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Abstract: The ancestral mixture model, an important model building a hierarchical tree from high
dimensional binary sequences, was proposed by Chen and Lindsay in 2006. As a phylogenetic tree
(or evolutionary tree), a mixture tree created from ancestral mixture models, involves the inferred
evolutionary relationships among various biological species. Moreover, it contains the information
of time when the species mutates. The tree comparison metric, an essential issue in bioinformatics,
is used to measure the similarity between trees. To our knowledge, however, the approach to the
comparison between two mixture trees is still unknown. In this paper, we propose a new metric
named the mixture distance metric, to measure the similarity of two mixture trees. It uniquely
considers the factor of evolutionary times between trees. If we convert the mixture tree that contains
the information of mutation time of each internal node into a weighted tree, the mixture distance
metric is very close to the weighted path difference distance metric. Since the converted mixture tree
forms a special weighted tree, we were able to design a more efficient algorithm to calculate this
new metric. Therefore, we developed two algorithms to compute the mixture distance between two
mixture trees. One requires O(n2) and the other requires O(nh1h2) computational time with O(n)
preprocessing time, where n denotes the number of leaves in the two mixture trees, and h1 and h2

denote the heights of these two trees.

Keywords: phylogenetic tree; evolutionary tree; ancestral mixture model; mixture tree; mixture distance;
tree comparison

1. Introduction

Phylogeny reconstruction involves reconstructing the evolutionary relationship from biological
sequences among species. Nowadays it has become a critical issue in molecular biology and
bioinformatics. Several existing methods, such as neighbor-joining methods [1] and maximum
likelihood methods [2], have been proposed to reconstruct a phylogenetic tree. A novel and natural
method, ancestral mixture models [3], was developed by Chen and Lindsay to deal with such a
problem. The mixture tree, a hierarchical tree created from the ancestral mixture model, induces
a sieve parameter to represent the evolutionary time. Chen, Rosenberg and Lindsay (2011) then
developed MixtureTree algorithm [4], a linux based program written in C++, which employed the
ancestral mixture models to reconstruct mixture tree from DNA sequences. With the information
provided by the mixture tree, one can identify when and how a mutation event of species occurs.
An example of the mixture tree created by MixtureTree algorithm [3] is shown in Figure 1. The data
from Griffiths and Tavare (1994) [5] are a subset of the mitochondrial DNA sequences which first
appeared in Ward et al. (1991) [6]. To study the mitochondrial diversity within the Nuu-Chuah-Nulth,
an Amerindian tribe from Vancouver Island, Ward et al. (1991) [6] sequenced 360 nucleotide segments
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of the mitochondrial control region for 63 individuals from the Nuu-Chuah-Nulth. Griffiths’ and
Tavares’ subsample consisted of 55 of the 63 distinct sequences and 18 segregating sites, including
13 pyrimidines (C, T ) and five purines (A, G). Each linage represents a distinct sequence—that is, there
are lineages a through n. The time scale on the tree can be represented by − log(1− 2p), where p is a
parameter, the mutation rate. The number on the tree represents the site of the lineage whereat the
mutation occurs. For example, when p = 0.01, lineages e and f merge because mutation occurs at site
5 of lineage f .

Figure 1. An example of the mixture tree [3].

Distinct methods may produce distinct trees, even though the methods adopt an identical
dataset [7]. To uncover a well-represented tree involved in evolutionary relationship among species it
is quite important to estimate how similar (or different) trees are. The tree distance between two trees
is a general measurement for the similarity of the trees.

The tree distance problem is a traditional issue in mathematics. Several metrics have been
proposed to measure the similarity between two trees, such as the partition metric (also called the
Robison–Foulds metric or RF distance for short) [8], the quartet metric [9], the nearest neighbour
interchange metric [10] and the nodal distance metric [11]. Those metrics all compare two trees by
considering the tree structure only, and do not mention any parameter in the tree. Thus, those metrics
are not suitable for computing the similarity between two mixture trees. Therefore, we propose a novel
metric named the mixture distance metric to measure the similarity of two mixture trees in this paper.
Among the above metrics, the metric from the nodal distance algorithm is similar to our proposed
metric. In 2003, John Bluis and Dong-Guk Shin [11] presented the nodal distance algorithm which is
used to measure the distances from leaves to all other leaves in a tree. The metric is defined as follows:
Distance(T1, T2) = ∑x,y∈L(T1)=L(T2)

|DT1(x, y) − DT2(x, y)|, where DTi (x, y) denotes the distance of
leaf x to leaf y in the tree Ti. The nodal distance algorithm was developed for this metric. Anyway,
using this metric to measure the distance between two mixture trees is not conformable.

