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Abstract: Pervasive data have become a key source of information for mobility and transportation
analyses. However, as a secondary source, it has a different methodological origin than travel survey
data, usually relying on unsupervised algorithms, and so it requires to be assessed as a dataset.
This assessment is challenging, because, in general, there is not a benchmark dataset or a ground
truth scenario available, as travel surveys only represent a partial view of the phenomenon and
suffer from their own biases. For this critical task, which involves urban planners and data scientists,
we study the design space of the visualization of cross-origin, multivariate flow datasets. For this
purpose, we introduce the Modalflow system, which incorporates and adapts different visualization
techniques in a notebook-like setting, presenting novel visual encodings and interactions for flows
with modal partition into scatterplots, flow maps, origin-destination matrices, and ternary plots.
Using this system, we extract general insights on visual analysis of pervasive and survey data for
urban mobility and assess a mobile phone network dataset for one metropolitan area.
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1. Introduction

Urban planning has been around since ancient times, but only at the beginning of the 20th
century was it developed into an academic field, where it had its boom in the need of accommodating
old and new cities to the needs of the industry. Thus, urban planning, along with transportation
planning, are modern disciplines based on models developed in pre-digital industrial times.
Today, urban planning is turning towards sustainable mobility, a new paradigm that changes how
the relation of the city to the environment and people is understood. In this scenario, urbanism is
faced with a major challenge: incorporating new data sources and data-driven methodologies into its
framework. We aim at easing this transition by using visualization in order to give domain experts a
contrasting view of traditional and new data sources against each other, also filling a gap between
domains that has already been noted by the visualization community [1].

Owing to its complexity and massiveness, no data source alone can account for the whole
phenomenon of mobility within a city. Different ways of measuring and approximating this
phenomenon have been developed in order to understand and shape the city. Travel surveys have
been a key tool, relying on a small, but carefully orchestrated, sample, access to census data and
statistical craftsmanship. They are expensive and time consuming to produce [2] and they show heavy
under-reporting [3]. This traditional source is contrasted with the information that can be extracted
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from available and emerging pervasive data sources, such as mobile phone [4], Wi-Fi [5], and social
network data [6]. This type of data are inexpensive and could potentially be used for real-time
analysis, but, as a secondary data source for urban planning, it has its different methodological origin,
which makes a comparison between datasets a challenge for both domain experts and data scientists.
For example, as network data does not rely on self-report, trips, and mode of transport need to
be inferred from waypoint traces, which is not an easy task, because of their relatively inaccurate
temporal and spatial sampling, which introduces an uncertainty that was not present in this form in
survey data (or at least, it does not have the same origin). We call datasets stemming from different
methodologies “cross-origin”.

Especially at the pilot stage, where a new dataset is being evaluated for its possible adoption
and use, urbanists need to qualitatively assess the new data source. From what we have collected in
interviews with experts, there are no protocols for this kind of assessment in use yet. Because official
information on mobility is scarce, the travel survey is the main benchmark to which compare a dataset,
which suffers from its own structural biases, and it is updated in the lapse of years.

In this unprecedented scenario, we developed Modalflow as a system for visualizing and
comparing cross-origin datasets of urban mobility. Its name is derived from the two concepts that
define its data workflow: flows and modality (as in modal split). Using juxtaposed and linked views
in a notebook-style layout, it incorporates and adapts different visualization techniques for flow data
including scatterplots, origin-destination matrices, edge bundling, flow maps (Figure 1), and ternary
plots. Modalflow allows users to look into the phenomena of transport and, more importantly,
to compare different sources on these phenomena, identifying each source by its methodological
features. The main contributions of our work are:

• A visualization system with coordinated views derived from a set of considerations about the
nature of pervasive and traditional data sources,

• The distribution-aware selection tooltip: an enhancement for selection techniques.
• The sinusoidal flow encoding: a new encoding for bidirectional and multivariate flows as edges

of a graph.
• A validation of our approach with a case study using real-world cross-origin datasets.

Figure 1. XDR (a) and survey (b) flows at night time.

