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Abstract: Due to the availability of Industry 4.0 technology, the application of big data analytics
to automated systems is possible. The distribution of products between warehouses or within a
warehouse is an area that can benefit from automation based on Industry 4.0 technology. In this
paper, the focus was on developing a dynamic route-planning system for automated guided vehicles
within a warehouse. A dynamic routing problem with real-time obstacles was considered in this
research. A key problem in this research area is the lack of a real-time route-planning algorithm that
is suitable for the implementation on automated guided vehicles with limited computing resources.
An optimization model, as well as machine learning methodologies for determining an operational
route for the problem, is proposed. An internal layout of the warehouse of a large consumer product
distributor was used to test the performance of the methodologies. A simulation environment based
on Gazebo was developed and used for testing the implementation of the route-planning system.
Computational results show that the proposed machine learning methodologies were able to generate
routes with testing accuracy of up to 98% for a practical internal layout of a warehouse with 18 storage
racks and 67 path segments. Managerial insights into how the machine learning configuration affects
the prediction accuracy are also provided.

Keywords: artificial neural network; route-planning system; machine learning; A-star;
shortest-path model

1. Introduction

Currently, Industry 4.0 technology has the potential to impact the operations of many industries.
As shown in Figure 1, big data and analytics and autonomous robots are the two main components
of Industry 4.0 technology [1]. Autonomous robots are increasingly used to automate routine tasks
in many industrial applications and tasks in special areas that are harmful to operators. Artificial
intelligence (AI)-based automation is adaptive and has many practical applications in different
industries. The transportation industry is one of the areas that has potential for the application of
AI-based automation, especially in supply chains, where there are large amounts of transactional
data at every stage. As such, the processes involved can receive benefit from AI and robotics
automation. The advancement of AI and robotics technologies brings about new opportunities for
improving the operations across a supply chain. With AI and robotics automation, organizations
can collect and perform data analysis autonomously, which improves supply chain responsiveness.
New breakthroughs in AI, robotics, and automation can accelerate material development, the flow of
products, material handling, and quality control in an integrated environment [2]. The efficiency of
operations within a warehouse can be improved with the application of AI-based automation due to
the high rates of movement of products. One of the famous warehouse robot systems is the Kiva system
implemented at Amazon. The system was used to improve the efficiency of warehouse operations [3].
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determined on the basis of the experience of drivers. Dynamic obstacles can obstruct the movement 
through some path segments within a warehouse and could affect the routes that can be used by the 
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rely only on human experience. In this research, methodologies for determining routes that consider 
real-time obstacles are presented. The methodologies include an optimization model for routing 
decision, an A-star heuristic method, and machine learning models based on an artificial neural 
network (ANN). The novelty of this research can be summarized as follows: 

• This research presents a route-planning methodology based on an ANN. The ANN can be 
implemented on automated guided vehicles (AGVs) with limited computing resources. Once an 
ANN is trained, it can generate a route with minimal computational effort and runtime (less 
than a second). 

• The considered route-planning problem is based on a practical warehouse environment that 
considers real-time obstacles. 

• A route-planning system that collects the data for training an ANN and generates routes on the 
basis of real-time positions of obstacles is introduced. 

• The proposed methodology is adaptive and scalable. It can be applied to other routing problems 
with different requirements. Heuristic methods can be used for generating routes for large-scale 
problems. 
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motion planning and route planning. A mathematical model for routing decisions and an A-star 
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Figure 1. Industry 4.0 technology [1].

The focus of this research was on developing an AI-based automation methodology for controlling
the movement of automated vehicles within a warehouse. In a typical operation within a warehouse,
the amount of daily product movement is huge, and, in general, the routes are determined on the basis of
the experience of drivers. Dynamic obstacles can obstruct the movement through some path segments
within a warehouse and could affect the routes that can be used by the drivers. A route-planning
process with the consideration of dynamic obstacles is complex and cannot rely only on human
experience. In this research, methodologies for determining routes that consider real-time obstacles are
presented. The methodologies include an optimization model for routing decision, an A-star heuristic
method, and machine learning models based on an artificial neural network (ANN). The novelty of
this research can be summarized as follows:

• This research presents a route-planning methodology based on an ANN. The ANN can be
implemented on automated guided vehicles (AGVs) with limited computing resources. Once an
ANN is trained, it can generate a route with minimal computational effort and runtime (less than
a second).

