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Abstract: A completely new economic system is required for the era of Industry 4.0. Blockchain technology
and blockchain cryptocurrencies are the best means to confront this new trustless economy. Millions of
smart devices are able to complete transparent financial transactions via blockchain technology and
its related cryptocurrencies. However, via blockchain technology, internet-connected devices may be
hacked to mine cryptocurrencies. In this regard, monitoring the network of these blockchain-based
transactions can be very useful to detect the abnormal behavior of users of these cryptocurrencies.
Therefore, the trustworthiness of the transactions can be assured. In this paper, a novel procedure
is proposed to monitor the network of blockchain cryptocurrency transactions. To do so, a hidden
Markov multi-linear tensor model (HMTM) is utilized to model the transactions among nodes of the
blockchain network. Then, a multivariate exponentially weighted moving average (MEWMA) control
chart is applied to the monitoring of the latent effects. Average run length (ARL) is used to evaluate the
performance of the MEWMA control chart in detecting blockchain network anomalies. The proposed
procedure is applied to a real dataset of Bitcoin transactions.

Keywords: bitcoin; blockchain; Industry 4.0; transaction network; multivariate exponentially
weighted moving average (MEWMA); latent variables

1. Introduction

The fourth industrial revolution has changed the life of human beings in different ways, which means
it has transformed the world into a great information system [1]. It has brought different new innovations,
including the Internet of Things (IoT), smart machines, etc., to our lives. In this era, the digitalization and
networking of systems increase the amount of data that can support the functions of analysis in different
industries [2]. Various Industry 4.0-based applications, including manufacturing, agriculture, healthcare,
logistics, and finance sectors, deal with data in large volumes [3]. Building such an automated world
requires a large number of tools with connectivity to the internet [4]. Blockchain technology has brought
new ways to achieve work processes in such industries. In other words, it is a new way of transferring
and storing data. For example, in finance, blockchain enables business transactions to be completed safely
with smart contracts [1].

A blockchain, which is a decentralized ledger system, can be defined as a collection of transactions
between nodes inside each block [5]. Blockchain provides data security without any other third
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party organization [6]. Incorporating blockchain and Industry 4.0 offers a high level of automation,
more flexible systems, smart contracts, security, and micropayments [4,7,8]. Therefore, blockchain is
the most important innovation of the last industrial revolution. The inherent security of blockchain,
which inhibits any of the content being changed once it has been stored in a block, and decentralization
of the blockchain, incorporates collaboration and transparency. One of the most important effects
of Industry 4.0 is the blockchain cryptocurrency market, which started with Bitcoin. Bitcoin is the
name of the most common cryptocurrency, the one for which blockchain technology was created.
Bitcoin is the world’s largest digital currency known as a cryptocurrency market [9,10]. According to
www.coinmarketcap.com, the number of Bitcoin nodes, as the most common blockchain cryptocurrency,
is growing and is currently more than 47,000 nodes. However, the emergence of blockchain and
cryptocurrencies has put internet-connected devices in more danger of being hijacked by hackers
to mine cryptocurrencies [11]. In this regard, monitoring blockchain cryptocurrency networks and
analyzing different factors and characteristics as well as the unobserved structure of the blockchain
network can be useful to observe abnormal behaviors of nodes and transactions. A network is a
structure that indicates interactions among individual entities involving relationships. With the rapid
development of network data, it has become important to use these data in order to capture various
information on social, biological, computer, financial etc. networks. In this regard, Luqman et al. [12]
applied complex neutrosophic hypergraphs to the theory of social networks and discussed lower
truncation, upper truncation, and transition levels of the proposed model to deal with the periodic
nature of inconsistent information in hyper networks. Behera et al. [13] proposed a computing method
to calculate network centrality value in large-scale datasets, including social networks. They focused
on the centrality analysis of time-varying social network entities for a Twitter dataset. Salehi Rizi and
Granitzer [14] proposed a methodology to identify graph properties explaining the similarity of the
local neighborhood of a node by random-walk based graph embedding methods. Then, they examined
whether embedding can be used to predict centrality values directly. Recently, the emergence of
blockchain technology gave access to stored financial transaction data [15–17]. Thus, the financial
industry is the main user of blockchain because of the cryptocurrency application [18]. In this regard,
many research studies have focused on transaction network analysis. We review some papers related
to this field in Section 2.