For the metric of the mixture distance, the time parameter indicating when a mutation event
of species occurs plays an important role in the tree similarity, which is, however, not considered
by those previous metrics. If the weight of an edge in a mixture tree is defined as the difference
in time parameters between its two endpoints, a mixture tree can be regarded as a weighted tree.
We can design metrics to calculate the distance between two weighted trees. Some literature discusses
the distance problem between two weighted trees. For example, take the weighted RF metric [12],
geodesic distance [13] and the path difference metric [14]. However, the weight on each edge is
considered to be the number of base changes between the sequences of the species represented by
its incident vertices in these documents. Since the weights of each edge in those weighted trees may
be different, the algorithm must spend more time to calculate those distances between those two
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weighted trees. For example, although there is an linear time algorithm to compute RF distance [15],
and a randomized algorithm has been shown to approximate the RF distance with a bounded error in
sublinear time [16], the complexity of the weighted RF distance still needs O(n2). Some papers have
studied algorithms for calculating the geodesic trees distances [17–19]. The best one already known is
O(n4) [19]. Due to the characteristics of the time parameter of a mixture tree, any two edges connecting
two leaves to the same parent will have the same “weight” in a mixture tree. This helped us to design
a better metric and algorithm. We further developed two algorithms to compute the mixture distance
between two mixture trees. One requires O(n2) and the other requires O(nh1h2) computational time
with O(n) preprocessing time, where n denotes the number of leaves in these two mixture trees, and h1

and h2 denote the heights of these two trees. If we use the nodal distance algorithm with the mixture
distance metric, the time complexity will be O(n3) for binary unrooted trees. Comparisons with some
previous methods show our method performs better.

2. Mixture Distance Metric

A tree T = (V(T), E(T)) is a connected and acyclic graph with a node set V(T) and an edge set
E(T). T is a rooted tree if exactly one node of T has been designated the root. A node v ∈ V(T) is a
leaf if it has no child; otherwise, v is an internal node. A node v ∈ V(T) is called in level i, denoted by
level(v) = i, which means the number of edges on the path between the root and v is i. Let L(T)
denote a subset of node set V(T), where each member is a leaf in T and n = |L(T)|. Let height(T)
denote the height of tree T, which is max{level(v)|v ∈ L(T)}. T is a full binary tree if each node of T
either has two children or it is a leaf. A complete binary tree is a full binary tree in which every level,
except possibly the last, is completely filled, and all nodes are as far left as possible. Let h1 = height(T1),
h2 = height(T2).

For a mixture tree T, each leaf is associated with a species, and every internal node v is associated
with a mutation time mT(v) that represents the time when a mutation event occurs on the species
node. In fact, the mutation time of an internal node in a mixture tree can be regarded as the distance
between the node and any leaf of its descendants. Any two mixture tress T1 and T2 are comparable if
L(T1) = L(T2). Throughout this paper, a tree refers to a rooted full binary tree and each internal node
of the tree is associated with its mutation time, if not mentioned particularly.

Given any two nodes u, v ∈ V(T), the least common ancestor or lowest common ancestor
(abbreviated LCA) of u and v is an ancestor of both u and v with the smallest mutation time. (It is
also called the most recent common ancestor (abbreviated MRCA), or the last common ancestor
(abbreviated LCA) in biology and genealogy.) Let PT(u, v) denote the mutation time mT(w) of the LCA
w of two leaves u and v in T. The mixture distance metric, a metric for the mixture tree, is formally
defined as follows.

The mixture distance between two comparable mixture trees T1 and T2, denoted by dm(T1, T2),
is defined as the sum of difference of the mutation times with respect to the LCAs of any two leaves in
T1 and T2. That is, dm(T1, T2) = ∑u,v∈L(T1)=L(T2)

|PT1(u, v)− PT2(u, v)|.
The significance of the mixture distance metric is to measure the similarity between two

mixture trees, considering the mutation times (molecular clock) and mutation sites simultaneously.
The study sought to develop two algorithms for efficiently computing the mixture distance between
two comparable mixture trees. Before we go into the algorithms, three properties of the mixture
distance matric are demonstrated. Felsenstein [20] derived three mathematical properties—reflexivity,
symmetry and triangle inequality—required for a well-defined metric. We show that the mixture
distance is well-defined in Theorem 1.