• The considered route-planning problem is based on a practical warehouse environment that
considers real-time obstacles.

• A route-planning system that collects the data for training an ANN and generates routes on the
basis of real-time positions of obstacles is introduced.

• The proposed methodology is adaptive and scalable. It can be applied to other routing
problems with different requirements. Heuristic methods can be used for generating routes for
large-scale problems.

• This research presents managerial insights into how the configuration of an ANN affects the
accuracy, and how the best configuration can be chosen.

The organization of this paper is as follows: Section 2 presents a literature review related to motion
planning and route planning. A mathematical model for routing decisions and an A-star heuristic
are described in Section 3. An ANN model for dynamic route planning is presented in Section 4.
The transportation environment used in this research is presented in Section 5. A dynamic routing
system and computational results with managerial insights are presented in Section 6. The conclusions
and possible future research are discussed in Section 7.

2. Literature Review

The planning of autonomous movement of a robot is related to two main areas, motion planning
and route (or path) planning. A literature review of key articles and the research gap are provided in
this section.
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2.1. Motion Planning

When applying motion planning to the autonomous movement of a robot, the goal is to determine
a sequence of motion that moves the robot from an origin to a destination. In general, a motion planning
has obstacle collision avoidance capability, using available data from different equipped sensors to
navigate the robot by controlling the speed and direction of movement. an A-star algorithm has been
applied to many motion planning problems and is considered one of the most popular algorithms.

Liu and Gong [4] applied many variations of the A-star algorithm for path planning for a
rescue robot operation. They presented many variations of the A-star algorithm according to the
complexity of the rescue environment, as well as the precision of the sensors. Because of the noise
from the signals detected by the robot, approximated information of the robot’s orientation is required.
El Halawany et al. [5] stated that A-star is the best general algorithm for searching for the optimal path.
Path planning is used in many types of applications, especially in artificial intelligence-related areas.
Contreras-González et al. [6] developed an ANN to predict the location of an AGV by using operational
data containing the accuracy from the model and the actual location of the AGV. The proposed ANN
model could generate a smooth and accurate point-to-point travel plan in field testing without a
controlled environment. Zhang et al. [7] proposed an enhanced A-star algorithm for guiding an
automated guided vehicle (AGV). The proposed method could generate efficient paths that reduce
superfluous inflection points and redundant nodes. Gochev et al. [8] proposed an integration of a
collision avoidance method and the A-star algorithm in an environment with different agents for an
AGV system. In the experiment, the AGVs had to follow different assigned paths without colliding
with the obstacles. Mohan and Ignatious [9] studied an application of a mobile robot in a warehouse
environment with the monitoring of battery health. An enhanced A-star algorithm was used to
generate the paths for robots. Kurdi et al. [10] developed an intelligent controller for path planning
using an ANN. The authors constructed collision-free paths for moving robots among obstacles on
the basis of multiple inputs from different resources. Zhang et al. [11] proposed an ANN model
for path control of an AGV that considers the line-of-sight during movement in adverse conditions.
The ANN model was created for learning the proposed guidance law in order to control the effects
of wind-induced sideslips. Flórez et al. [12] developed a control methodology for an AGV. A hybrid
kinematic controller was developed on the basis of a combination of an evolved ANN and a genetic
algorithm. The controller was used to control car kinematics to avoid obstacles. From the test results,
the vehicle reached a certain level of autonomy, according to a controller that took into account the
kinematics and dynamics of the system. A new suggested method that combined A-star algorithm and
motion planning, and that could find a global path, track the path, and avoid collisions in a dynamic
environment, as well as in a static one, was introduced by Zhong et al. [13]. For real-time obstacles,
path planning with A-star generated a global path that kept distance from the obstacles; the path was
tracked with a window adaptive approach that helped the robot track the entire path smoothly and
reach the final goal without collisions.