This paper proposes an approach to monitor the latent patterns of a blockchain-based
cryptocurrency transaction network. To do so, the blockchain network is modeled as a dynamic
network in which every blockchain cryptocurrency account is considered as a node and edges represent
the transactions between two nodes. Then, the network is modeled with a hidden Markov multi-linear
tensor model (HMTM), and its parameters are estimated by a Markov Chain Monte Carlo (MCMC)
algorithm. Finally, a multivariate exponentially weighted moving average (MEWMA) control chart
is utilized to monitor the estimated latent parameters. Therefore, if any abnormal behavior in the
blockchain cryptocurrency transactions occurs, the control chart can signal an out-of-control condition.
The proposed procedure can also be used to monitor other network applications, as Industry 4.0
has made network transactions an essential part of manufacturing, financial, social, etc. systems.
Despite the importance of monitoring cryptocurrency transactions for a more trustful Industry 4.0
economy, this line of research has not gained much attention. Therefore, statistical modeling and
monitoring of blockchain cryptocurrency transaction networks are investigated in this research. To the
best of our knowledge, this is the first research study that attempts to statistically monitor the network
of cryptocurrency transactions.

The remainder of this paper is organized as follows. In Section 2, we review related papers,
and in Section 3, we briefly discuss the multi-linear tensor model (MTRM) and its Bayesian parameter
estimation method using a MCMC algorithm. Section 4 describes the monitoring scheme of the
proposed network model. In Section 5, the performance of the proposed approach is evaluated using a
simulation. In Section 6, Mt. Gox blockchain Bitcoin dataset is used to reveal a real-world example.
Finally, concluding remarks and future research are stated in Section 7.

www.coinmarketcap.com
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2. Related Works

In this section, statistical monitoring methods and social network models used to analyze
blockchain cryptocurrencies are reviewed. Chan et al. [19] analyzed the exchange rate of the most
popular cryptocurrencies, including Bitcoin, by calculating summary statistics. Chu et al. [20] proposed
statistical analysis of the log-returns of the exchange rate of Bitcoin by using the most popular
parametric distributions in finance. They have predicted the log-returns of the exchange rate based on
the two most popular financial risk measures, the value at risk (VaR) and the expected shortfall (ES).
Bakar and Rosbi [21] evaluated the volatility condition for Bitcoin’s exchange rate. They performed
a normality test and used statistical control charts to detect high volatility. Szetela [22] used control
charts to compare Bitcoin to USD exchange rate and EUR to USD exchange rate volatility. They used
Xbar-S and cumulative sum (CUSUM) control charts to evaluate the stableness of Bitcoin and United
States dollar (USD).

