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Abstract: Creating simplified visualizations of large 3D trail sets with limited occlusion and
preservation of the main structures in the data is challenging. We address this challenge for the specific
context of 3D fiber trails created by DTI tractography. For this, we propose to jointly simplify trails
in both the geometric space (by extending and adapting an existing bundling method to handle 3D
trails) and in the image space (by proposing several shading and rendering techniques). Our method
can handle 3D datasets of hundreds of thousands of trails at interactive rate, has parameters for
the most of which good preset values are given, and produces visualizations that have been found,
in a small-scale user study involving five medical professionals, to be better in occlusion reduction,
conveying the connectivity structure of the brain, and overall clarity than existing methods for the
same data. We demonstrate our technique with several real-world public DTI datasets.

Keywords: trail bundling; DTI visualization; tractography

1. Introduction

Trails or trajectories are generated by many applications, such as graph drawing and graph
visualization [1], monitoring of vehicle motion along large geographical spaces[2,3] and scanning
techniques [4-6]. Besides their spatial position, trails can be annotated by additional data attributes,
such as weights, directions, and types of the entire trail, or speed and travel duration of the item
traveling along the trail. Visualizing datasets consisting of hundreds of thousands of trails is
challenging, due to the high levels of occlusion, and the difficulty of simultaneously displaying
multiple attributes.

In information visualization, bundling has emerged as an important technique to handle such
datasets [7]. Edge bundling creates simplified visualizations of large graphs by deforming the
(typically straight-line) drawing of spatially close and data-similar edges so these get visually grouped,
thereby creating whitespace that reduces clutter and allows one to discern the main structure of the
graph drawing. Trail bundling generalizes the process to arbitrary sets of curves, or trails, embedded in
2D space. Numerous bundling algorithms have been proposed in the last two decades, offering a
wealth of drawing styles, heuristics for grouping the edges or trails, and acceleration strategies to
handle datasets of hundreds of thousands of elements in real time [8].

Although bundling has proven its added value for 2D graph-and-trail simplification, only a
handful of works have explored its generalization to 3D datasets. Bundling graphs laid out on 3D
surfaces has been met with success [9]. However, for the graph visualization use-case, truly volumetric
3D layouts are far less common [1]. The other data type—trails—is also approached by only a few

Algorithms 2020, 13, 316; doi:10.3390/a13120316 www.mdpi.com/journal/algorithms


http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0001-8617-5220
https://orcid.org/0000-0003-4318-6717
https://orcid.org/0000-0003-0750-0502
http://dx.doi.org/10.3390/a13120316
http://www.mdpi.com/journal/algorithms
https://www.mdpi.com/1999-4893/13/12/316?type=check_update&version=2

Algorithms 2020, 13, 316 2 of 26

methods. This leaves the question whether 3D trail bundling is an efficient and effective tool for the
visual exploration of such data.

A salient use-case for 3D bundling is the visual exploration of Diffusion Tensor Imaging (DTI)
datasets via tractography [10-12]. This application generates massive sets of 3D curves, representing
the paths followed by major fiber tracts in the brain. Due to the volumetric structure of the brain
and its complex connection patterns, obtaining simplified views of such patterns has raised much
interest in the visualization community. This has been approaches by two main method types.
First, so-called illustrative rendering methods aim to draw the actual, raw, 3D fiber tract data in ways
that make important spatial patterns show up more saliently [13-15]. These methods work well for
medium-density trail sets; too-high-density ones create, inevitably, occlusions that do not allow visual
exploration of a full volume. Secondly, 3D bundling methods take the more aggressive step of actually
deforming the trails to create more structure at the expense of preserving spatial information [16].
To our knowledge, these methods cannot handle large 3D datasets consisting of hundreds of thousands
of trails. Moreover, the combination of illustrative techniques and 3D bundling techniques has been
explored only to very limited extents. This is in stark contrast to the aforementioned results for
bundling-and-rendering techniques for 2D trail sets [8].

In this paper, we aim to answer the question of how to combine bundling and rendering techniques
efficiently and effectively for the visual simplification of large DTI fiber tracts. For this, we adapt a
state-of-the-art method for 2D trail bundling [8] to efficiently handle 3D DTI trail sets, taking into
account the typical structures that exist and need to be emphasized in such data. Next, we propose
a range of rendering techniques to present the 3D bundling results so that the structures of interest
in the data get further emphasized. Our joint 3D-bundling-and-rendering pipeline can handle large
3D fiber tract datasets of hundreds of thousands of trails in real time on consumer-grade hardware;
offers several exploration modes that highlight different aspects of the DTI tract data; and allows
various ways to control the process leading to simplified views of the data. We demonstrate our method
on several real-world DTI datasets. We also present a qualitative user study of our method by five
medical professionals that outlines several advantages in terms of occlusion reduction, conveying the
connectivity structure of the brain, and overall clarity of the produced visualizations.

The structure of this paper is as follows. Section 2 discusses related work. Section 3 details our
method. Section 4 discusses our implementation. Sections 5 and 6 present two evaluations of our
method. Section 7 discusses our main findings. Finally, Section 8 concludes the paper.

2. Related Work

Related work can be classified in the following two main topics.

2.1. Diffusion Tensor Imaging and Tractography

Conventional structural imaging techniques such as T1-, T2- and proton density-weighted imaging
generally create high contrast between major tissue groups in the brain, which are: Gray Matter (GM),
White Matter (WM), and Cerebrospinal Fluid (CSF). Such structural imaging techniques are generally
well suited for the study of tissue macrostructure yet provide little insight into the orientation of white
matter fibers. DWI[17,18] is a variant of conventional Magnetic Resonance Imaging (MRI) based
on the tissue water diffusion rate, which is better suited for the study of white matter pathways.
Although DWI refers to the contrast of the acquired images, DTI is a specific type of modeling
(or abstraction) of the DWI datasets, in which diffusivity of water molecules is represented by
tensors [10]. As an in-vivo non-destructive technique that requires no chemical tracers, DT is presently
one of the most promising methods for the study of white matter architecture in living humans.
DTI provides quantitative estimates of white matter integrity and orientation by measuring molecular
diffusion of water molecules (or Brownian motion). It is based on the phenomenon of diffusion
anisotropy in the nerve tissue: water molecules diffuse faster along the neural fiber direction and
slower in the fiber-transverse direction.
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DTI tensor datasets record, essentially, the spectrum of diffusion strengths per diffusion direction
at every point in a 3D scan. Such datasets can be visualized using glyph techniques, which render the
local major, medium, and minor eigenvalues of the diffusion tensor, scaled by their corresponding
eigenvalues, over a dense sampling of the 3D scanned volume [29]. Tractography methods improve
in the above by reducing occlusion and also explicitly showing the fiber tract paths by essentially
integrating streamlines in the major direction of the DTI eigenvector, seeded from a suitably chosen
point set [11,12]. More elaborate approaches include streamlines defined by tensor deflection [10],
bi-tensor modeling [19] and streamsurface tracking[20]. Fiber tracking has several applications,
including noninvasive visualization of white matter pathways, segmenting of specific tracts in the
brain for image analysis, and relating white matter tract anatomy to brain tumors and lesions in
patients who are candidates for neurosurgery [10].

Tractography essentially delivers large sets of (hundreds of thousands of) 3D fiber trails embedded
in the 3D scan volume. Visualizing these next is challenging. Conventional line rendering is a simple
and efficient baseline rendering technique to show such datasets that has been employed since fiber
tracking was first introduced [12,21]. Yet, such naive rendering of the densely seeded and criss-crossing
3D trails creates too much clutter and occlusion for many tasks to be accomplished effectively.
Numerous visualization tools have been proposed to leverage interactivity to explore large DTI
datasets, e.g., [22]. However, navigating the large space of parameter settings can be daunting for users.
More extensive illumination [23], ambient occlusion [24] and alpha-blending [25] have been applied
to line rendering of fiber tracts to further improve their visual exploration. Rendering 3D tubes with
Phong shading [26] is based on more detailed geometric modeling than line rendering, and can produce
even higher quality visualizations. The methods by Stoll et al. [27] and Merhof et al. [28] produce
similar shading using screenspace techniques and incorporate illustrative rendering techniques [15] as
well. Hyperstreamlines [25,29] are an extension of cylindrical tubes that provide a richer representation
of the DTI field.