2.2. Route Planning

Bhadoria and Singh [14] showed that algorithms such as Dijkstra and A-star can be applied
for both path planning and routing decisions. Many scenarios were created on the basis of an
unstructured and unpredictable environment, where the robots were forced to face new situations in
which decision-making was quite difficult. Zhang and Zhao [15] considered an integrated framework
for combining A-star and a Dijkstra algorithm. The proposed algorithm was used to guide a mobile
robot along the path between an origin and a provided destination with the ability to avoid collisions
with obstacles. Kusuma and Machbub [16] implemented an A-star algorithm for planning the
movement of a humanoid robot. The proposed algorithm had the ability to find a new route if the
destination was modified or if the robot failed to follow the assigned path. Ruiz et al. [17] considered
an open vehicle routing problem with the capacity limitation and distance constraints. A biased
random-key genetic algorithm designed to solve the problem was benchmarked with three datasets to
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demonstrate the efficiency of the proposed algorithm. Salavati-Khoshghalb et al. [18] investigated
a vehicle routing problem (VRP) that considered uncertainty in demand under a restocking policy.
An integer L-shaped algorithm and various lower bound schemes were developed to determine the
solutions for problems with up to 60 customers and four vehicles. Zhang et al. [19] studied an ant colony
optimization algorithm for a multi-objective vehicle routing problem with flexible time windows.
The model aimed to simultaneously minimize the total distribution costs and maximize the overall
customer satisfaction. Sung et al. [20] developed a neural network that could be used to determine a
collision-free path in a large-scale dynamic environment generated from a dataset that was extracted
from a Bellman–Ford algorithm and a quadratic program. The dataset from the Bellman–Ford algorithm
showed better reliability for training the neural network due to the appropriateness of this algorithm in
a discretized space. Pasha et al. [21] formulated a mixed-integer linear programming model for an open
capacitated VRP with soft time windows. An optimization model and four metaheuristic algorithms
were developed to solve the problem. The results showed that the evolutionary algorithm provided
good-quality solutions for both the small-scale and the large-scale problems with practical runtime.
Trachanatzi et al. [22] addressed an environmental prize-collecting vehicle routing problem. A firefly
algorithm based on coordinates (FAC) was designed to solve the model. The proposed algorithm
was performed and tested with many instances from previous studies to demonstrate the promising
performance of the FAC. A summary of the methods used in key related articles is shown in Table 1.
According to the literature review, route-planning and path problems for AGV are active research areas
related to Industry 4.0 technology. None of the research addressed an adaptive solution methodology
for a route-planning problem within a warehouse that considers real-time obstacles. The present
research focused on developing a solution methodology using ANN for a route-planning problem
with real-time obstacles. A dynamic route-planning system is also proposed. The main contribution of
this research is the development of an efficient route-planning methodology using a machine learning
model that can be implemented on AGVs with limited computing resources. An ANN model that can
be used to determine the parameters that specify the relationship between the input and output of a
dynamic route-planning problem is introduced. This can then be applied to predict the route on the
basis of different scenarios of input data.
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Table 1. A summary of the methods used in key related articles. ANN, artificial neural network.

No. Authors Year Route Planning Motion Planning Automated Robot Warehouse Application Use of ANN Realtime Obstacle

1 Liu and Gong [4] 2011 x x x

2 ElHalawany et al. [5] 2013 x x

3 Bhadoria and Singh [14] 2014 x x x

4 Zhang and Zhao [15] 2014 x x x

5 Contreras-González et al. [6] 2016 x x x

6 Zhang et al. [7] 2017 x x

7 Gochev et al. [8] 2017 x x x

8 Mohan and Ignatious [9] 2018 x x x

9 Kurdi et al. [10] 2018 x x x x

10 Zhang et al. [11] 2018 x x x

11 Flórez et al. [12] 2018 x x x x

12 Kusuma and Machbub [16] 2019 x x x

13 Ruiz et al. [17] 2019 x x

14 Salavati-Khoshghalb et al. [18] 2019 x x

15 Zhang et al. [19] 2019 x x

16 Zhong et al. [13] 2020 x x x

17 Sung et al. [20] 2020 x x x

18 Pasha et al. [21] 2020 x x

19 Trachanatzi et al. [22] 2020 x x

20 This research 2020 x x x x x
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3. Models and Algorithms for Route Planning

To determine a solution for a route-planning problem, both an optimization model and a heuristic
algorithm were used. In this section, a shortest-path model is introduced and used as a benchmark for
testing the quality of solutions from other methods. A heuristic method based on an A-star algorithm
is presented next.