Li et al. [17] presented a temporal weighted MultiDiGraph that includes temporal and
weighted characteristics of financial transaction networks to model Ethereum, which is a blockchain
cryptocurrency network, and to capture more comprehensive properties of dynamic transaction
networks. Each node is a blockchain cryptocurrency account, and each edge represents the amount of
any transaction. They used a node classification method to evaluate the effectiveness of the proposed
method by collecting transaction records of phishing and non-phishing accounts from Ethereum.
The results indicate that the proposed method outperforms baseline embedding methods. Li et al. [23]
assessed risk connectedness in the blockchain cryptocurrency market. They selected the most leading
blockchain cryptocurrencies, Bitcoin, Ethereum, Ripple, Litecoin, Stellar, Monero, as well as Dash,
and used daily data to investigate risk connectedness among blockchain cryptocurrency markets by
applying the semi-parametric conditional autoregressive value at risk (CAViaR) method to estimate
VaR models for blockchain cryptocurrencies. They monitored the proposed method using summary
statistics for blockchain cryptocurrency risks. Motamed and Bahrak [24] compared the transaction graph
of blockchain cryptocurrencies such as Bitcoin, Ethereum, Dash, and Z-Cash by evaluating the growth
rate and density of nodes and edges of the blockchain transaction graphs over time. They defined
monthly and cumulative monthly blockchain transaction graphs for real-world data. The results reveal
various structural behaviors of evolving blockchain transaction networks. Elliott et al. [25] suggested
a novel financial blockchain network that embeds financial accounts as nodes and money transferring
as a weighted edge between pairs of nodes for a blockchain transaction network. They combined
two different approaches with community detection to calculate various amounts of features for each
blockchain network and used them to detect anomalies in the network. Chen et al. [9] constructed
graphs from leaked transaction history of the Mt. Gox blockchain Bitcoin exchange dataset and analyzed
them through various metrics as well as using singular value decomposition (SVD). They found
that daily anomalies are related to Bitcoin price and market manipulation patterns. In the current
paper, we intend to propose a novel procedure to monitor networks of blockchain cryptocurrencies.
Therefore, a hidden Markov multi-linear tensor model and MEWMA control chart are used to model and
monitor the trend of blockchain cryptocurrency transactions. Lin et al. [26] modeled a complex network
of Ethereum transaction records by the amounts of features of the transactions, called a temporal
weighted multidigraph. They conducted experiments on a real dataset to evaluate the effectiveness
of the proposed graph model, considering temporal and weighted graph information. Ferretti and
D’Angelo [27] analyzed a complex network of Ethereum blockchain transactions. They considered
different amounts of transactions and network sizes during different temporal intervals to understand
the changes in blockchain use. They used the number of nodes, degree distributions, distance,
and clustering coefficients to analyze the complex networks. Javarone and Wright [28] constructed
two kinds of networks; Bitcoin network and Bitcoin cash network, to analyze their global structure
by using degree distribution, clustering coefficient, and path length. According to the literature,
statistically monitoring the network of cryptocurrency transactions has not gained much attention.
Therefore, this line of research is investigated in this paper.
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3. Statistical Modeling of Network and Parameter Estimation

3.1. Notations

The notations used for formulating the proposed model are defined in Table 1.

Table 1. Notations list.

Notation Definition

i Node index, for i = 1, 2, . . . , N
j Node index, j = 1, 2, . . . , N

N Number of nodes
t Time periods, for t = 1, 2, . . . , T

Yt =
{
yi jt

∣∣∣i, j ∈ N
}

Adjacency matrix
xi jt Covariate vector for nodes i and j and time t
β Coefficient vector of covariates
Bt Probability distribution of network
R Number of latent variables

U = (u1, . . . , uN)
T Latent node position

V = (v1, v2, . . . , vT) Node connection rule
εi jt ∼ N(0, σ2) Error term for nodes i and j and time t

1N N ×N matrix with all one elements
Ψt Hidden state variable

Lt = (u1t, u2t, v1t, v2t) Vector of variables for monitoring
Zt MEWMA statistic
p Number of variables for monitoring

Λ = (λ1, λ2, . . . ,λp) Vector of smoothing parameters
α Error type-I

3.2. Hidden Markov Multi Linear Tensor Model

Recently, dynamic modeling of longitudinal networks has gained much more attention.
These networks have found applications in many fields, such as social, economical, biological,
etc. One can model a longitudinal network with N = {1, . . . , N} nodes as a multilayer network in
which there are T layers and relationships between nodes at time t are represented by a matrix
Yt =