We tested Modalflow while using two datasets from the Santiago metropolitan area: the last
travel survey held in the city and a mobile phone network-inferred dataset, drawing insights on
their differential qualities, strengths and flaws. We hope this system will foster critical evaluation
of new, non-traditional data sources and their adoption by domain experts, and also improve the
communication with the field of data scientists, which produces and makes use of these datasets.



Algorithms 2020, 13, 298 3 of 18

2. Related Work

Mobility visualization has been mostly related to the visualization subfields of Infovis and Visual
Analytics [7]. Here, we review the most common visualization techniques that are used for depicting
flows in geospatial contexts and classify them according to the kind of data they are meant to be
used with.

Origin-Destination Matrix. Origin-Destination (OD) matrices are a common representation used
in transportation planning for low granularity data (such as municipal aggregation level). From a
network visualization perspective, the OD matrix is a weighted adjacency matrix, where a continuous
color scale is used in order to denote the flow magnitude between each node pair. Developments in
this type of visualization have focused on improving readability and spatial mapping: MapTrix [8]
enhances the traditional OD Matrix with interactive features and a linked geographical representation;
OD Map [9] reorganizes the cells of the OD matrix to improve spatial pattern recognition; and, the OD
Map can be combined with a tile map [10] to perform in more realistic scenarios. In spite of these
improvements, OD matrices have not been used for visualizing networks of more than around a
hundred nodes.

Graph. Graph-based flow visualization literature is greatly centered around reducing the hairball
problem, i.e., visual clutter. We can divide them into those that operate some kind of simplification
over the graph and then render the result with a linear technique [11–13], and those that make use
of non-linear or iterative techniques for path calculation and rendering [14,15]. The techniques that
were developed for this purpose rely on heavily distorting flow paths and edge appearance in order
to improve readability. However, these developments have generally taken place without taking
into account the particular characteristics of datasets and how they might behave on different data
scenarios (e.g., do small changes in the data correspond to small changes in the result?) as it has not
been studied how distribution can affect their performance at specific tasks (e.g., are scale-invariant as
readable as random networks using this particular technique)?

Edge Bundling. Edge Bundling methods aim to visually simplify and aggregate trajectories,
trail paths, or graph in dense visualizations. Recent surveys [16,17] provide a global overview of
existing technique assets and usages. The first bundling algorithms were based on hierarchical data
structure [18]. Recent techniques capture the statistical properties of the bundling [19] and enable
combining multiple aggregation techniques [20].

Glyphs. Glyphs allow for encoding abstract flow information, confining it to a limited icon-sized
space, and benefit from being visually independent from one another [21]. Following this line of
research, Ma et al. [22] used the sunburst diagram as a model for a glyph, which encodes destination
direction. In Andrienko et al. [23], radial diagrams are used to encode flow magnitude by direction
and distance range. Pérez-Messina and Graells-Garrido expanded this idea to include mode of
transportation [24].

Other Visual Techniques. Other kinds of transport mode-specific techniques have been developed
for scenarios with constrained mobility, e.g., for metro use [25,26]. We are explicitly excluding heatmaps,
which have been extensively used, as they are not able to retain network data.

Quantitative Data Source Comparison. There are studies reporting the quantitative differences
between cross-origin sources: travel surveys and mobile phone data [27]/GPS data [28,29].
Additionally, survey inaccuracies from misreporting [30] suggest the need for a mixed approach [27,29].

This entails that, although flows, as data, may look like and be treated as the same matter when
extracted from travel surveys or mobile phone network data, they are not. They are shaped by
assumptions and hegemonic views that frame their methodological workflows [31,32]. This is a point
that has been made by literature from critical visualization and digital humanities [33,34] and can
be readily conceptualized by the data/capta paradigmatic opposition (data assumes information as
“given”, capta as “captured” and, thus, affected by our observation method) [35].
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3. Design Requirements

Traditional data sources in urban planning, such as travel surveys, are grounded in self-reporting
and explicit models, whereas non-traditional data sources, such as pervasive data, are grounded on
unobtrusive capture and machine learning algorithms. This different epistemological status between
data sources is the main concern of our design space exploration.

In our target domain, an established analytical workflow for evaluating and validating external
data sources does not exist, thus visualization as a methodological approach plays a novel and central
role in the solution of this problem. Here, we describe the domain problem, the considerations to
approach this particular problem and the design requirements we extracted from them.