3.1. An Optimization Model for Route Planning

A shortest-path model is used for comparing the results from other methods. The model is
summarized as follows [23]: given a directed graph G = (V, A), where V and A represent a set of nodes
and a set of arcs of the graph. The shortest-path problem determines a path with the minimum distance
between two nodes, s (source or starting) and t (target or destination). The cardinality of V and A are
represented by parameters n and m, respectively. A path is a sequence of nodes v1, . . . , vk, and it is
considered to be elementary if no node is visited more than once.

Let δ+(i) and δ−(i) represent sets of arcs leaving and entering node i ∈ V, and let A(S) be a set of
arcs with both ends in S ⊆ V.

Indices, parameters, and decision variables are presented as follows:

Indices
i, j, and k: indices representing nodes in G
A: a set of arcs from G
Parameters
cij: distance from node i to j, (i, j) ∈ A
Z: the total distance
Decision variables
xij is equals to 1 if (i,j) is chosen and 0 otherwise.

The objective function and constraints for the shortest-path problem are presented next.

Z = min
∑

(i, j)∈A

ci jxi j. (1)

∑
k∈δ+(i)

xik −
∑

k∈δ−(i)

xki = 1, i = s . (2)

∑
k∈δ+(i)

xik −
∑

k∈δ−(i)

xki = 0, i ∈ V\{s, t} . (3)

∑
k∈δ+(i)

xik −
∑

k∈δ−(i)

xki = −1, i = t, (4)

xij ≥ 0 for (i,j) ∈ A, x ∈ Z|A|.

The objective function is represented by Equation (1), where the total distance is minimized.
Equations (2) and (4) represent the net flow at nodes s and t, where the net flow at node s is 1,
and the net flow at node t is −1. The flow conservation constraints for nodes other that s and t are
represented by Equation (3). When applying a shortest-path model for determining a solution for a
dynamic route-planning problem, the distance (cij) associated with each path segment (defined by
(i,j)) that contains an obstacle and cannot be used is set to a large value that is based on the size of
the transportation area. If there exists a feasible solution, the segments with large cost values are not
selected in the optimal solution.
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3.2. A Heuristic Algorithm for Path Planning (A-Star Algorithm)

In this study, an A-star algorithm was used to identify a path that avoids obstacles on any path
segment. The algorithm can be described as follows:

During the path search of an A-star algorithm, an “OPENED” list and a “CLOSED” list are used
to keep track information during the search. The “OPENED” list stores the paths that will be explored.
The “CLOSED” list contains all explored paths. Let h(n) represent the cost from an origin to the current
node (n) and let g(n) represent the cost to get from the current node (n) to a destination node. The total
cost, f (n), is calculated for each successor node that includes both h(n) and g(n). The procedure consist
of seven steps [24]:

1. The start node is removed from the “OPENED” list. The cost function f(n) is calculated; note that
h(n) = 0 and g(n) are calculated on the basis of the distance between the start position and the
destination (f (n) = g(n)).

2. A node with the smallest cost function is removed from the “OPENED” list and inserted into the
“CLOSED” list. The node is set as node n (break ties arbitrarily, if two or more nodes have the same
cost function). If one of the nodes is the destination node, then the destination node is selected.

3. If n is the destination node, the algorithm is terminated; otherwise, it continues.
4. The cost function for each successor of n that is not on the “CLOSED” list is computed.
5. Each successor not on the “OPENED” list or CLOSED list is associated with the calculated cost

and put on the “OPENED” list.
6. Any successor already on the “OPENED” list is associated with the minimum cost (min(new(f (n)),

old(f (n)))).
7. Return to step 2.