{
yi jt

∣∣∣i, j ∈ N
}

with size N × N for t ∈ {1, . . . , T}. Modeling the matrix Yt, a hidden Markov
multi-linear tensor model (HMTM) proposed by Park and Sohn [29] is used. Park and Sohn [29]
extended the work of Hoff [30,31], which presented a multi-linear tensor model (MTRM). According to
Hoff [30,31], network effects can be formulated as the following:

Pr
(
yi jt = 1

∣∣∣xi jt, ui, u j, vt
)
= xi jtβ+

〈
ui, vt, u j

〉
+ εi jt (1)

where, U = (u1, . . . , uN)
T and vt = (v1t, . . . , vRt)

T, which are, respectively, R-dimensional latent
node positions and node connection rules at time t. Additionally, εi jt follow N(0, σ2) and U and
V = (v1, v2, . . . , vT) follow matrix normal distributions where

U ∼MNN×R(1µU, IN,ϕU) (2)

V ∼MNN×R(1µV, IN,ϕV) (3)

Park and Sohn [29] combined MTRM with a hidden Markov model and developed a hidden Markov
multi-linear tensor model (HMTM). In a HMTM that involves k breaks, the probability distribution of
network data, Bt, is modeled as the following:

Bt = Yt −Ωt (4)
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Bt = β1N + UΨt VtUT
Ψt

+ Et (5)

where, Ψt is a hidden state variable, 1N is a N ×N matrix with all one element, and Et follows a matrix
normal distribution with MNN×N(0, σ2

Ψt
IN, IN). We use the procedure and prior distributions adopted

by Park and Sohn [29] for parameter estimation. For more details on MTRM, HMTM, and parameter
estimation methods, readers can refer to the works of Park and Sohn [29], and Hoff [30,31].

4. Monitoring Scheme

The MEWMA control chart is used for the simultaneous monitoring of several variables [32].
In this research, the means of latent node positions for all nodes and node connection rules are
monitored. We consider R = 2 dimensions for latent positions and connection rules. Therefore, vector
Lt = (u1t, u2t, v1t, v2t) is monitored over time. To obtain MEWMA statistics, vector Zt is defined as the
following relation:

Zi = ΛLt + (1−Λ)Zt−1 (6)

In which, Λ is the vector of smoothing parameters, which is a diagonal matrix of λ1, λ2, . . . ,λp,
where p is the number of variables. If all the variables are equally important, then λ1 = λ2 = . . . = λp [33].
The statistic to be calculated for the MEWMA control chart is given as,

T2
t = ZtQ−1Zt

′ (7)

where, Q is the variance–covariance matrix of the variables. T2 statistic is monitored using a control

chart with an upper control limit defined by (n−1)p
(n−p) F−1

(α,p,n−p) where F−1
(α,p,n−p) denotes the upper 100(1−α)

percentile of the F distribution with p and n-p degrees of freedom, respectively [32].
In order to design the MEWMA control chart in phase I, a number of in-control networks are

collected over the course of time. The parameters of these networks are estimated with the MCMC
algorithm and accordingly the T2 statistics of the networks are calculated. Then, based on the T2

statistics, an upper control limit (UCL) is found so that a type I error (α) is met. For phase II,
new snapshots of networks are collected and their T2 statistics are compared to the UCL. An out of
control signal is triggered if the T2 statistic of any network exceeds the UCL.

5. Performance Evaluation Using Simulation

In this section, the ability of the MEWMA control chart to detect abrupt changes in the network is
assessed through simulation. To do so, average run lengths (ARL) of simulated networks in phase II
are calculated after applying different shifts to the edge creation probabilities between nodes of the
network. Therefore, 500 in-control consecutive networks with 600 nodes are generated to determine
the UCL. The networks are modeled with HMTM, and their parameters are estimated through the
MCMC algorithm. In this regard, the following steps are followed to generate 10,000 random networks
in phase I and obtain the UCL:

(1) For t = 1 to 10000;

a. For 1 ≤ i < j ≤ 500 and based on the probability of edge creation between nodes i and j
generate yi jt;

b. Use the MCMC algorithm to estimate vector Lt for the generated network;

(2) For t = 1 to 10000, calculate Zt based on relation (6);
(3) For t = 1 to 10000, evaluate the T2 statistics based on relation (7);
(4) For all T2 statistics, find a UCL that the type I error α meets.

