, (52)

in step 1 we can estimate two-dimensional (s = 2) regression function R̂2

(
x(2)

)
in N0 = 2 representative

points x(2)
[1] = (1, 0)T , and x(2)

[2] = (1, 1)T , i.e., compute the pattern

R̂2

(
x(2)
[1]

)
, R̂2

(
x(2)
[2]

)
. (53)

Since the true values of the regression function are respectively R2

(
x(2)
[1]

)
= eθ1 and R2

(
x(2)
[2]

)
= eθ1 + θ2,

in step 2 we get trivial estimates of parameters

θ̂1 = log R̂2

(
x(2)
[1]

)
, (54)

θ̂2 = R̂2

(
x(2)
[2]

)
− R̂2

(
x(2)
[1]

)
. (55)

5. Simulation Example

To illustrate the proposed method, we simulated simple Wiener system (see Figure 2) with

xk = 0.5xk−1 + uk (56)

vk = arctg(xk) (57)

yk = vk + zk (58)
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excited by random process uniformly distributed on equidistant set of points

uk ∼ {−1,−0.75,−0.5,−0.25, 0, 0.25, 0.5, 0.75, 1} , (59)

and uniformly distributed output disturbance

zk ∼ U [−0.1, 0.1] . (60)

For N = 104 simulated input–output pairs {(uk, yk)}N
k=1, the non-parametric models R̂s (uk) were

computed for s = 1, 2, 3 and compared with respect to the following empirical error

δs =
1

N − s + 1

N

∑
k=s

(
yk − R̂s

(
u(s)

k

))2
. (61)

The results are presented in Table 1 and Figures 5 and 6. Explicit derivation of the true finite
order (2D or 3D) regression function is problematic, owing to the fact that the neglected part of
input signal, i.e., the ‘tail’ connected with terms {uk−τ}∞

τ=s+1, is transferred through the non-linear
characteristic arctg(). Figures 5 and 6 illustrate non-parametric character and non-linear properties of
the model, and give a general view on the shape of input–output relationship, which can be helpful
for eventual parametrization. Quantized input (59) can be a good choice, when s = const < ∞,
and the non-parametric estimate R̂s

(
u(s)

k

)
plays supporting role for non-linear least squares-based

parameter estimation in step 2. Nevertheless, in purely non-parametric approach, i.e., for s(N)→ ∞,
the number of possible realizations of u(s)

k increases exponentially. In the considered example, for 9

points in (59), probability of kernel selection for each x(s) = u(s)
k behaves like ∼ 9−s and the estimate

becomes sensitive on the noise zk.

Figure 5. Two-dimensional regression-based model R̂2 (x0, x1).



Algorithms 2020, 13, 328 11 of 16

Figure 6. Three-dimensional regression-based model R̂3 (x0, x1, x2).

Table 1. Mean squared errors δs of model outputs for s = 1, 2, 3, compared to best linear approximation (BLA).

δ1 δ2 δ3

R̂s 0.0656 0.0279 0.0137
BLA 0.0660 0.0304 0.0176

Table 1 illustrates reduction of error with respect to scale of the regression. The results are
also compared with the best linear approximations FIR(s) of Wiener system. We emphasize that
improvement is achieved under mild prior restrictions, i.e., the non-linear model is built based on
measurements knowledge only.

6. Application in Testing of Chalcogenide Glasses with the Use of DSC Method

In this section, we apply the proposed algorithm for identification of heating process in Differential
Scanning Calorimeter [31].

6.1. Chalcogenide Glasses

Materials with non-linear optical properties play a key role in frequency conversion and optical
switching. One of the most promising materials in this area are chalcogenide glasses, because of good
non-linear, passive and active properties. They are considered to be optical medium for the fibers
of the 21st century. Chalcogenide glass fibers transmit into the IR, hence they can have numerous
potential applications in the civil, medical and military areas. The IR light sources, lasers and amplifiers
developed using these phenomena will be very useful in many areas of industry. High-speed optical
communication requires ultra-fast all-optical processing and switching capabilities. In DSC experiment
energy (heat flow) in function of time or temperature could be established. The energy from an
external source is required to set to zero the difference in temperature of the tested and reference
samples. Both samples are heated or cooled in a controlled mode and both techniques enable the
detection of thermal events observed in the physical or chemical transformation under the influence of
the changing temperature in a specific manner. Owing to that, many thermodynamically important
parameters can be established, e.g., a glass transition or softening temperature, melting temperature,
and melting enthalpy. The results also allow observation of physical aging processes. The goal is to
control temperature of heating module precisely and ensure linearity of it. It is planned to design
Model Following Control (MFC) structure of system to optimize quality indexes of temperature
controlling. Below we present the results of identification experiment.
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6.2. Results of Experiment