3.1. Domain Problem

In the target domain of application, there is not a standard methodology that can embrace current
pervasive data sources, as these are mostly secondary sources, i.e., data that were not originally
captured for the purpose of transport analysis. We consider pervasive data to be mode-unspecific
and stemming from networks, such as social networks, Wi-Fi networks, and mobile phone networks.
Primary sources, on the other hand, are datasets whose raw form and original purpose are inherently
related to mobility (and not only as the consequence of an additional processing, as in XDR-inferred
trips). There are other data sources that also enable mode-specific analysis, such as automatic passenger
counting mechanisms in public transport [5], which, although highly granular, lose, to a certain extent,
the origin and destination aspect of flows.

In the urban planning framework, there are three methodological approaches for generating
primary data: qualitative, quantitative, and tracking. Qualitative methodology relies on focus
groups and discourse analysis, whereas quantitative methodology relies on representative sampling,
self report, and statistics. Tracking, on the other hand, relies on GPS devices that unobtrusively record
an individual’s path with a higher level of detail than any of the aforementioned and at a (relatively)
lower cost.

Although pervasive data may seem to be more related to GPS data and tracking methodologies
its coarser accuracy makes it more useful for quantitative analysis, such as reproducing travel
surveys [36] or evaluating urban interventions of any kind [37]. The difficulties of working with
network data are not just technical, as it is a massive data source, but also theoretical: there is an
original methodological gap that separates mobile phone network data from survey data, which may,
at least partially, explain its resistance to enter the traditional workflow. Recent developments show
that public institutions are starting to make use of mobile phone data to understand mobility. In Spain,
it is being used as a pre-census study [38] and, in Chile, it is being used to complement a travel survey
in a small city in a pilot study [39]. This implies a rising need on tools that are aimed at experts to
assess mobile phone data.

3.2. Considerations on Cross-Origin Dataset Comparison

Pervasive data as a secondary data source has its own qualities that sets it apart from primary
source data. Here, we try to name and account for the aspects that make difficult the comparison
between these sources, in the case of mobility flow data.

Trip closure. The definition of one trip does not share its origin in self-reported and predicted
sources. For quantitative methodologies, what defines a trip as a unit is not part of any of these
dimensions but a discursive element: the motivation of the sampled person (e.g., go to work, buy food,
go for a walk, return home, etc.). Because tracking does not deal with persons but with devices, a trip
is not a given entity, but it must be inferred from the data itself, usually from finding stay patterns that
then become origin-destination features.

Representativeness. Surveys count with a relatively limited sample size, so sampling must be
carefully orchestrated in order to achieve representativeness, the basic condition that guarantees its
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usefulness as a tool for urban planning. The sample is based on the most recent census or projection
of the census, which is the sampling universe, and then each point amplified based on expansion
factors determined by statisticians. Because representativeness can only be achieved up to a certain
level of granularity, observed patterns that are beyond that level should be considered to be an artifact
(i.e., a value introduced artificially by the measuring tool). Mobile phone network data, although with
a much higher level of sampling, may not count with this desirable quality.

Sampling density. The number of samples can vary by orders of magnitude between surveys and
network data. Can sampling differences impair comparison? This enormous distribution difference
can have an important effect when visualizing at finer granularity.

Dynamic behaviour. The temporal dimension is not equally accounted for by different sources.
Travel surveys have an abstract temporality: a model is produced for a ‘general day’, which is then
extended into laboral day and weekend behaviour for summer/winter seasons. It does not capture
dynamic behaviour, as network data are able to.

Modality. From a transportation analysis perspective, modality cannot be overlooked. However, it is
a hard dimension for pervasive data, as it usually has to be inferred. Probably due to this, visualization
literature is usually focused on single mode (or absence of modality) analysis tasks.

3.3. Requirements

When considering the above synthesis, we extract design requirements that support a comparison
of cross-origin flows given these aspects of conflict.

(R1) Comparing flows as multidimensional entities. Users should be able to visually compare different
datasets in an origin-independent way, i.e., having the recorded trips aggregated into the common
language of flows as multidimensional points, where different capture methods are comparable
without hiding their inherent differences.