Clustering forms separate class of methods that help visualizing large tract sets. Such methods
detect trails that are similar in terms of spatial position, diffusion values, and possibly other attributes
(e.g., curvature, length) and group them into clusters. These in turn enable one to create a simplified
visualization by e.g., rendering each cluster with a different color or reducing the cluster to a simpler
representative, which is next visualized. Xu et al. [30] use the DBSCAN clustering algorithm [31] to
create such clusters and combine them with user specification of regions of interest to create a rich
palette of focus-and-context fiber tract visualization. Poco et al. [32] approach this by reducing every
3D fiber to a high-dimensional feature vector that represents position, geometry, and smoothness.
Next, dimensionality reduction [33] is used to create 2D scatterplots where similar fibers appear as
point clusters. This enables one to easily select similar-fiber bundles by simply selecting point clusters
in the projection. Comparisons of fiber clustering methods are presented in [34,35]. Interestingly,
some clustering methods, such as DBSCAN or mean shift[36], are related to density estimation,
which is also used by CUBu[8], the bundling technique that we adapt for our DTI visualization
(see further Section 2.2). The key difference between our method and clustering is that we deform the
implicitly clustered fibers to simplify the resulting visualization.

Surface reconstruction or extraction from DTI datasets have also been applied as a means for
indirect volume visualization [29]. Merhof et al.[28] have shown that encompassing fiber tract
bundles with isosurfaces yields a preferable representation for use in neurosurgery. Ridge and
valley surfaces [29] are demonstrated to capture the cores of sheet-like tracts. Visualizing such surfaces
provides important added value compared to all fiber-based alternatives. Indeed, even if there
is a dense surface-like distribution of fiber tracts, creating the appearance of a surface from this
(without gaps) can be challenging when applying line-rendering-based techniques. Besides explicit
surface extraction, such surfaces can be also created implicitly in the image space. The Depth-Dependent
Halos (DDH) method [13,14,37] performs this merging of structures quite well, as colinear fibers are
visually combined into thicker bundles with illustrative halos. The major downside of DDH is that
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the black-and-white rendering (a stylistic choice motivated by nonphotorealistic rendering) offers
limited scalar visualization capabilities. Our method, discussed next, can reproduce DDH but also add
shading and information color-coding to the fiber rendering.

2.2. Trail and Edge-Bundling Techniques

In contrast to the above-mentioned rendering techniques, which modify how a 3D trail set is
depicted, trail and edge-bundling techniques modify the actual trail set to emphasize structures of
interest. Bundling essentially aims to (a) identify trails that are spatially close and similar from the
perspective of one or several data attributes; and (b) deform these trails so they get spatially closer,
so as to create more visual structure in the ensuing rendering thereof. Applications of edge bundling
include graph drawing simplification [8,38], trajectory exploration [7], eye-tracking analysis [5] and
streamline bundling [39].

Bundling of 2D datasets has been extensively explored. Image-based edge-bundling techniques,
including SBEB [40], ADEB[5], KDEEB[38], CUBu[8], and FFTEB[41] show that the problem of
bundling of 2D trails, as well as the rendering of resulting bundles using a variety of styles, can be
efficiently and effectively addressed using image processing approaches that scale well on graphics
hardware. Bundling is however far less explored for 3D volumetric trail datasets such as DTI tracts.
Bottger et al. [42,43] have proposed mean-shift bundling of 3D connectivity graphs obtained through
functional Magnetic Resonance Imaging (fMRI). Simplification of anatomical connectivity using edge
bundling is a relatively new topic, one example thereof being KDEEB [38] applied to fiber tracts [25,44].
Other examples of fiber tract simplification methods include multi-scale local fiber tract contraction [16]
and two-dimensional neural maps [45]. To our knowledge, such 3D methods have two main limitations:
They cannot, in the same time (1) recover well plausible anatomical structures, such as the mix of
surfaces and tube-like structures present in a DTI dataset; and (2) allow interactive visual exploration
of DTI datasets of hundreds of thousands of fibers in real time using different rendering styles.
For example, the method in [16], which is technically closest to ours, requires hours to complete on
a dataset of 78 K fiber tracts. At a higher level, bundling-and-rendering methods for DTI data have
evolved largely separated, with the notable exception of [16]. This, we believe, is an artificial separation
of two method classes which ultimately aim to the same goal—presenting a large, complex, dense,
volumetric 3D trail dataset in a simplified manner to the user.

Summarizing the above, our contribution to the creation of simplified visualization of large DTI
trail sets is three-fold:

1. We present a method for bundling 3D DTI tracts that allows the user to preserve
relevant underlying anatomical elements (fiber tubular bundles, sheets, and manifolds) in a
controlled manner;

2. We propose several rendering styles of the 3D bundled structures that emphasize several aspects
of interest in the data;

3. We propose a joint implementation of the above two points that can handle 3D trail datasets of
hundreds of thousands of trails in real time on consumer graphics hardware.

As our method builds atop of the backbone of the CUBu technique [8]. We inherit from CUBu the
kernel density-based advection of trails that ultimately creates the bundles, and the full GPU-based
bundling computation for computational scalability. As described next, we modify CUBu in several
respects: We implement the entire pipeline in 3D (using a volumetric density map, Section 3.2);
allow trail endpoints to bundle under specific constraints (Section 3.2.1); use the DTI volume anisotropy
rather than the CUBu isotropic bundling (Section 3.2.2); reseed tracts in sparsely populated volume
areas rather than bundling a fixed, predefined, trail set (Section 3.2.3); and propose several rendering
modes designed to emphasize structure specific to DTI fiber sheets (Section 3.3).
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3. Method

To describe our joint rendering-and-bundling method for 3D DTI tracts, we first introduce some
notations. Let V : R> — R be a 3D volume scan that encodes, per voxel, the symmetric 3 by 3 DTI
diffusion tensor. For every point x € V, we can compute the three eigenvectors e; and eigenvalues
Ai, 1 <1 <3, of V’s diffusion matrix, which give the directions, respectively strengths, of the largest,
medium, and smallest diffusions recorded by the MRI data[46]. Our visualization method then
consists of three steps: seeding and tracing DTI trails (Section 3.1); bundling trails to follow anatomical
structures (Section 3.2); and structure-emphasizing rendering (Section 3.3).

3.1. Seeding and Tracing DTI Trails

To start with, we need to construct the actual 3D trails representing streamlines in the major DTI
eigenvector ej. The standard method to seed such streamlines is to look at regions M C V of so-called
high anisotropy, i.e., points x € V for which the diffusion is far stronger in one direction than in all others.
M can be computed by finding high-anisotropy voxels in V, i.e., points where the eigenvalues A4, ..., A3
strongly differ [46]; alternatively, M is readily provided by so-called masks, suitably segmented from V
by medical professionals based on their knowledge of fiber-rich versions [47]. The masks M we use in
all our work are of the latter type, and they are provided with the public DTI datasets we use in our
experiments [48-50]. Figure 1 shows such a mask for one of the datasets used in our work.

Figure 1. Left: Sagittal slide from a DWI volume. Right: Mask (in light blue) for the brain region
within this volume. See Section 3.1.

We use such regions M for two purposes. First, we densely seed M to start tracing streamlines in
the vector field e; from points inside it. Secondly, we stop tracing such streamlines when they exit M,
therefore avoiding that they enter low-anisotropy regions. Given a dense seed-set of points S C M,
we trace a streamline t; in the vector field e; for each seed point x; € S until t; exists M. The set
of streamlines T = {t;} represents our dense 3D tract set we aim next to simplify (Section 3.2) and
render (Section 3.3).

3.2. DTI Bundling

As outlined in Section 2.2, the aim of DTI bundling is to produce a visually simpler, easier to
understand, structure of the dense trail set T in which salient tubes and manifolds (surfaces) inherently
present in the brain-fiber structure show up. For this, we adapt the original isotropic CUBu bundling
method in [8], as follows. To explain this, we first briefly introduce CUBu (for full details, we refer
to [8]). For ease of reading, we reuse below, where applicable, the same notations as in [8].