Theorem 1. The mixture distance dm satisfies:

1. Reflexivity: for any two comparable mixture trees T1 and T2, dm(T1, T2) = 0 if and only if T1 and T2

are identical.
2. Symmetry: for any two comparable mixture trees T1 and T2, dm(T1, T2) = dm(T2, T1).
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3. Triangle inequality: for any three comparable mixture trees T1, T2 and T3, dm(T1, T2) + dm(T2, T3) ≥
dm(T1, T3).

Proof. 1. Due to T1 = T2, for any two nodes u, v ∈ L(T1) = L(T2), we have PT1(u, v) = PT2(u, v).
Therefore, dm(T1, T2) = 0 can be concluded. On the other hand, if dm(T1, T2) = 0 for any two
comparable mixture trees T1 and T2. We have PT1(u, v)− PT2(u, v) for any u, v ∈ L(T1) = L(T2) by the
definition. Then we can prove T1 = T2 by induction on the height of T1 (or T2).

2. For any two nodes u, v ∈ L(T1) = L(T2), PT1(u, v) − PT2(u, v) = −(PT2(u, v) − PT1(u, v)).
Thus, dm(T1, T2) = ∑u,v∈L(T1)=L(T2)

|PT1(u, v)− PT2(u, v)| = ∑u,v∈L(T1)=L(T2)
|PT2(u, v)− PT1(u, v)| =

dm(T2, T1).
3. The triangle inequality is always satisfied for any three nonnegative numbers a, b, c ∈ <+ ∪ 0;

that is, |a − b| + |b − c| ≥ |a − c|. Therefore, |PT1(u, v) − PT2(u, v)| + |PT2(u, v) − PT3(u, v)| ≥
|PT1(u, v)− PT3(u, v)| holds. Further, we have

∑
u,v∈L(T1)

|PT1(u, v)− PT2(u, v)|+ ∑
u,v∈L(T2)

|PT2(u, v)− PT3(u, v)|

≥ ∑
u,v∈L(T1)

|PT1(u, v)− PT3(u, v)|.

Consequently, dm(T1, T2) + dm(T2, T3) ≥ dm(T1, T3) can be concluded.

3. An O(nh1h2)-Time Algorithm

Let T1 and T2 denote two comparable mixture trees of n leaves for each tree. Note that the mixture
distance of T1 and T2 can be solved in O(n2)-time: As when given two comparable mixture trees T1 and
T2 each with n leaves, there are O(n2) pairs of leaves separately in T1 and T2. In fact, the LCA of any
pair of leaves can be found by adopting the O(1)-time algorithm with O(n)-time preprocessing [21].

In the following, another O(n2)-time algorithm, named Algorithm MIXTUREDISTANCE,
is proposed to compute the mixture distance between T1 and T2, which will help us to realize the next
O(nh1h2)-time algorithm, the main result.

3.1. Algorithm MixtureDistance

Algorithm MIXTUREDISTANCE, as shown on Algorithm 1, proceeds the nodes of T1 by
breadth-first search. For each internal node v in T1, we find out the leaves of T1 such that v is
exactly the LCA of each pair of leaves, and then compute the LCA u of the leaves in T2 which are
mapped into the found leaves of T1. Finally, the difference of the mutation times between u and v is
calculated. For convenience, we define (a, b) ∗ (c, d) = ad + bc for any two ordered pairs (a, b) and
(c, d) in this algorithm, where a, b, c and d are any four integers.

The algorithm adopts a 2-coloring method [22] on the leaves in T1 and T2 for easy implementation.
For each iteration associated with an internal node v of T1 in line 4, the leaves of the left and right
subtrees rooted by v are colored by red and green, respectively. The mapped leaves in T2 have the
same coloring as one in T1. The mixture distance between each internal node u in T2 and v is calculated
according the coloring scheme in T2 (in lines 16–17), and the coloring information of u would be
derived for the computation of its parent node (in line 18).