(R2) Comparing flows at different aggregation levels and ranges. Users should be able to filter and select
flows according to spatial dimensions, origins and destinations, quantitative dimensions, time period,
and visualize flows that are aggregated at different granularities.

(R3) Comparing mode split distributions. The system should allow comparing mode of transportation
distribution in geographical space and along other dimensions.

(R4) Comparing flows in time. Users should be able to compare the effect of time (period of the day)
on the mobility behaviour shown by different datasets and answer questions, such as “do different
datasets show the same peaks during the day?” or “are daily modal cycles equally accounted for”?

4. Materials and Methods

In this section, we describe our test datasets and the visualization techniques developed for the
system. An online demo is also available [40].

4.1. Data

Our cross-origin datasets comprise trips in Santiago, the capital of Chile, a city with almost
8 million inhabitants in 35 administrative units denoted municipalities within its urban area,
further subdivided into 735 traffic analysis zones.

We define a flow as a unique origin-destination pair within a certain period (a partition of time),
which has a magnitude (number of trips observed or predicted from origin to destination for the
corresponding period) and a modal partition (the proportion of the magnitude corresponding to each
mode of transport). Understood as a network where nodes are georeferenced objects, a flow is a
weighted directed link with a modal partition uniquely defined by an origin-destination-period tuple.
We also calculate a distance feature for each flow, as the linear geographical distance between origin
and destination.

Travel Survey. The main source of travel demand and characteristics information for
transportation purposes is the Santiago Travel Survey (known as “Encuesta Origen-Destino” in
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Spanish, abbreviated EOD), which is held every ten years by the Chilean Transport Planning Secretary
(SECTRA). In its last version from 2012, after surveying 100K inhabitants, the results showed that,
in a typical working day, the transportation system has over 18 million trips, where walking is the
most used mode of transport (34%), followed by public transport (26%), and private cars (26%) [41].
Arguably, most of the analysis of the travel survey focuses on the origin and destinations of trips,
as well as their attributes, such as mode of transportation and travel distance. Given the sample size of
the survey, only flows between municipalities are considered to be representative. Note that the traffic
analysis zones of the city are defined by this survey.

Mobile Phone Network Data. As input data for Modalflow, here we work with a dataset of
inferred commuting trips from mobile phone network data. Specifically, we use Extended Data
Detail Records (XDR), which is a type of passive data that are used by telecommunication companies
for billing Internet usage from mobile phones [4]. The dataset used in this paper was provided by the
telecommunications company Telefónica Movistar, which had a market share of 30% in April 2017.
The dataset contains trips during April 2017 for approximately 600K devices, which were extracted
while using a previously published method [42]. The trip distribution inferred from this dataset has
been validated with experts and through comparison with a travel survey, which implied that the
market share covered by the dataset is enough to measure mobility patterns in Santiago [39].

These trips include a prediction of the several available modes in the Santiago transportation
network, including bus, subway (metro), cars, and pedestrian trips. The prediction of mode of
transportation for flows was made while using a variation of the model published in Ref. [42], aiming at
solving a limitation of the original method, namely, working with morning commuting trips for
individual devices. We have updated the model to estimate modal partitions in flows between
areas of the city at several periods of the day. The updated model consists of solving the following
optimization problem:

min
A,B
‖W − (L� A)× B‖2

F,

where:

• W is a waypoint matrix, where every column represents a directed flow between two areas of
the city, and every rows represents a tower. Thus, each cell wij contains the number of times that
tower i appears in the trajectories in flow j.

• A and B are positive low-rank matrices that express the associations between k latent dimensions
and each tower (A) and flow (B).

• L is a k-rank labeling matrix where lij is 1 if tower i is associated to mode of transportation
j, 0 otherwise. This labeling enables aligning latent dimensions with mode of transportation
usage in a semi-supervised way, as some towers are strictly associated to specific modes of
transportation due to urban infrastructure surrounding it (see Ref. [42] for details).

• � is the Hadamard product operator.

The optimization problem can be solved while using multiplicative updates. After solving the
problem, the matrices A and B contain the association between towers and flows with the k latent
dimensions. These associations are interpreted as modal partitions per tower and per flow.

In this work, we average the flows per period of the day (morning peak 1, morning peak 2,
afternoon valley, afternoon peak, night valley, night) in a single representative day, with a focus on
working days.