Resampling: For CUBu to work well, we need T to be densely, and uniformly, sampled. Given a
user-specified sampling step o, we resample all trails t; € T so that the average distance between
consecutive sampling points x;, X1 on a trail t; equals 0.
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Density computation: Given our trail set T, we first compute a 3D density map p for points x;
uniformly sampled along the 3D trails t; € T as

p(x) = ) K(llx = ;1) )

XjET,HX*X]'”SPR

where K : Rt — R is a parabolic (Epanechnikov) kernel of width P, shown to yield better kernel
density estimates (KDEs) than e.g., Gaussian kernels [38]. The kernel width Pg (in voxels) controls
the visualization’s simplification level but also the sample points x; considered when evaluating
Equation (1). Typical good values are Pg in 5% to 10% of the extent of the volume V. Figure 2 shows
the effect of Pz upon the bundling. We see that increasing Pr simplifies the 3D trail set T more.
Similar effects have been reported for 2D trail bundling applications [8], but not yet demonstrated for
the bundling of 3D trail sets.

a) original trail-set T b) bundling, P, = 10 voxels ¢) bundling, P, = 50 voxels

Figure 2. Effect of kernel-width bundling parameter Pr. Rows show two different views of the
same dataset. Trails are directionally colored according to the displayed legend. Gray shows the
seeding-and-trail-clipping mask M. See Section 3.2.

Advection: We next use the density map p to advect every trail-sampling-point x; in the normalized
density gradient, following

Vo(x;)
X% = x; + Pg Loy (2)
! PRIV
Smoothing: Next, following CUBu [8], we smooth the advected trails T = {x}“w} by applying a
1D Laplacian kernel of size L sampling points and strength ¢ (see Equation (3)) to remove potential
noise effects caused by the discrete advection in Equation (2).

j+L
xsmooth _ (1 _ ¢)xnew + 4) ]Z x/ew (3)
J - J 2L+1, =~ "k
k=j—L

The smoothing kernel size L is set so as to match the KDE kernel radius Pg, i.e., ||x; — x;_|| = Pg.

Relaxation: Finally, we apply a relaxation step that interpolates linearly between the bundled trails
B(T) = {x;m""th} and the original ones T as T"*!** = yB(T) + (1 — ) T. Figure 3 shows this effect for
two different 7y values. Simply put, y interpolates between a fully bundled (tight) visualization B(T)
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(¥ = 1) and a fully relaxed visualization showing the original DTI trail set T (y = 0). Using the preset
v = 0.2 gave good results for all datasets we experimented with.

Figure 3. Effect of relaxation parameter . (a) Unbundled dataset T. (b) Bundled dataset, v = 0.1.
(c) Bundled dataset, y = 0.2. Rendering parameters are the same as in Figure 2. See Section 3.2.

We repeat all above steps (relaxation, resampling, density computation, advection, smoothing,
and resampling) Py times. As shown in [8] for 2D trail sets, and verified by us for 3D trails, the process
converges yielding strongly bundled trails after Py = 15 iterations.

3.2.1. Constrained Endpoint Advection

The original CUBu bundling [8], applied to 2D trails, keeps trail endpoints fixed (not affected by
Equation (2)) and updates all other trail sample points x;. This is well motivated by the fact that CUBu
(and, actually, for all other bundling methods we are aware of) address 2D trails where endpoints
represent meaningful information, such as nodes in a graph layout or fixation points in a 2D eye-tracking
dataset[7]. In contrast, our 3D trail endpoints are far less meaningful, as they are simply locations of
low confidence for the streamline tracing process (Section 3.1). Hence, their location does not encode
any significant information. Keeping them fixed creates fan-like structures that generate significant
occlusion, preventing us to look into the 3D bundle structure. As such, we choose to advect these trail
endpoints, just as all other sampling points x;.

Naively applying Equation (2) to endpoints however has the effect of shortening the fiber
tracts, therefore losing important spatial information. To alleviate this, we constrain the advection
d= x}ww — X;j to be normal to the local tangent T = x;;1 — x; of the fiber at sample point x;. Let d+
be the constrained advection vector. Please note that for 2D trail sets T, the direction u of d* can be
directly found as the cross product T x v, where v is the normal vector to the 2D plane containing the
2D trail set T [8]. In 3D, we have an infinity of such directions u orthogonal to 7. We solve the problem
of computing this orthogonal direction u and the constrained advection d* in direction u as follows
(see also Figure 4a):

0, if T 1
dt =44, ifﬁwzo 4)
(d-u)-u, whereu =1 X (d X 1), otherwise.

Figure 4b—d shows the effect on trail endpoints of this constrained advection. Image (b) shows
an unbundled trail set T with 50 K fibers seeded and traced to cover the entire brain. As visible, it is
hard to see structures inside the brain due to occlusion. Image (c) shows the classical, unconstrained,
bundling delivered by directly applying Equation (2). We see how fiber bundles form inside the brain.
However, fiber endpoints are blocked, so they create fan-like structures that still severely limit visibility
inside the structure. Image (d) shows our constrained bundling obtained by Equation (4). The terminal
fan-like structures now largely disappear allowing us to peep inside the bundled structure with limited
occlusion trouble.
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Figure 4. (a) Constrained advection scheme for trail endpoints. (b) Unbundled fiber set. (c) Unconstrained
bundling. (d) Bundling with constrained advection.

3.2.2. Anisotropy-Constrained Bundling

Figure 4d shows that 3D bundling considerably decreases occlusion, allowing one to see structures
created by fibers deep inside the trail set. However, a problem immediately appears: All manifold-like
structures, such as known to exist in DTI fiber tracts, are now broken into a set of parallel bundles,
separated by gaps. This is a serious problem as the resulting rendering does not faithfully convey the
brain anatomy, as also reported in other works that use DTI fiber contraction [16]. Figure 5 shows this.
Image (a) shows an unbundled trail set. Given that this is a dense dataset (100 K trails), the manifold
structure of the corpus callosum is well captured, albeit occluded by the outer fiber tracks. Image (b)
shows the isotropic bundling computed by the constrained advection explained earlier (Section 3.2.1).
Occlusion is massively reduced, but the corpus callosum manifold is broken into a set of bundles
separated by gaps.

We address this problem by modulating the advection, i.e., replacing the advection step d*
(Equation (4)) by xdt, where

1, if DC(X]') >
K(x;) = 5
( / ) {O, otherwise, ©)

where «(x;) is any suitable DTI anisotropy metric computed at sample point x; and « is a threshold
thereof. Figure 5c shows the effect of using fractional anisotropy (FA) [51] for «, defined as

FA = \/g\/()‘l —A2)2 4+ (A2 — A3)* + (As _)‘1)2, ©)
A2+ AL+ A3

where A; are the major, medium, and minor eigenvalues of the diffusion tensor evaluated at the current
sample point x;. Figure 5c shows the effect of constraining bundling by FA. Fibers with a value
FA > g, where ag = 0.7, are in regions of strong anisotropy indicating tube-like structures, and are as
such strongly bundled. These are color-coded in the image by their FA values. FA values below «g
indicate planar anisotropy or isotropic regions, and are as such not bundled. These fibers are marked
gray in the image. Image (d) shows the anisotropic bundling, color-cored directionally, for an easier
comparison with the isotropic bundling (image (b)). As visible, anisotropic bundling reduces occlusion
and also keeps manifold-like structures unbroken. Similar results can be obtained by using the ¢; and
cp anisotropy metrics of Westin et al. [46], as shown further by the examples in Section 5.

corpus
callosum

a) b) ‘ <)

Figure 5. Anisotropic bundling. (a) Unbundled trail set. (b) Isotropic bundling. (c) Anisotropic
bundling color-coded by FA metric. (d) As (c), with directional color coding. See Section 3.2.2.
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3.2.3. Tract Reseeding

Anisotropic bundling (Section 3.2.2) cannot fully prevent the appearance of gaps in fiber manifolds.
Indeed, if we set the anisotropic threshold «g too high, then gaps will be prevented, since only
the highest anisotropy fiber fragments, in linear anisotropy regions, will be bundled. However,
this causes too little bundling, thus does not decrease occlusion sufficiently. Conversely, of we set ag
too low, then occlusion is strongly reduced, but bundling may also occur in planar anisotropy regions,
creating the aforementioned gaps. Tuning «( to strike the right balance between occlusion reduction
and fiber manifold preservation is delicate. Moreover, such manifolds may not be fully captured by
the original trail set T, unless a very high seed density is used, which only increases occlusion.