4. Results

Initially, the models in Section 3 were used to determine the solutions for a route-planning
problem. For an optimization model, the solutions can be determined by using a mathematical solver
such as CPLEX; for a heuristic method based on the A-star algorithm, the solution is generated by
an installed executable module. This requires high-performance hardware with high computational
capacity, where the computational runtime varies according to the dimension of input data instance.
In order to utilize knowledge gained from previously solved data instances, the input data instances,
as well as the generated routes, were collected and used to build an ANN model that can identify an
optimal route. This process requires less computational effort and is suitable to implement on a mobile
robot with limited computing capability. Having to execute a heuristic algorithm or a mathematical solver
every time to generate a route is inefficient. This is because, once an ANN is trained, it can generate a
route with minimal computational effort and runtime (less than a second). An ANN training process
requires a server equipped with MATLAB, and it can be executed on a weekly basis or when the ANN
needs an update.

The structure of a feed-forward ANN model for a dynamic route-planning problem is shown in
Figure 2. The inputs and outputs of the ANN were defined on the basis of a layout of the simulated
transportation area, which was defined by a two-dimensional grid map. An example of a grid map is
shown in Figure 3.
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Figure 3. A grid map used for route planning.

The size of the problem is defined by the number of rows and columns, which are then used
to define a transportation area, represented by a rectangle. In Figure 3, an origin is represented
by a pink square, and a destination is represented by a light green square. There are two types of
obstacles considered in the route-planning problem. Fixed obstacles (or fixed blocks) are represented
by blue rectangles, and dynamic obstacles are green squares. The number of dynamic obstacles can
be specified, and they are generated at random locations within the transportation area. When the
size of the transportation area increases, the complexity of the problem increases significantly, which
requires impractical runtimes to determine a solution. For instance, there are three dynamic obstacles
in Figure 3. The selected path is represented by a red (thick) line, which connects the starting point and
the destination point. The shortest path can be generated on the basis of a shortest-path model or an
A-star algorithm to avoid collision with all obstacles (fixed and dynamic) on the grid map. To remove
irrelevant data from consideration, a data-encoding process is applied. A transportation area with 21
rows × 21 columns is used in Figure 4 to illustrate the encoding scheme.
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To distinguish between different components within a transportation area, each cell is encoded
using the following logic: a cell is encoded with “1” if it represents an origin, a destination, or an
obstacle; and encoded with “0” otherwise. Note that fixed obstacles exist permanently and can be
omitted from the model. Because a dynamic obstacle located on a line segment blocks the whole
segment, an improved encoding scheme is proposed to remove noise from the input data. All cells from
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a blocked segment are encoded with “1”. Each segment is named as shown in Figure 5. This encoding
scheme reduces the combination of input data and greatly reduces the amount of computation required.
The output of the ANN is the selected route, which consists of a series of cells from the origin to the
destination. The selected route is encoded with a number (e.g., 0, 1, 2) that is used to represent a path
identifier (ID). In Figures 4 and 5, the selected path is represented by a red (thick) line that connects the
origin to the endpoint. The path is generated using the A-star algorithm to avoid collisions with three
obstacles, which exist on segments ×3, ×13, and ×14. However, the obstacles are located in segments at
the upper-right corner or lower-left corner. Both entire segments at the corner are blocked the same
time, such as ×3, ×4, and ×7 and ×13, ×16, and ×11. Hence, we can group them to become a segment,
as shown in Figure 5b. An example of an input dataset is shown as sample 1 in Figure 6, where the
selected path was encoded as type 4.
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5. Transportation Environment