The coloring information of u, denoted by color(u), indicates the coloring information of the
subtree in T2 rooted by u. color(u) includes two numbers of u’s descendant leaves colored by red
(color(u)[0]) and green (color(u)[1]), respectively. color(u) is derived by the coloring information of
its two children. That is, color(u)[0] = color(uL)[0] + color(uR)[0] and color(u)[1] = color(uL)[1] +
color(uR)[1], where uL and uR separately denote the left and right children of u in T2.
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Algorithm 1: MIXTUREDISTANCE(T1, T2).
Input: Two comparable mixture trees T1 and T2, with mutation times mT1(v) (mT2(u),
respectively) for every internal node v of T1 (u of T2, respectively).

Output: The mixture distance D between T1 and T2.
1 D = 0.
2 Traverse T1 by the breadth-first search from its root and keep a list I1 of

the internal nodes in order.
3 Traverse T2 by the breadth-first search from its root and keep a list I2 of

the internal nodes in reverse order.
4 for each node v ∈ I1 do
5 In T1, color red the leaves of the left subtree rooted by v and green the

leaves of the right subtree rooted by v.
6 for each node u ∈ I2 do

// Initialize the coloring information of u’s children
7 for each child w of u in T2 do
8 if w is a leaf then
9 if w is colored by red in T1 then

10 color(w) = (1, 0).
11 else if w is colored by green in T1 then
12 color(w) = (0, 1).
13 else
14 color(w) = (0, 0).
15 Let uL and uR be the left and right children of u in T2, respectively.

// Calculate the difference of the mutation times of u and v and
sum them up for computing mixture distance

16 number(u) = color(uL) ∗ color(uR).
17 D = D + |mT1(v)−mT2(u)| × number(u).

// Calculate the coloring information of u
18 color(u) = color(uL) + color(uR).

In line 16, number(u) is achieved by the special product of the color vectors of u’s two children,
number(u) = color(uL)[0]× color(uR)[1] + color(uL)[1]× color(uR)[0], which means the number of
times that u is an LCA of a red leaf and a green leaf. We multiply the difference of their mutation times
by number(u) in line 17, for computing the mixture distance between each internal node u in T2 and v.
At the end of Algorithm MIXTUREDISTANCE, D indicates the mixture distance of T1 and T2.

Since the numbers of internal nodes in T1 and T2 (= I1 and I2) are both equal to n − 1,
two for-loops will take O(n) time, and the innermost for-loop always takes 2 (a constant) time units.
Therefore, Algorithm MIXTUREDISTANCE requires O(n2) computational time.

3.2. Modified Algorithm

After introducing Algorithm MIXTUREDISTANCE, we can give a O(nh1h2) computational time
algorithm for computing the mixture distance between two mixture trees in the following part.
In Algorithm MIXTUREDISTANCE, when the leaves of the subtree rooted by an internal node v in T1

are colored, other leaves in T1 have no color, as do the mapped leaves in T2. That is, color(w) = (0, 0)
for w ∈ L(T2). However, Algorithm MIXTUREDISTANCE still processes the ancestors of such leaves in
T2. In the following, we propose an algorithm for disregarding the nodes without meaningful coloring
information, and reduce the time complexity from O(n2) to O(nh1h2) .
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The algorithm contains three main stages, as follows:

1. Rank the leaves in T1 and T2.
2. Construct a minimal subtree T′2 of T2 involved in colored leaves with respect to node v, for each

internal node v in T1.
3. Compute the mixture distance between v and each internal node in T′2.

In stage 1, the nodes of T2 are ranked in postorder, and the leaves of T1 are assigned by the same
rank of the mapped leaves in T2. In Figure 2, red numbers nearby leaves in two given comparable
mixture trees T1 and T2 indicate the ranking achieved by stage 1 of the algorithm. Note that the number
within the nodes means the mutation time mTi (v) of the associated node v for i = 1 or 2.
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7 8

2 43 5
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7 14
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Figure 2. An example of ranking leaves of T1 and T2.

The algorithm proceeds to stage 2 for each internal node v of T1 in the reverse order of breadth-first
search. When v in T1 is processed, stage 2 seeks to construct a minimal subtree T′2 of T2 involved in
colored leaves with respect to node v. For node v, a nondecreasing list of the leaves of the subtree
rooted by v, denoted by lea f (v), is obtained from the leaf lists of its two children, where the leaves
in the list are sorted by their ranks. Suppose that there are k ordered nodes in lea f (v), that is,
lea f (v) = {w1, w2, . . . , wk}. With the list lea f (v), the subtree T′2 can be constructed as follows.