We solve this problem by adaptive reseeding, performed during the bundling process, as follows.
After each bundling iteration, we create (seed) new trails in regions of high planar anisotropy c, and
low linear anisotropy c;, where

2(Ay — A3)
— SN2 7o) 7
T N At A @
and
c _LAZ (8)
L= AM+Ar+ A

Similar to Vilanova et al. [20], we use the constraints ¢, > 0.25 and ¢; < 0.2 to find the seeding
region, and trace fibers, randomly seeded at voxels in these regions, until they exit them, i.e., not
meet the above-mentioned constraints. Fiber tracking is done using Euler integration along the major
eigenvector of the DTI tensor, and trilinear interpolation. Figure 6 shows the effect of reseeding of a
relatively small 15 K trail set. Reseeding adds a total of 65 K trails (marked in red) to the original 15 K
ones (marked in gray).

Figure 6. Fiber reseeding during anisotropic bundling, (a) anterior and (b) transversal views.
Original fibers are in gray. Fibers added by reseeding are red. See Section 3.2.3.

3.3. Structure-Emphasizing Rendering

The additions to the classical CUBu pipeline discussed in Section 3.2—constrained advection,
anisotropic advection, and reseeding—generate a bundled trail set B(T) that has less occlusion than the
original set T but captures well the underlying structures created by fibers. As outlined in Section 2.1,
rendering B(T) using classical methods such as illuminated tubes [25,27,52,53] is a simple and fast way
to get insights in the bundled trail set. However, even for very dense trail sets, recreating the continuous
nature of fiber manifolds from individually rendered tubes is very hard. Depth-dependent halos
(DDH) [13,14,37] methods achieve this goal by merging close fibers in screen space. The downside
of DDH methods is that they create a black-and-white rendering, which, albeit motivated from a
minimalistic design viewpoint, offers limited freedom to visualize additional scalar data.

We address the above by several rendering techniques that work on either the original trail set T
or the bundled one B(T), as follows.
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3.3.1. Splat-Based Rendering

Since the trail set T is densely sampled, we can create solid-looking geometry by rendering circular
splats, also called billboarded point sprites [54], oriented parallel to the view plane and centered at the
sample points x; € T. Our technique is related to the work of Jalba et al. [55] that reconstruct 3D shapes
from point-cloud representations of their surface skeletons and to other methods for surface splatting
from point clouds [56]. However, our aim is to render a complex set of fibers—either individual ones or
grouped to form fiber sheets; in contrast, the other splatting works mentioned above aim to reconstruct
a single, watertight, surface from a point cloud. In our method, we use different splat profiles than the
above works; effectively use blending to merge splats into smooth-looking surfaces; show data atop of
the reconstructed images by color coding; and create outlines to better convey the separation between
the complex DTI fiber structures.

Our rendering pipeline consists of four main steps: shading and blending, gap-filling, and creating
outlines, as discussed next.

3.3.2. Shading and Blending

As outlined at the beginning of Section 3.3.1, we render T by drawing a viewplane-parallel
circular luminance splat texture ¢ centered at the location of every sample point x; € T. Tuning the
splat radius effectively ‘merges’ close trails even further than what bundling can do, creating visually
compact shapes. Choosing different profiles for the texture t allows obtaining rendering effects that
range from flat-shaded-like to smooth-shaded surfaces and finally to specularly shaded tubes showing
local fiber details. We discuss next four such profiles. To illustrate them, we made a selection of trails
that emerge from the corona radiata and merge with those in the corpus callosum. These selected trails
are shown in Figure 7a, overlaid atop of a sagittal slice encoding fractional anisotropy (FA), for context.
Figure 7b—e show the four luminance textures corresponding to these profiles (topmost inset) and also
as a 3D height plot of the luminance values (inset below) and how these profiles affect the rendering of
the selected trails. The profiles are detailed further below.

GG

b) flat shading c) Gaussian shading d) spherical shading €) conical shading

f) flat shading g) Gaussian shading h) spherical shading i) conical shading

Figure 7. (a) Selected trail set consisting of a tube-like bundle from the corona radiata (blue) merging
into the corpus callosum (red). (b—e) Same bundle as in (a) shaded with four different profiles. (f-i) The
four shading profiles applied to a full 100 K-trails bundled dataset. See Section 3.3.2.

Flat (tr): This profile contains a constant (bright) luminance and is useful when one wants to show
additional information by e.g., color coding. When combined with outlining (discussed further in
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Section 3.3.4), it shows a minimalistic, illustrative rendering style that allows easily separating trail
bundles at a coarse scale. For instance, in Figure 7b, we easily see that the trail set consists of one
large vertical bundle and one curved bundle—compare this image with Figure 7 where the same two
bundles have been manually separated by color coding.

Gaussian (t;): This profile sets the luminance texture to a Gaussian map—see the height-plot inset in
Figure 7c. The actual luminance texture (also shown in the inset of Figure 7d) resembles a diffusely
shaded sphere. The obtained effect is to create a subtle shading close to the borders of a bundle.

Spherical (ts): This profile sets the luminance of a pixel x € t to its distance to the circular splat’s
boundary. As visible in the insets in Figure 7d, the profile resembles a specularly shaded sphere; if we
depict ¢t by a height plot, the profile shows as a conical shape. The obtained effect, also visible in
Figure 7d, is to create slightly sharper highlights and shadows than the Gaussian profile.

Conical (tc): This profile corresponds to a cone lit by a light source of direction a, seen from
above—see the insets in Figure 7e. We tested two options for setting the light direction a, as follows
(see also Figure 8). First, we use a global, fixed, direction a. This is equivalent to the well-known
directional lighting in OpenGL. Although easy to understand, and creating a granular rendering
where individual trails can be discerned, fixed lighting does sometimes not create strong-enough
shading cues to differentiate overlapping bundles (Figure 8a). Alternatively, we set a to a vector locally
orthogonal to the view-space tangent 7 to each trail, the latter being estimated by projecting the 3D
line segment (x;,x;j;1) to the view plane—see inset in Figure 8b. The effect is that lighting always
‘sticks’ to the same side of a trail, and follows the trail’s curvature. As visible in Figure 8b, this creates
stronger shading contrasts allowing one to separate easier overlapping bundles.

a) fixed direction shading b) shading orthogonal to fiber tangent

Figure 8. Conical shading with (a) fixed light direction and (b) lighting orthogonal to local fiber tangent.
The latter method (b) shows more shading contrast than the former (a). See Section 3.3.2.

Figure 7f—i show the application of the above four shading profiles to a fill 100 K-trails bundled
dataset. Here, we use color (hue) to encode the trails’ directions, similar to earlier images in this paper
(e.g., Figure 2). Combining color with shading is immediately done by multiplying the luminance
values produced by the profile textures by the color values computed by mapping the trail directions
at every sample point x;.