For type I error α = 0.01, the UCL is obtained. Therefore, the in-control ARL of the control chart is
100. For phase II, different probabilities of edges are used to evaluate the performance of the proposed
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control chart in detecting network anomalies. Then, the following steps are followed to evaluate the
out-of-control ARL of the control chart:

(1) For i = 1 to 10000;

(a) Set RLi = 0;
(b) While T2 < UC;

i. Generate a random network based on different probabilities;
ii. Estimate model parameters with the MCMC algorithm and obtain T2 statistic from

relation (7);
iii. Put RLi = RLi + 1;

(2) Evaluate ARL =
10000∑
i=1

RLi/10000.

The results of the simulation for phase II are illustrated in Figure 1. It can be observed that the T2

control chart is capable of detecting changes in the HMTM parameters. The out-of-control ARL values
are much less than the in-control ARL.
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Figure 1. Average run length (ARL) values for different amounts of probabilities.

6. Real-World Example

In this section, we used a Bitcoin transaction dataset from 2011 to 2013 of Mt. Gox leaked
transactions dataset to analyze users’ behavior in a Bitcoin network. Each user has a unique identity as
a seller or buyer. Therefore, we used user-IDs as transaction network nodes, and the link between nodes
was created if there was at least one transaction between nodes during a month. Figure 2 indicates
the sample plot of the transaction network graph for one month. We estimated latent parameters
for each month and calculated statistics to analyze abnormal behaviors. In this regard, the MCMC
algorithm was implemented with a Markov chain with a length of 1000. The shape parameter of the
inverse gamma prior distribution for U is 10, and the scale parameter is one. Additionally, the shape
parameter for the inverse gamma prior to variance parameters for V is 10, and the scale parameter is
the time length of Y. The prior distribution of error variances is an inverse gamma distribution with the
shape and rate parameters equal to 0.1. Estimated Lt vectors for t = 1, . . . , 25 are represented in Table 2.
We used 15 months as phase I and 10 months as phase II. Figure 3 represents per month statistics and
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the upper control limit of phase I for 15 months and phase II statistics for the next 10 months. It is
observed in Figure 3 that an increase starting from the 20th month in phase II is detected, and it is
obvious that some latent variables have caused this increase in the number of statistics for the 20–25th
months. Therefore, we conclude that there is a significant change in monthly transactions especially in
the 23rd month in phase II.Algorithms 2020, 13, x FOR PEER REVIEW  8 of 12 
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Table 2. Estimated latent positions and node connection rules.

months ¯
u1t

¯
u2t v1t v2t

1 −0.01304 −0.00098 −9.13859 −13.82489
2 0.00663 0.00494 −24.7135 22.90376
3 −0.00139 0.00067 −38.9954 35.69328
4 −0.00494 −0.00208 −48.2437 39.23815
5 −0.00441 −0.00048 −38.2289 −37.16167
6 −0.00497 −0.00092 −43.4409 −36.36019
7 0.00372 −0.00384 −39.5655 −23.62889
8 0.00248 −0.00466 −41.8008 −30.24743
9 0.00484 −0.00215 −48.9446 −33.28495

10 −0.00444 −0.00082 −50.1390 −38.11684
11 0.00467 −0.00036 −51.3839 −40.68477
12 −0.00546 −0.00031 −52.8679 −45.47404
13 −0.00528 −0.00035 −52.0766 −43.80679
14 0.00582 0.00094 −48.9130 48.70567
15 0.00468 −0.00077 −37.2179 40.55287
16 −0.00484 −0.00048 −51.1166 −38.95125
17 0.00345 −0.00197 −67.0583 −44.05735
18 −0.00316 −0.00181 −41.8440 −42.76087
19 −2.5111 × 10−3 2.3869 × 10−5 −44.2593 −43.10673
20 −0.00519 −0.00197 −39.2207 38.30627
21 0.00457 0.00142 −49.32448 58.63748
22 0.00103 0.00155 −47.7910 36.85834
23 0.00227 0.00172 −57.01123 67.6237
24 0.00260 −0.00143 −68.80305 −44.41586
25 0.00792 0.00158 −31.07843 31.59579
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changes in T2 in phase II.