Let lca(wi, wj) denote the LCA of leaves wi and wj in T2, for any i, j ∈ {1, 2, . . . , k}. The subtree
T′2 = (V′, E′) is initialized by V′ = {w1, w2, lca(w1, w2)}, E′ = {lca(w1, w2)w1, lca(w1, w2)w2} and
root = lca(w1, w2) . For node wi, i ∈ {1, 2, . . . , k− 2},

V′ = V′ ∪ {lca(wi+1, wi+2), wi+2} and

E′ = E′ ∪ {lca(wi+1, wi+2)wi+2}

Moreover, if the mutation time (the number written in the node circle) of lca(wi+1, wi+2),
denoted by t(lca(wi+1, wi+2)), is larger than the mutation time of root, denoted by t(root),
the edge lca(wi+1, wi+2)root is inserted into E′ and reset lca(wi+1, wi+2) as the new root.
Otherwise, if t(lca(wi+1, wi+2)) is smaller than the mutation time of lca(wi, wi+1), denoted by
t(lca(wi, wi+1)), the edge lca(wi, wi+1)wi+1 is removed from E′ and the edges lca(wi+1, wi+2)wi+1
and lca(wi, wi+1)lca(wi+1, wi+2) are inserted into E′. Otherwise, let x = wi+1 and repeat do
x = f ather(x) until t(x) < t(lca(wi+1, wi+2)) < t( f ather(x)), where f ather(x) is the node y such
that yx ∈ E′ . Then the edge f ather(x)x is removed from E′ and the edges lca(wi+1, wi+2)x and
f ather(x)lca(wi+1, wi+2) are inserted into E′.
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Example 1. An example of constructing the subtree T′2 with respect to lea f (v2) = {A, B, G, H} is illustrated
in Figure 3. Initially, the node set V′ is {A, B, lca(A, B)} and the edge set E′ includes the incident edges of
the three nodes in T2. As node A is processed, two nodes lca(B, G) and G are inserted into V′, and two edges
lca(A, B)lca(B, G) and lca(B, G)G are inserted into E′. Later, when node B is processed, two nodes lca(G, H)

and H are inserted into V′ and two edges lca(B, G)lca(G, H) and lca(G, H)H are inserted into E′. Meanwhile,
the edge lca(B, G)G is removed from E′ and the edge lca(G, H)G is inserted into E′, because the mutation time
of lca(B, G) is larger than the time of the lca(G, H).

9

2 5

A B G H1 2 11 12

3 13

15

2

A B1 2

3

leaf(v2) = {A, B, G, H}

(a)

9

2

A B G1 2 11

3

15

(b) (c)

Figure 3. An example of constructing the subtree T′2 with respect to lea f (v2) in Figure 2. (a) The
initialization of T′2. (b) The intermediate of T′2 as node A is processed. (c) The complete subtree T′2 as
node B is processed. As the mutation time of lca(B, G) is larger than the time of lca(G, H), the dotted
line incident to G is removed and the other incident edge of G is inserted.

After the subtree T′2 with respect to currently processed node v is constructed, stage 3 of the
algorithm performs lines 5–18 of Algorithm MIXTUREDISTANCE to compute the “partial” mixture
distance between T′2 and the subtree rooted by v (only computes the distances of some nodes pairs,
for which LCA is equal to v). At the end of the algorithm, D indicates the mixture distance between T1

and T2.

Theorem 2. The improved algorithm takes O(nh1h2) computational time and O(n) preprocessing time, where n
denotes the number of leaves of the mixture trees and hi = height(Ti) for i = 1, 2.

Proof. The algorithm contains three main stages. The first stage ranks the leaves in T1 and T2,
which takes O(n) time.

In the second stage, a minimal subtree T′2 of T2 involved in colored leaves with respect to each
node v in T1 is constructed. For each node v, a leaf list lea f (v) is obtained from the leaf lists of its two
children, which is achieved in O(t) time by using the two-way merging algorithm [23] performed on
the leaf list of v’s children, where t is the size of lea f (v). The O(1)-time algorithm with O(n)-time
processing [21] is employed to compute the LCA of any pair of nodes in T2. Constructing T′2 takes O(th′)
time, where h′ is the height of T′2 due to the “repeat” step. The last stage computes the mixture distance
between v and each internal node in T′2 by performing lines 5–18 of Algorithm MIXTUREDISTANCE,
which takes O(t) time. Stages 2 and 3 take O(n) iterations in total. However, each iteration deals
with different t nodes. Note that for all internal nodes which are in the same level of T1, the sum of t
(for each node) is n. Therefore, stages 2 and 3 totally take O(nh1h′) = O(h1h2) time, where h1 is the
height of T1 (note that h′ ≤ h2 = height(T2)). Hence, the algorithm requires O(nh1h2) computational
time with O(n) preprocessing time.