Directly splatting trail sets however creates artifacts where the borders of the circular splats
overlap—see Figure 9a and its insets. A better solution is to use alpha-blending to render the splats.
This would require depth-sorting all splats every time the viewpoint changes. For a dataset of
hundreds of thousands of trails, each rendered with hundreds of splats, this is not (easily) done
at interactive frame rates. Solutions such as Order-Independent Transparency (OIT) [57,58] do not
require depth-sorting the splats and are as such faster. However, OIT works well typically for a
few overlapping surfaces with high transparency. Our datasets, in contrast, contain hundreds of
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overlapping fibers at a single location. More importantly, we do not need high-transparency rendering,
but rather low-transparency, sufficient to allow the few overlapping splats in the ‘topmost” layer,
i.e., closest to the viewpoint, to blend. We achieve this by a simple two-pass rendering technique: First,
we render the entire trail set T using no shading but with Z buffering on. This delivers a depth buffer
z recording the z value of the closest splat to the viewplane at every pixel. In the second pass, we visit
(again) all splats, but only render those whose depths, i.e., the z components of the sample points
x; where they are centered, are not larger than the z value at that pixel plus a small offset § = 0.005.
This effectively renders only those splats that are within a ‘peel’, or thin layer, of J units from the
closest one to the viewer. Since there are only a few splats per pixel within this layer—typically under
10—we can use standard blending with a transparency value of « = 0.1. Figure 9b shows the same
dataset as in Figure 9a rendered with peel blending. As visible, peel blending removes the shading
artifacts we had seen earlier.

Figure 9. Trail set visualized with splatting with (a) no blending and (b) peel blending. Note how
blending removes artifacts. See Section 3.3.2.

3.3.3. Gap Filling

The key added value of splatting is to fill gaps between close-and-parallel trails in a bundle
so as to make it appear as a compact, smooth, structure—thereby removing the inherently discrete,
sampled, nature of trail sets. To do this, we need to carefully set the radius of the splat textures f so
that splats are not too large (in screen space) so that they fill in large gaps between far-apart bundles,
which we want to see as being distinct, and in the same time they are not too small, so that splats
at consecutive sampling points x; on a trail do not overlap sufficiently so as to give the impression
of a constant-thickness tube. Additionally, we want that splats that render fiber sheets are larger so
that gaps in such sheets are visually closed. Finally, we want to make fibers far from the viewer look
thinner to account for perspective.

We achieve the above by computing the radius r of the splat rendered at sample point x; as

1
r(x) = (ro + cp<xj>ﬁ>\/; ©)

where 7 is the base splat radius (set typically to around 5 pixels, so as to ensure that all fibers are
sufficiently visible); ¢, (x;) is the planar anisotropy at location x;; B is a constant factor determining
how much we increase splats in planar regions; and z; is the depth value of x; after perspective
transformation. Please note that the square-root term in Equation (9) is similar to the well-known
distance-based attenuation commonly used in lighting [59]. Figure 10a,b show the effect of the
parameter 5: For B = 0, we do not make splats in planar regions larger. As such, even though
splats overlap in these regions, the individual fibers are still visible here (see insets in Figure 10a).
Setting B = 5 makes splats in these regions larger, therefore allowing for more overlap, thus making
the surface-like fiber sheets more apparent in planar regions (see insets in Figure 10b).
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a) no planar gap-filling (8=0) b) planar gap-filling (3=5) c) sparse trail sampling d) dense trail sampling

Figure 10. Trail set visualized (a) no emphasis of planar regions; (b) gap-filling in planar regions;
(c) sparse, and (d) dense trail sampling. Images (a,b) are colored by planar anisotropy c,. Images (c,d)
are colored on trail direction. See Section 3.3.3.

Besides controlling the splat radius, we need to control the density of sample points x; along a
trail. Indeed: The original CUBu algorithm, which we extended to 3D (Section 3.2), creates a dense,
and uniform, but fixed sampling of the trail set. Although this sampling density is typically sufficient
for rendering edge bundles as polylines in typical graph drawings [8], it can be too low to ensure
sufficient overlap of consecutive splats during blending (Section 3.3.2). Increasing the base radius
1o (Equation (9)) can fill in such gaps, but it also makes trails look overall thicker, which may not be
desirable when one wants to see fine details. Moreover, the trails sampling is fixed, meaning that
gaps will inevitably appear when one zooms in to examine details. Figure 10c illustrates the above:
Here, we use a small splat radius 7o = 3 and the sampling distance ||x; — x;;1]| to roughly 1 voxel.
This creates clear gaps in the trails rendering. We solve this problem by applying on-the-fly tessellation
to the line segments (x;, X, 1) as these are rendered to generate splat centers. As the user zooms in,
such line segments are subdivided to generate more sample points, thereby ensuring a constant and
high sample point density in image space. Figure 10d illustrates this: The density achieved here by
tessellation is roughly 7 times larger than in Figure 10c, which ensures that consecutive splats blend
seamlessly to create continuous-looking and thin, detail-rich, trails.

3.3.4. Creating Outlines

Our final rendering addition proposed involves the generation of outlines along the boundaries
of trail bundles in image space. These outlines are useful to emphasize groups of close and roughly
parallel trails, which helps one to disambiguate crossing or overlapping bundles, by e.g., seeing which
bundle is in front of another one [13,60].

We can easily create outlines by slightly adapting our two-pass rendering method used for peel
blending (Section 3.3.2 as follows. In the first pass, used to create the depth buffer z, we render splats
with a slightly larger radius r + €, where r is the standard radius given by Equation (9). Then, all pixels
that have a z value lower than the maximal one (that is, set when clearing the Z buffer) and that
have a color in the framebulffer different from background—that is, pixels that are visited by the first
rendering pass but not the second rendering pass—are on an outline of € pixels thickness of rendered
fibers. In practice, setting € to a few pixels gives salient enough, but not too bold (visually disturbing)
outlines. Figure 11 illustrates this: In the left set of images, outlines are those pixels that are purple
in the Z buffer (rendered there) and yellow in the framebuffer (not rendered there). Image (b) in this
figure shows the added value of outlines: Compared to standard shading, it is now easier to discern
how bundles overlap and cross each other. For more clarity, we also show the outlines only in image (c).
Separately, note that our outline-creation technique subsumes the DDH technique in [13]: We can create
DDH-like images simply by enabling outlines (rendered in black) and using a constant splat profile
with white base color (Section 3.3.2).
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framebuffer

outlines

>

a) standard shading b) shading and outlines c) outlines only

Figure 11. Creating bundle outlines. Trail set rendered (a) with shading but no outlines, (b) with
shading and outlines, and (c) as outlines only. See Section 3.3.4.

4. Scalable Implementation

We implemented our end-to-end pipeline fully on the GPU using NVidia CUDA and
programmable OpenGL (pixel shaders and tessellation) and C++ for the main architecture. The various
scalar volumes (DTI, fractional anisotropy, density p) are implemented as 32-bit floating-point 3D
textures. Density estimation (Equation (1)) is implemented by separable convolution requiring three
one-dimensional passes. For the density map p, we use volumes of higher (up to 8 times) resolution
than the original DTI volumes (Table 1), as the latter are too coarse for the accuracy needed to compute
the gradient Vp (Equation (2)). Gradient estimation is done by central differences.

The above implementation can efficiently compute and render the fiber bundling of large trail
sets. Table 2 shows, for three different DTI datasets, the number of trails |T|, sampling points X;,
average time per bundling iteration (over 15 total iterations), and total bundling-and-rendering time.
Experiments were done on a PC running Ubuntu Linux using a NVidia GTX 1080 graphics card
(2560 CUDA cores). Time includes the CPU-to-GPU transfer of trail sets needed to load the input
dataset T on the GPU prior to doing the bundling proper. The rendering time is a small fraction
of the total time—under 4%—and as such not reported separately. For each of the three datasets,
we constructed two trail sets, one with 50 K trails, and the other one with 500 K trails (all of them
randomly seeded). Details over these available datasets are shown in Table 1. The table lists the
(public) data sources, identification of the dataset in terms of patient (subject) ID and accession number,
and data characteristics—DTI volume size, voxel size, and number of diffusion directions used to
acquire the DTI tensor field. Summarizing Table 1, we argue that our data is compatible with real-world,
large, and complex DTI volumes used in medical practice.

Table 1. Datasets used in the evaluation.