Algorithms 2020, 13, x FOR PEER REVIEW  9 of 12 

10  −0.00444  −0.00082  −50.1390  −38.11684 

11  0.00467  −0.00036  −51.3839  −40.68477 

12  −0.00546  −0.00031  −52.8679  −45.47404 

13  −0.00528  −0.00035  −52.0766  −43.80679 

14  0.00582  0.00094  −48.9130  48.70567 

15  0.00468  −0.00077  −37.2179  40.55287 

16  −0.00484  −0.00048  −51.1166  −38.95125 

17  0.00345  −0.00197  −67.0583  −44.05735 

18  −0.00316  −0.00181  −41.8440  −42.76087 

19  −2.5111 × 10−3  2.3869 × 10−5  −44.2593  −43.10673 

20  −0.00519  −0.00197  −39.2207  38.30627 

21  0.00457  0.00142  −49.32448  58.63748 

22  0.00103  0.00155  −47.7910  36.85834 

23  0.00227  0.00172  −57.01123  67.6237 

24  0.00260  −0.00143  −68.80305  −44.41586 

25  0.00792  0.00158  −31.07843  31.59579 

In Figure 3, statistic 
2T   is plotted versus time. In order to have a better analysis of latent effects, 

we also plot these effects over time. Figures 4 and 5 represent the trend of  1tu and  2tu , and  1tv  and 

2tv  in different months. According to Figure 5, in phase II, it can be seen that the increase in  2tv  for 

the 19–23rd months has caused an increase in statistic 
2T .  Therefore, changes in  2tv  can be a reason 

for changes in 
2T  in phase II. 

 

Figure 4.  1tu and  2tu over time.  
Figure 4. u1t and u2t over time.

For a better analysis of the network, one can monitor separate parts of the network to detect
abrupt changes in specific parts of the transaction networks. In this regard, separate control charts can
be designed for different parts of the network. In addition, the number of traded Bitcoins can also be
monitored. In the current research, when the number of transactions abruptly changes, the control
chart will trigger a signal. In Figure 6, the amount of money spent for buying Bitcoins is plotted versus
time. This money can be expended by one user or a number of users. Figure 3 cannot be compared
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with Figure 6 because Figure 3 is based on the number of transactions, and Figure 6 shows the value of
transactions. However, Figure 6 indicates an increase starting from the 21st month, which could be an
indication of an increase in the number of transactions from the 21st to the 25th month in Figure 3.
The proposed procedure can monitor the number of transactions over time. However, the value of
transactions can also be a matter of importance. For future research, this procedure can be extended to
take into account the value of transactions.
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Figure 6. Amount of money spent to buy Bitcoin.

7. Conclusions

In this paper, a procedure was proposed to monitor network anomalies of transactions in
blockchain cryptocurrency networks. To do so, networks of blockchain transactions were modeled by a
hidden Markov multi-linear tensor model (HMTM), and the MCMC algorithm was used for parameter
estimation. Then, the mean vector of latent node positions and node connection rules were monitored
by a MEWMA control chart. Simulation studies confirm the ability of the MEWMA control chart to
detect network anomalies. A real dataset of blockchain Bitcoin cryptocurrency was used to show the
applicability of the proposed procedure. For future research, blockchain cryptocurrency transactions
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can be modeled by weighted networks for which the value of transactions is monitored in addition to
their quantity.
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