Treating the sample temperature as system output yk, and the power of the heating element
as input uk, the non-parametric multi-dimension regression model R̂s

(
u(s)

k

)
was computed for

s = 1, 2, 3, 4. The results are shown in Figures 7–10.
Differential Scanning Calorimeter for chalcogenide glasses (built by members of the team),

was first approximated by the linear model, and the results were not satisfying. To improve
accuracy, Hammerstein model was applied, and the decision of model structure was made arbitrarily.
To avoid the risk of bad parameterization the general approach presented in the paper was applied.
The results are comparable, although obtained without making any restrictive assumptions about the
block-oriented structure of the model.

Figure 7. Experimental data—1-dimensional regression.

Figure 8. Experimental data—2-dimensional regression.
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Figure 9. Experimental data—3-dimensional regression.

Figure 10. Experimental data—4-dimensional regression.

In Table 2 resulting mean squared errors for various scales s = 1, 2, 3, 4 are shown. The strong
point of the method is that asymptotically, as s(N) → ∞, the model becomes free of approximation
error, on the contrary to linear or block-oriented representation.

Table 2. Mean squared errors δs of model outputs for s = 1, 2, 3, 4.

δ1 δ2 δ3 δ4

R̂s (presented method) 1017 477 232 169
BLA (Linear FIR(s)) 1710 1331 1165 1114

Hammerstein polynomial (3rd order + FIR(s)) 1102 553 296 202
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The results have been compared to FIR(s) linear model and parametric Hammerstein model.
Regarding non-parametric modeling of Hammerstein systems, proposed by Greblicki and Pawlak
in the 1980s [20], their algorithms suffer from correlation of input, and they are not applicable here.
On the other hand, for parametric Hammerstein model, the results are strongly dependent on the
arbitrarily selected basis functions of nonlinearity. In our experiment we applied 3rd order polynomial
function µ() connected in cascade with FIR(s) linear dynamic filter. Table 2 shows that our method is
more accurate, emphasizing that it works under mild prior restrictions.

7. Conclusions

The main contribution of the work lays in the fact that the model is built with lack
of prior knowledge about the structure of the system and its characteristics. No decision
of using particular Hammerstein or Wiener model is needed at the beginning to start the
procedure. Obtained non-parametric estimators R̂s

(
x(s)
[p]

)
can be eventually plugged into the least

squares optimization criterion in step 2, to provide parametric representation of the relationship.
Both parametric and non-parametric methods can be combined to design strategy, which includes
advantages of both approaches. Step 1 (non-parametric) is run to estimate selected points of system
characteristic. It is done effectively thanks to generation of specific input excitation (discrete or
periodic), which allows to avoid the problem of high dimensionality. Moreover, appropriate selection
of estimation points can significantly decrease level of difficulty of the non-linear optimization task in
step 2. The rate of convergence of parameter estimate is the same as for non-parametric ones.

The scheme presented in the paper is universal for a broad class of systems including Hammerstein
and Wiener structures, and their interconnections. Non-parametric data pre-filtering plays also the
role of compression algorithm and the result of step 1 can be treated as the simplified pattern of
system for eventual structure detection and selection of its best parametric model. Regression-based
non-parametric model can be computed only for the set of selected points, and the resulting pairs{
(x(s)

[p] , R̂s(x
(s)
[p]))

}N0

p=1
can used as compressed pattern (as N0 � N) of the system, instead of N data

points
{
(u(s)

k , R̂s(u
(s)
k ))

}N

k=1
.

Non-parametric pattern R̂s

(
x(s)
[1]

)
, ..., R̂s

(
x(s)
[N0]

)
can help to support decision of model selection

from the list of potential candidates, and model competitions can be performed in the user-defined
regions of interests, e.g., in the working points.
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