Dataset 1 Dataset 2 Dataset 3
Data source 3DSlicer [48] OpenfMRI[49] HCP [50]
Subject ID n/a Subject 10159 mgh_1001
Accession number n/a ds000030 501322
Volume sizes 128 x 128 x 94 96 x 96 x 50 140 x 140 x 96
Voxel size (mm) 15x15%x15 198x198x2 15x15x15
Diffusion directions 42 64 512
Mask sizes 88 x 111 x 82 61 x 82 x 42 84 x 98 x 83

Table 2 shows us several insights. First and foremost, we see that the end-to-end processing time
of our pipeline is of a few seconds at most, even for the large (500 K) trail sets. Given that we bundle a 3D
trail set, and that we perform additional steps during bundling—constrained advection (Section 3.2.1),
anisotropy bundling (Section 3.2.2), and tract reseeding (Section 3.2.3), this is just slightly slower than
the 2D bundling reported by CUBu [8], which, according to the survey in[7] is by one up to two
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orders of magnitude the fastest method for bundling general 2D trail sets. Additionally, note that the
bundling step (Section 3.2) is typically done only sparsely during a dataset investigation. Once the
desired geometry is obtained, that geometry is next interactively explored using different rendering
settings (Section 3.3) and viewpoints. Changing these is, as we mentioned above, real time.

The memory requirements of our method are dominated by storing the density volume needed to
sample the KDE density map p (Equation (1)). Additional costs involve storing the sample points for T.
For a dataset of 1M trails, with 100 sample points per trail on average, this involves an extra of roughly
1.2 GB. These costs are not high, given that DTI volumes are typically not acquired at high resolutions,
meaning that this acquisition resolution (see Table 1) is an upper bound to that of our density maps.
For example, even with 8-fold supersampling of p vs the actual DTI data (to ensure maximal accuracy
for the KDE gradient estimation used in Equation (2), Dataset 3, which has 86 x 116 x 88 voxels after
cropping the actual brain tissue present in the 140 x 140 x 96 input voxel volume (Table 1), requires a
density map of 688 x 928 x 704 voxels, which, if stored with 32-bit-per-voxel density precision, asks for
a total of 1.8 GB of GPU RAM. Such figures are definitely within the bounds of modern graphics
cards. Hence, from a memory viewpoint, we argue that our method is scalable for the type of data it is
aimed at.

Table 2. End-to-end execution times of the proposed visualization pipeline for several datasets.

Dataset Trail Count |T| Sample Points Time/Iteration (ms) Total Time (ms)
Dataset 1 50 K 3.271.979 30 444

Dataset 2 50 K 1.441.486 11 170

Dataset 3 50K 4.145.785 20 314

Dataset 1 (dense) 500 K 32.762.628 254 3812

Dataset 2 (dense) 500 K 12.639.524 57 858

Dataset 3 (dense) 500 K 14.850.241 69 1029

5. Internal Evaluation

The bundling-and-rendering pipeline introduced in Section 3 offers a wide set of customization
options that allow users to generate a large range of visualizations, as illustrated by the images in that
section. However, finding one’s way in this visual-design space can be challenging. To address this,
we first summarize the free parameters of our method in Table 3. For each parameter, we indicate
good preset values we found ourselves by experimenting with its settings. When multiple values are
listed for a parameter, e.g., the four profiles tr, ts, tc, g for the splat shading (Section 3.3.2), this means
that there is no evident best value (preset). For instance, one can use these different profiles to create
visualizations that emphasize different, equally interesting, aspects of the data, such as DDH-style
rendering (which uses tr) or tube-like rendering with various granularities of the trails (which uses
the other three profiles).

Table 3. Parameters of the end-to-end DTI bundling-and-rendering pipeline and their presets.

DTI Bundling Structure-Aware Rendering
CUBu Anisotropic Tract Shading Blending Gap filling Outlines
bundling bundling reseeding (Section 3.3.2)  (Section 3.3.2)  (Section 3.3.3)  (Section 3.3.4)
(Section 3.2)  (Section 3.2.2)  (Section 3.2.3)
Pr 13 « FA cp 2025 t tptg,ts,tc usage peel 1y [3,5] usage on, off
Py 15 ag  [01] ¢ <02 a tangent o 0005 B 5 € [3,5]
¢ 0.25 o 0.1
o 1
¥ 0.2
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Figure 12 illustrates the above freedom of parameter choice. Here, we select a relatively small
set of 65 K trails and render them, both unbundled and bundled, with four styles (blended lines,
DDH, shading, and shading plus outlines), using isotropic bundling (¢ = 1). Trails are color-coded
on direction. The blended lines style—which corresponds to the classical way DTI trails are rendered
in such visualizations—is arguably the most cluttered and does not allow seeing which bundles are in
front of others. The DDH style partially alleviates this, but the lack of colors makes visually following
bundles hard. Shading offers a good compromise between blended lines and DDH. Finally, shading and
outlines make the bundle structures more prominent, but create a more ‘loaded” visualization.
Separately, we see how isotropic bundling reduces clutter independently on the rendering style,
allowing one to peek deeper inside the volume.

original trail-set

bundled trail-set

a) blended lines b) DDH c) shading d) shading and outlines

Figure 12. Comparing four rendering modes for a small 65 K trail set. Original unbundled data
(top row) and its bundled counterpart (bottom row). See Section 5.

Figure 13 enriches these insights by showing a larger 250 K trail set. Visualizing the unbundled
data (top row) creates high amounts of occlusion. The DDH and shading and outlines styles bring in
more structure, but cannot, by themselves, reduce occlusion. Isotropic bundling (¢p = 1, middle row)
reduces occlusion, as expected, with DDH and shading and outlines bringing in, again, more structure.
However, isotropic bundling breaks the tract-sheet structures by creating artificial gaps in these,
as discussed in Section 3.2.2. Anisotropic bundling (xp = 0.7, bottom row) also reduces occlusion but
largely preserves sheet structures such as the corpus callosum (red). Separately, we see that DDH seems
to offer more added value when used on the unbundled data; for the bundled data, the shading and
outlines style is able to show structure equally well, and creates easier-to-follow visualizations due to
the use of shading.

Concluding this internal evaluation, we found that the parameter defaults listed in Table 3 give
good results in terms of creating visualizations with limited occlusion and easy-to-follow visual
structures. A few parameters remain free to choose for the user, such as the rendering style and
isotropic-vs-anisotropic bundling. We explore these using an external evaluation in the next section.
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original trail-set

isotropic bundling

anisotropic bundling

a) blended lines b) DDH c) shading and outlines

Figure 13. Comparing four rendering modes for a large 250 K full-brain trail set. Original unbundled
data (top row) and its bundled counterpart (bottom row). See Section 5.

6. External Evaluation

As discussed in Section 5, we found good values for most of the parameters of our
bundling-and-rendering DTI visualization pipeline. However, a few parameters cannot be ‘frozen’
into presets, as they generate widely different visualizations that emphasize different aspects of the
data. Apart from that, evaluating our visualization entails also understanding how actual users
perceive it; and how they rank the different bundling-and-rendering styles in terms of insightfulness,
interestingness, and overall usefulness for understanding the underlying data.

To answer the above questions, we designed an evaluation using external users—that is, persons
who are experienced with DTI visualization but who were not involved in the design of our
visualization techniques. For the evaluation, we selected a small subset of all possible visualizations
that we can obtain by varying the free parameters in Table 3, so as not to overwhelm the users.
These visualizations also follow the styles that we found the most effective during our internal
evaluation (Section 5), and are described in Table 4 (see also Figure 14). All parameters not specified in
Table 4 follow the preset values given in Table 3.

<

Original Original-Alpha DDH Iso-Alpha

Aniso-Alpha Aniso-Tubes

Figure 14. Six bundling-and-rendering variations used to evaluate our visualization.
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Table 4. Six bundling-and-rendering visualization styles used in the external evaluation. See Section 6.

Style Description

Original No bundling or shading used. Fibers rendered as opaque lines colored by direction
Original-Alpha  As Original, but lines are alpha-blended using an opacity « = 0.1

DDH Depth-dependent halo rendering of the unbundled fibers.

Iso-Alpha Isotropic bundling used. Fibers rendered as in Original-Alpha.

Aniso-Alpha Anisotropic bundling used. Fibers rendered as in Original-Alpha.

Aniso-Tubes Anisotropic bundling used. Fibers rendered using the same shading settings as in Figure 12c.