In this project, a distribution center (DC) of one of the top full-cycle construction product suppliers
in Thailand was used as a model for creating a transportation area. The DC consists of five sub-DCs
that stock different types of products. The overall capacity is more than 100,000 pallets. Because a large
volume of product supply needs to be processed, each warehouse has its own operation system that is
independent from the others to handle a large volume of product flow daily. The operation flow begins
from a planning department that provides tasks to each warehouse. Next, each warehouse prepares
its own product delivery plan according to the received orders; then, the products are delivered to a
logistic department at DC2 where the consolidation and pickup processes occur. Figure 7a shows a
very narrow aisle layout within DC2. To test the movement of an AGV, a simulation environment
using an integrated framework between the robot operating system (ROS) and Gazebo was created.
Within the framework, the positions of AGVs could be monitored and commands that control the
movement of AGVs could be issued through ROS topics. The simulated environment was used to test
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the movement of an AGV to ensure that it would not collide with other objects within the environment.
Figure 7b shows a simulated environment of an internal layout at DC2.Algorithms 2020, 13, x FOR PEER REVIEW 10 of 17 
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6. Dynamic Route-Planning System and Computational Results with Managerial Insights

In this section, the details of a dynamic routing system and computational results of the proposed
methodologies for dynamic route planning are provided.

6.1. Dynamic Route-Planning System

The routes for movement within a DC are initially determined by the shortest-path model and an
A-star algorithm. If the solutions from the A-star algorithm have high accuracy when compared with
the solutions from the shortest-path model, the A-star algorithm is used due to the shorter runtime
and the computing resources required by the automated guided vehicle. Note that an automated
guided vehicle is allowed to carry one shipment at a time, due to the standard size of the pallet that
can be loaded into a cargo. The input data, which include real-time positions of obstacles, as well as
the generated routes, are collected as a training dataset. Once there are sufficient training datasets,
an ANN model for a dynamic routing problem is created and used to determine the routing solution.
The quality of the solutions from the ANN model needs to be tested with the solutions from the
shortest-path model on a regular basis. A requirement is specified according to the accuracy of the
ANN model; if the accuracy falls below 95%, the ANN model needs to be updated.

Note that, for any internal movement within a DC, the gap between aisles is narrow; as a
result, passing obstacles is not possible. If the path segment contains an obstacle, it is excluded from
consideration. Moreover, to consider real-time obstacles in the planning process, the route is generated
using the logic provided in Figure 8. At a starting point, a route is generated and used to guide the
movement of the vehicle. When an automated guided vehicle reaches an intersection, the positions of
obstacles are retrieved. If the positions are unchanged or not on the generated path, the route does not
need an update; otherwise, the route needs to be regenerated.
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6.2. Computational Results and Managerial Insight

In this section, computational results based on an internal warehouse environment with different
sizes are presented.

6.2.1. Computational Results from a Layout with Four Storage Racks and 15 Segments

The layout of an internal DC environment described in Section 5 was used as a transportation area
for the implementation of the ANN model. Initially, a sample layout consisting of four storage racks
with 15 segments was used to test the performance of the proposed approach. The definition of all path
segments is shown in Figure 9. Note that the path segments at each corner were combined. The test
data were encoded and solved by the A-star algorithm and the shortest-path model. The results from
both approaches were the same in all cases, which shows that the performance of the A-star algorithm
is acceptable. There were 13 types of paths generated in the solutions, as shown in Figure 10. Each type
was assigned an ID; note that “no way” represents a case where a path between the origin and the
destination could not be found. Table 2 reports the number of cases for each path type.Algorithms 2020, 13, x FOR PEER REVIEW 12 of 18 
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Table 2. Number of cases for each path type. ID, identifier.

ID 0 1 2 3 4 5 6 Others

Count 91 32 61 28 67 40 49 7
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Figure 10. Types of generated paths.

From Table 2, it can be seen that only seven types of paths were significant; the remainder could
be considered as outliers and were removed from consideration. The 375 samples were separated
into 80% training and 20% testing datasets. An example of encoded input data is shown in Figure 11,
where x1 to x15 represent the path segments that have obstacles, and y represents the selected path ID.
The structure of the ANN, which is defined by the number of nodes in hidden layers, also affects the
accuracy of the ANN model. There are three rules of thumb for determining the number of nodes.
The number of hidden nodes should be between the number of input features and the number of target
classes, should be equal to the sum of two-thirds of the input features and the size of the output layer,
or should be less than double the number of input features. The number of hidden nodes in each
experiment should be varied by two or three units. The number of samples for training should be
more than 10 times the number of ANN weights [25], which are defined by the equation, numweights =
(i +o) × h [26], where i represents the number of input nodes, o is the number of output nodes, and h is
the number of nodes in hidden layers.
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Figure 11. An example of encoded input and output data for an ANN model.