4. Conclusions

In this paper, we provide a novel metric named the mixture distance metric to measure the
similarity between two mixture trees. It uniquely considers the estimated evolutionary time in
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the trees. Two algorithms were developed to compute the mixture distance between mixture trees.
One requires O(n2) computational time and the other requires O(nh1h2) computational time with
O(n) preprocessing time, respectively. Note that when T1 and T2 are complete binary trees, h1 and h2

will be O(log n) and the time complexity of our algorithm will be (n log2 n).
Now, we compare our metric with some previous methods which measure phylogenetic

differences in consideration of the branch length, when we consider a mixture tree as a weighted tree
(recall that the weight of an edge in a mixture tree is defined as the difference of time parameters
between its two endpoints). For the geodesic tree distance, the implementation is quite complex
and requires heavy computation [19], although a heuristic fast version exists [18]. The definition
of the weighted path difference distance [14] is almost the same as the mixture distance. Actually,
the weighted path difference distance between two mixture trees T1 and T2 is equal to 2dm(T1, T2).
However, it requires O(n2) computational time. The mixture distance seems to be similar to the
weighted RF distance [12], but the calculation performance will vary when we consider the distance
between two different extents of similar mixture trees. We give an example as follows.

Example 2. Four mixture trees with the same lineages A, B and C are illustrated in Figure 4; the time parameters
are listed in the vertices, and the associated edge weights are labeled beside each edge. All pairs of these four trees
have been compared using the methods outlined in [12] and this paper. The tables of the weighted RF (wRF) and
mixture distances (dm) are given in Tables 1 and 2, respectively. From these two tables, one can find something
interesting. (1) dm seems maintain the order relationship in wRF: When wRF thinks that two trees are similar,
then dm also gets a smaller value between these two trees: wRF(T1, T3) > wRF(T2, T3) > wRF(T2, T4) >

wRF(T1, T2) and dm(T1, T3) > dm(T2, T3) > dm(T2, T4) > dm(T1, T2). (2) When wRF thinks that the
distances between two pairs of trees are the same, then dm also thinks they are in the same: wRF(T1, T2) =

wRF(T3, T4), wRF(T1, T4) = wRF(T2, T3) and dm(T1, T2) = dm(T3, T4), dm(T1, T4) = dm(T2, T3). However,
there are still differences between these two metrics in the details: (3) When wRF thinks two distances between
two pairs of trees are very different, sometimes dm may not think that: wRF(T1, T3)− wRF(T2, T3) = 1,
wRF(T1, T4)− wRF(T2, T4) = 3, but dm(T1, T3)− dm(T2, T3) = dm(T1, T4)− dm(T2, T4) = 1.
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Figure 4. Four weighted trees with the same lineages A, B and C.

Table 1. The weighted RF distances wRF among T1, T2, T3 and T4.

wRF T1 T2 T3 T4

T1 3 8 7
T2 7 4
T3 3
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Table 2. The mixture distances dm among T1, T2, T3 and T4.

dm T1 T2 T3 T4

T1 1 4 3
T2 3 2
T3 1

Therefore, it can be said that the performance of the mixture distance in calculating the similarity
of two weighted trees is as good as the performance of the weighted RF distance, while the time
complexity of the mixture distance is better. In addition, we compared our approaches with the
methods performed with the nodal distance metric [11], geodesic tree distance [19], weighted path
difference metric [14] and weighted RF distance [12], and the results are shown in Table 3. Our proposed
approaches performed better than all of the previous methods when discussing the distance between
two mixture trees.

Table 3. Comparison of metrics for binary trees.

Metric Consideration
Time Complexity

Full Binary Trees Complete Binary Trees

Mixture distance Structure and mutation time O(nh1h2) O(n log2 n)
Nodal distance Structure O(n3) O(n2 log n)

Geodesic tree distance Structure and mutation number O(n4) O(n4)
Weighted path difference distance Structure and mutation number O(n2) O(n2)

Weighted RF distance Structure and mutation number O(n2) O(n2)
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