6.1. Evaluation Process

We invited 5 participants with good prior knowledge of DTI data and associated techniques.
Their level of experience ranges from 5 to 37 years. One participant is the head of the neuroscience
lab in a major French university (37 years experience); one participant is a neuroscientist (12 years
experience); two are postdocs with 5 and 10 years experience; and one is a researcher with 10 years
experience. Each evaluation lasted one hour and operated as follows.

First, we provided a general introduction of our context and goal. After naming DTI and
tractography (which was, as outlined above, well known to the participants), we introduced the
problem of data size: The input data for this visualization is a large set (hundreds of thousands) of
3D tracts that follow the main anisotropy directions in a DTI volume. These tracts are in general
locally aligned with the directions of the neural fibers. However, directly visualizing a large and
densely sampled tract volume creates problems, mainly due to occlusion. We propose to address such
problems by a simplified visualization technique that bundles close and same-direction tracts, so that
occlusion decreases but the resulting structures still closely reflect the underlying fiber anatomy.

We next introduced the six visualization techniques listed in Table 4 and illustrated them by
interactively running our visualization tool. The dataset used during this presentation (and also
further on in the evaluation) consists of a brain MRI scan coming from a healthy person, exhibiting no
particular anatomical or physiological anomalies. As such, users should expect to see the typical
structures they are familiar with from brain anatomy. We traced around 200 K fiber tracts in this
brain. The fibers are seeded randomly in regions of high anisotropy (white matter) and traced until
they exit this region and enter gray matter, as described in Section 3.1). We explained each of the six
visualizations in terms of what the visualization actually shows, e.g., what bundling does, what is
the working of alpha-blending and shading, and how to interpret the DDH image. During this
presentation, we refrained from making quality judgments, e.g., state that one visualization can better
show certain structures than another one, since that would bias the participants.

Following this global introduction, each user was asked to watch a 3-minute-long video that
we prepared in advance. The users could not communicate among themselves, nor with the
organizers of the evaluation, during this session, so as not to influence each other. The video
shows the DTI trail set described above visualized by the six methods in the order listed in Table 4,
i.e., going from the arguably most familiar style to the participants (Original) to the least familiar
one (Aniso-Tubes). Each of the six methods is offered roughly the same amount of time in the video.
Within such a sequence, the visualization is smoothly rotated along the Y axis, then along the X axis,
with the same constant-speed motion patterns for all the sequences. Relevant parameters for the
presented visualization style are then varied smoothly, so the participants can understand their effects.
For example, for the Alpha styles, we increase the opacity value from the preset & = 0.1 to reach
1 (full opacity) and then back, so one understands how the alpha-blending works. To understand
the bundled styles, the video varies the relaxation parameter oy between the preset value (y = 0.2,
strongly bundled) to 1 (fully unbundled) and then back. Each sequence is captioned in the video by its
name. Additional captions explain the parameters that are varied. Figure 15 shows eight frames from
the watched video.
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Using a video instead of directly allowing users to interact with the visualization is, of course,
limited, as one cannot change the visualization parameters at will, nor interactively manipulate the
viewpoint. However, a video also has important advantages: (1) It offers exactly the same information
to all participants, therefore decreasing potential bias due to participants using different settings or
options. (2) Letting participants actually interact with the visualization tool presupposes a fine-tuned
GUI design, tool manual, and documentation, all of which are out of our evaluation scope. (3) Using a
fixed-length video, with a pre-recorded narrative, allows one to time-box the experiment far easier
than if users were allowed to freely explore all options of the visualization tool. Given these, we opted
for the video presentation variant.

The users could watch the video at any desired pace, including going back to watch again some
sections. During this time, users were also asked to answer several questions that compare the various
pros and cons of the six visualization methods. Besides providing these answers, users also could
provide free-text comments. The full questionnaire is available in Appendix A. The questionnaire
contains three parts: (1) Listing the strongest points and limitations of each of the six visualizations
(free text input); (2) Relatively ranking the six visualizations concerning their ability to handle occlusion,
showing brain structures clearly, and showing how various brain regions are connected by these
structures (ordinal scale from 1 = best to 6 = worst); (3) Global aspects, including naming the overall
preferred visualization, the perceived advantages and limitations of bundling, and aspects present in
different visualization styles that deserve to be combined. Users could start filling the questionnaire
during the watching or the video, or afterwards, as desired. The total time given for watching the
video and filling the questionnaire was approximately 40 min.

Occlusion decreases but structures We use depth-dependent halos to group

We use transparency on the original . :
become fuzzy and colors get mixed close tracts (black, outlined in white)

DTI tracts, color-coded by direction

We start looking at the original DTI tracts
rendered as lines,color=coded by direction

. A . 2
Occlusion decreases, but anatomically Occlusion decreases and bundles are more Wé render bundles using

We see more structures but this incorrect gaps appear between bundles anatomically correct (no gaps in corpus callosum) shading

lot of occlution

Figure 15. During our evaluation, we show users a video that depicts the six visualization styles
(Table 4) using a 3D animation that rotates the viewpoint to see the brain from multiple angles.
This image shows 8 snapshots from the video. Captions inform the user of the specifics of the
visualization style being shown.

6.2. Evaluation Summary

We summarize below the strengths and limitations of the six analyzed visualization styles as
reported by the participants.

Original: The superficial layers are clearly visible, which helps to figure out error in the fiber
reconstruction (tracking). This visualization is a classical view that is close to the raw data provided by
the machine. On the negative side, too many occlusions severely hinder the visualization of the fibers
within the model. The depth cannot be assessed, and the inner structure is not visible.

Original-Alpha: This style provides a fairly good visualization of large and dense fiber groups with
an improved possible assessment of the fiber depth. The inner structures are visible as long as they
correspond to such large and relatively dense fiber structures. On the negative side, the view is too
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cluttered, and many groups of fibers are hard to distinguish. The inner part of the model is still
difficult to get insights in. Moreover, blending makes it hard to distinguish how overlapping bundles
cross (what is in front and what behind) from a single viewpoint.

DDS: This visualization was qualified to be an “aesthetic representation’ of the fibers. Some structures
on the model’s peripheral layer (outer core) are better visible with DDH than the other
visualizations. On the negative side, neurologists are used to interpret grayscale imagery in
specific ways—e.g., as encoding scalar quantities—whereby black and white have specific meanings.
DDH's usage of black and white can be confusing at moments. Also, the restriction to black and white
removes the possibility of color-coding directional information, which is often needed. DDH also
shows a lot of occlusion. Overall, DDH has been assessed as too complex and making small fibers not
visible anymore.

Iso-Alpha: This visualization shows well the directions of the relevant (main) fibers with a good depth
understanding; the fiber paths are clearly visible. On the negative side, this view shows unrealistic
fibers path with too strong distortions. The user needs to recall the original fiber structure to interpret
the displayed information.

Aniso-Alpha: In this visualization, the fibers that form the corpus callosum are correctly aggregated
into a sheet. Overall, Aniso-Alpha creates a more realistic brain-fiber visualization that depicts the
brain structure quite well. On the negative side, Aniso-Alpha does not show individual fibers and
can create a ‘hairy’ representation. The spinal cord is not correctly rendered (too many fibers are
still spread).

Aniso-Tube: The depth perception is improved leading to a better understanding of the aggregated
fiber structure. Outlines of the bundles are better visible than in the other visualizations, due to the
shading; this also emphasizes the fibers’ directions. The visualization is also realistic in terms of the
depicted brain-fiber structures. On the negative side, the view remains cluttered with many small
bundles; the global opacity of the bundles makes it hard to see deep(er) inside the fiber set.

6.3. Ranking of the Visualizations

As outlined in Section 6.1, we also asked the participants to rank the six studied styles
regarding their effectiveness for occlusion removal, clarity and brain connectivity understanding.
The summarized user answers are listed below, with a focus on the extremes—top ranks (1, 2) and
bottom ranks (5, 6):

1. Occlusion removal: Aniso-Tubes is ranked as first or second best; DDH and Origin are ranked last

or last but one;
2. Clarity: Aniso-Tube and Aniso-Alpha are ranked first or second in terms of clarity. Iso-Alpha and

DDH are ranked last and last but one;
3. Connectivity: Aniso-Alpha and Aniso-Tubes are ranked first or second best; DDH is ranked last or

last but one for the same task.