In this research, the training stage was limited to 1000 iterations. The performance was measured
using the mean squared error (MSE), where the target was set to 0. The training function for an
ANN’s input layer was based on a “logsig” function, while, for an output layer, it was based on a
“purelin” function. A network training function based on a “trainbr” function was used for other layers.
The training time was limited to 2 h. The remaining parameters were set on the basis of the “default
setting” from the Neural Networks MATLAB toolbox. The accuracy percentages from the training
and testing phases, using different datasets (with 200 or 300 samples), are summarized in Table 3.
The results were achieved after the training stage reached 1000 epochs. In Table 3, the training accuracy
percentage varies with the ANN structural configuration (number of nodes and layers) and the number
of training samples. When increasing the number of samples beyond 300 samples, the ANN model
required a longer training time; however, the model accuracy was not significantly improved. Hence,
300 samples were used to build the ANN.

Table 3. The effect of the number of training sample and ANN configuration on the testing accuracy
for a sample layout with 15 segments.

200 Samples 300 Samples

ANN’s Hidden
Layer Topology

Training Accuracy
(%)

Testing Accuracy
(%)

Training Accuracy
(%)

Testing Accuracy
(%)

15-5-7 93.3 70 92.5 85

15-8-7 100 85 100 96.7

15-10-7 100 75 100 91.7

15-8-7-7 100 95 100 98.3

15-8-10-7 100 90 100 93.3

Increasing the number of nodes can help improve the accuracy; however, using too many
nodes can cause an overfitting issue. This can be seen when comparing configurations (15-8-7) and
(15-10-7). Both configurations contained one input layer with 15 nodes, one hidden layer with eight
(configuration (15-8-7)) or 10 (configuration (15-10-7)) nodes, and seven nodes in the output layer.
Although, configuration (15-10-7) had more nodes, its testing accuracy was 91.7% as opposed to 96.7%
(the testing accuracy of configuration (15-8-7)). Moreover, as shown in Table 3, by increasing the number
of training data samples from 200 to 300, the accuracy of the configuration (15-8-7) was improved
from 85% to 96.7% and that of the configuration (15-10-7) was improved from 75% to 91.7%. Hence,
more training samples used resulted in better testing accuracy. The best configuration (15-8-7-7), with a
testing accuracy percentage of 98.3%, was used to predict future robot paths for a layout consisting of
four storage racks with 15 segments.

6.2.2. Computational Results from a Layout with 18 Storage Racks and 67 Segments

Next, using the data collected from a distribution center (DC), an internal layout with 18 storage
racks was created, as shown in Figure 12. There were 67 path segments after combining the segments
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at the corners. From an observation of an actual operation at the DC, the number of vehicles (folk lifts)
working in the DC varies from one to five, with an average of four. Figure 13 shows the distribution of
training samples for different numbers of obstacles according to the considered layout. The samples
with four obstacles had the highest percentages (39%), while the percentage of samples with two, three,
or five obstacles was 19%. The lowest percentage was 3% for samples with one obstacle.
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Table 4 summarizes the effect of the number of training samples and ANN configuration on the
testing accuracy when a layout from a retail warehouse was used. There were 67 variables in the
input layer, corresponding to 67 segments of the layout, and 21 nodes, which represented 21 types of
paths generated by the output layer. The number of hidden layers and the number of nodes in each
layer were varied to achieve the configuration with the best accuracy. The training accuracy reached
more than 90% for all cases, but the testing percentages were different between ANN configurations
as a function of the number of samples used for training the ANN. As shown in Table 4, on average,
the training accuracy percentages for cases with 1448 and 1000 samples were at the same level for all
ANN configurations. However, the average testing accuracy for the case with 1448 samples (95.48%)
was higher than that for the 1000-sample case (94.72%).
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Table 4. The effect of the number of training samples and ANN configuration on the testing accuracy
for an actual layout.