6.4. General Comments

We next summarize the textual answers that the users gave to questionnaire point 3. Overall,
the users liked Aniso-Tube most, which they found to provide a good compromise between view
aggregation and general structure understanding thanks to the sharp-rendered fiber borders due
to shading. This style was also found to preserve the general brain structure well while clearly
showing the main bundles and the brain connectivity. Although it was acknowledged that this style
is affected by the inherent distortion caused by bundling, the distortion was (correctly) found to be
less than the Iso styles (which, indeed, distort both in planar anisotropy and linear anisotropy areas).
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The depth perception was also found to be good, and helped by the shading’s ability to accentuate
bundle borders. Interestingly, participants also mentioned combining DDS with Aniso-Tube to further
enhance the bundle border cues. This is salient, since the participants were not aware of the shading
and outlines style (Figure 13), which does exactly that, as that style was not part of the evaluation
video. This represents, we believe, good support for the potential added value of shading and outlines.

7. Discussion

We discuss next briefly the main characteristics of, and findings related to, our proposed method.

Technical points: All steps of the presented method are generic, in the sense that they can be applied
to any trail set consisting of a set of 3D point-sampled trajectories that is further annotated with
anisotropy scalar values. A subset of the steps (3D bundling, shading, outline computation) are
actually more generic in the sense that they only require a set of 3D point-sampled trails. The entire
method is implemented on the GPU, and has a complexity linear in the number of sample points
x;. Practically, this allows us to bundle-and-render hundreds of thousands of 3D trails at interactive
frame rates.

Quality: The quality of the produced visualizations, in terms of ability to recover complex brain
structures such as fiber sheets, depends strongly on the availability of a dense trail set that samples the
DTI volume. Indeed, a too sparse trail set will not be able to capture these structures, so bundling and
shading can do little to improve this. Reseeding (Section 3.2.3) alleviates this by creating additional
tracks on-the-fly during the visualization. However, this cannot guarantee a dense sampling of all
regions of interest. As such, starting with a rich, densely sampled, trail set is an important condition
for quality.

Veracity: A well-known problem of bundling methods is that they deform the actual data, trading off
veracity for simplification [7]. Although this is less critical when bundling abstract data, such as graph
drawings, deforming DTI fibers is more problematic, as these can potentially convey false insights
to the user. The anisotropic bundling techniques described in Sections 3.2.1 and 3.2.2 limit such
problems as they constrain the bundling to follow additional data-related information (anisotropy).
Still, the inherent trade-off of bundling between simplification and veracity remains. This is not a
problem specific to our method—many other methods that produce simplified visualizations of DTI
data share the same issue [14,16,60]. Exploring how to both measure and limit deformations caused by
bundling that create false insights is an interesting and important direction for future work.

Evaluation: Our evaluation is inherently limited by the format chosen—inviting only professionals
deeply familiar with DTI visualization, exposing them to precisely the same material, and setting a
time limit of under one hour for the entire process. Inviting more people (with less DTI experience),
allowing them to actually experiment live with the visualization tool, and recording more and
more task-specific information would, obviously, give more insights into the specific strengths and
weaknesses of our method. However, we believe that this type of targeted evaluation can only follow
our formative evaluation. Indeed, the latter could have delivered evidence that does not support the
overall added-value claim for our visualization, in which case doing a targeted evaluation would
not have made sense. The results of our evaluation, however, have singled out Aniso-Tubes and
Aniso-Alpha as the top preferred styles for occlusion removal, clarity, and depicting connectivity.
Hence, we have evidence that anisotropic bundling (present only in the Aniso style) and shading
(present only in the Tubes style) are both of added value. With this information, we plan to execute a
subsequent evaluation—using the combination of parameters mentioned above as presets—in which
several more precisely defined tasks, with ground-truth information available for measuring the
quality of completion, will be addressed using our tool.
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8. Conclusions

In this paper, we have presented a set of techniques for the simplified visualization of large
3D trail sets produced by tractography on DTI volume data. We perform simplification jointly
both in the geometric space and image space. For the geometric simplification, we extended the
state-of-the-art CUBu bundling method to handle 3D trail sets, and also proposed several bundling
adaptations to handle the specifics of DTI fiber tracks. For the image-space simplification, we proposed
several splat-based rendering methods that merge the rendered trails in the resulting image to create
more compact sheet-like structures, add shading, and delineate bundles by outlines. The geometric
and image-space simplifications can be used jointly but also independently. We implemented
the entire pipeline on the GPU using a combination of CUDA and pixel shader techniques.
Our end-to-end method can create simplified visualizations at interactive frame rates and allow
interactive parameter manipulation.

We studied the parameter space of the proposed method by identifying good presets for most
of them. For the remaining free ones, we explored their various combinations by an internal and an
external evaluation, the latter involving five professionals working with DTI data. The combined
evaluations show that both bundling and shading have perceived added value and are seen as
creating images that have less occlusion, are clearer, and show the brain connectivity better than other
comparable techniques.

Several directions of future work are possible. First, we aim to further explore the design space
spanned by our various bundling and shading techniques, so as to find different combinations of these
and/or their parameters that lead to visualizations with better occlusion reduction, clarity, and ability
to depict complex brain structures. Secondly, we consider adapting our pipeline to incorporate
(and measure) quality criteria to show and control the level of permissible deformation caused by
bundling, thereby increasing the confidence of users in the depicted structures. Last, a low-hanging
fruit is to use our pipeline to create simplified visualizations of other large 3D trail sets such as aircraft
trajectories, fluid flow data, or graph layouts.
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Appendix A. Evaluation Questionnaire

In the following, we list the questionnaire that was used for the external evaluation described
in Section 6.

Part 1: Merits and limitations of the six visualizations

Original
The strong points of this visualization are [ free text ]
The weak points of this visualization are [ free text ]

Original-Alpha
The strong points of this visualization are [ free fext ]
The weak points of this visualization are [ free fext ]

DDH
The strong points of this visualization are [ free text ]
The weak points of this visualization are [ free text ]

Iso-Alpha
The strong points of this visualization are [ free fext ]
The weak points of this visualization are [ free text ]

Aniso-Alpha
The strong points of this visualization are [ free text |
The weak points of this visualization are [ free text ]

Aniso-Tubes
The strong points of this visualization are [ free text ]
The weak points of this visualization are [ free text ]

Part 2: Relative ranking of the six visualizations

Occlusion

Rank the six visualizations on a scale 1 to 6 (1 = best, 6 = worst) in terms of how well they allow you to see
structures which are deep inside the volume. You cannot give the same score to two different visualizations.
Original [] Original-Alpha [] DDH [] Iso-Alpha [] Aniso-Alpha[] Aniso-Tubes []

Clarity

Rank the six visualizations on a scale 1 to 6 (1 = best, 6 = worst) in terms of how easy is to discern the structures
they depict. You cannot give the same score to two different visualizations.

Original [] Original-Alpha [] DDH [ ] Iso-Alpha [] Aniso-Alpha[] Aniso-Tubes []

Connectivity

Rank the six visualizations on a scale 1 to 6 (1 = best, 6 = worst) in terms of how well they allow you to see how
two zones in the brain are connected (or not). You cannot give the same score to two different visualizations.
Original [] Original-Alpha [] DDH [ ] Iso-Alpha [] Aniso-Alpha[] Aniso-Tubes []
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Part 3: Open comments

Overall, considering all tasks mentioned in part two, but also other tasks typical in DTI visualization, which of the
six visualizations do you prefer, and why?

| freetext ]

Are there any aspects you see in different visualizations that you would like to see combined in a single
visualization? If so, which ones?

| freetext ]

Considering all above aspects, which is the strongest added value you see for bundling in general, and for
anisotropic bundling in particular?

| freetext ]

Considering all above aspects, which is the strongest limitation you see for bundling in general, and for anisotropic
bundling in particular?

| freetext ]
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