ANNs
1000 1448

Training Testing Training Testing

67-60-21 99.7 94.00 99.7 94.83

67-67-21 99.7 93.50 99.7 95.52

67-70-21 99.7 96.00 99.7 96.90

67-73-21 99.7 93.50 99.7 93.79

67-67-21-21 99.7 95.50 99.7 97.93

67-67-30-21 99.7 96.00 99.7 97.24

67-70-30-21 99.7 96.50 99.7 97.93

67-70-40-21 99.25 96.00 99.65 96.55

67-67-21-10-21 90.00 91.50 91.19 88.62

In addition to the number of samples, the ANN configuration, defined by the number of hidden
layers and nodes, also affects the accuracy. Using an inadequate number of nodes in the hidden
layers results in an underfitting issue. Underfitting occurs when an ANN is not able to construct an
adequate configuration from a dataset. By providing a sufficient number of nodes in each hidden
layer, the accuracy percentage can be improved. Hence, as shown in Table 4, the accuracy of an ANN
with configuration (67-67-21) was higher than the percentage of an ANN with configuration (67-60-21).
Similarly, the accuracy percentage of an ANN with configuration (67-67-21-21), which was the ANN
configuration with two hidden layers that had the highest accuracy percentage (97.93%), was higher
than the accuracy percentage of an ANN with configuration (67-70-21), which was the best ANN
configuration (96.90%) with one hidden layer.

However, having too many nodes in the hidden layers can cause an overfitting issue, where an
ANN is not able to generalize the model to identify an output for new input data. Hence, the testing
accuracy is deteriorated. For example, when the number of nodes in the hidden layer of an ANN
configuration (67-70-21) was increased from 70 to 73 (ANN configuration (67-73-21)), the testing
accuracy dropped from 96.79% to 93.79%. Similarly, when considering ANNs with two hidden layers,
the testing accuracy of an ANN with configuration (67-67-21-21) (97.93%) was better than the testing
accuracy of ANNs with configurations (67-67-30-21) (97.24%) and (67-70-40-21) (96.55%). The highest
testing accuracy for cases with 1000 and 1448 samples was 96.5% and 97.93%, respectively, generated
by an ANN with configuration (67-70-30-21). Both cases had more than 95% accuracy, which is a
criterion for using the ANN model mentioned in Section 6.1. However, the results for the case with
1448 samples were more robust; as a result, the ANN configuration (67-70-30-21) with 1448 training
samples was implemented in the dynamic routing system.

7. Conclusions

In this research, the focus was on applying Industry 4.0 technology, related to big data analytics,
to a route-planning operation of automated navigation within a warehouse. Route-planning
methodologies for a dynamic routing problem with the consideration of real-time obstacles are
proposed. An optimization model and a heuristic methodology based on an A-star algorithm were
used to generate the routes. Machine learning models using an ANN were developed on the basis of
generated datasets using the internal layout of a distribution warehouse. A simulation environment
using Gazebo was developed and used for testing the implementation of the route-planning system.

Computational results showed that the proposed machine learning methodologies were able to
generate routes with testing accuracy up to 98% for a practical internal layout of a warehouse with 18
storage racks and 67 path segments. Managerial insights into how the machine learning configuration
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can be selected were also provided. The route-planning system can be used to generate routes for
different types of AGVs in real time. This is beneficial to the transportation industry, since there
will be a direct reduction in labor cost and an increase in operational efficiency, which is essential
to be competitive in today’s business environment. A limitation of our proposed approach is based
on the required training datasets for the ANN. If the datasets need to be collected from an actual
operation, this might require a long data collection period. However, simulated datasets can also be
used, which can help accelerate the ANN training process. A possible future research area includes
the consideration of other routing problems such as the vehicle routing problem. In this research,
each AGV was assumed to make one stop according to the internal movement within a warehouse.
However, in a typical vehicle routing problem, a vehicle has larger capacity and can make multiple
stops. This requires the consideration of demands and vehicle capacity in an ANN training process,
where suitable data encoding for input and output datasets need to be determined.
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