4.2. General Layout

Modalflow works as a set of coordinated visualizations displayed in a notebook-style layout [43],
i.e., visualizations are stacked in display and usage order from top to bottom, without constraining
the layout to fit into a screen. Gleichner categorizes comparison layout strategies as juxtaposition,
superposition, and explicit encoding [44]. We chose to use juxtaposition, because using overlay
would have resulted in a cluttered view, and explicit encoding would have removed the data
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context [45]. Each layout element is a view from the system where the different datasets are visualized
in juxtaposition to ease comparison across views. Each visualization shows different dimensions of
the data and acts in coordination with the rest: when a selection is created in one view of the system,
it extends to the other dataset and views of the system. Note that our system is notebook-style and not
a notebook, as the user interaction only happens through the coordinated visualizations.

4.3. Color Coding

To encode modal partition throughout views (R3), we decided to use a color mapping, as color is
the only visual channel that can be applied invariably across representations. Using the constraint that
in urbanism the complexity of transportation is categorized into three main modes (public, private and
non-motorized) the modal partition could be mapped to a ternary color scale, as shown in Figure 2.
Non-motorized is mapped to green, public to cyan, and private to magenta, mixed flows being a
proportional combination of these hues. Thus, in the case of a totally balanced mode split, the resulting
color will be gray.

To approximate the desired quality of perceptual uniformity, where all of the points have the
same luminance value, we used the HSLuv color space [46], which is an HSL model version of the
perceptually uniform CIELUV color space. However, as the color coding is naturally defined in a
three-channel additive color model as RGB (each channel mapped to a transport mode), we devised
the color transformation pipeline RGB→ HSL→ HSLuv→ RGB to transit from a non-perceptually
uniform to a (at least more) perceptually uniform RGB color code.

Figure 2. Ternary color scale construction schema (a) and resulting colormap (b) used to encode mode
split across views.

4.4. Ternary Plot

Ternary plots show the distribution of points in three dimensions that sum to a constant, as is the
case of modal partition for flows. We encode the flows as circles and optionally encode magnitude in its
area. Positioning OD flows on the ternary plot can show particular biases of the surveying or inference
mechanism toward certain modes, especially when used in combination with range selections in other
dimensions. Additionally, when outgoing flows are aggregated by municipality, it becomes direct to
compare mean modal behaviour and observe its change over the day.

4.5. Scatterplot

For a view over the abstract (non-spatial) distribution of data, we customized a scatterplot schema
over flow magnitude and distance dimensions (R2). Every OD flow is represented as a clear circle of
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fixed or flow magnitude-weighted radius in the two-dimensional space. Selections can be made by
dragging over the plot, thus selecting a distance-flow magnitude pair range, i.e., a rectangular area.
Many different selections can be maintained at the same time, which can overlap or be embedded
into each other. Statistics are calculated over a new selection (number of trips, flows, total distance,
and portion of the whole) and annotated on the side.

Selection ranges are also “draggable” while using right and left arrow keys. This interaction
moves the selection range over the distance dimension, allowing to see the user to focus on another
visualization and observe how distance correlates with the flow distribution on another view of
the system.

While testing the scatterplot, we discovered that normal range selection proved to be not effective
for comparing different datasets, as range selections in one dataset would probably lead to an empty
selection in the other one due to the very different distributions of data. Thus, to comply with R1,
we developed a distribution-aware selection tool.

As the distribution of the examined datasets proved to be different over this space, selections that
were made over one dataset usually ended in an empty selection over the other one, making a the
comparative approach ineffective. For this reason, we developed a distribution-aware selection tool
that translates a selection over one distribution into a more alike selection over another distribution,
as shown in Figure 3. It is a linear transformation of the XY space based on data distribution.
This technique can be generalized to different datasets; however, a decision has to be made over the
formal nature of their distribution to define the linear mapping. In this case, preliminary visualization
experiments showed a power law-type distribution; thus, a measure of its powerlaw had to be taken
into account (for a normal distribution, for example, its median and variance should determine the
outcome mapping).

In order to determine the mapping for the distribution-aware tool, the method is as follows: (1) for
each dimension, sort the data according to that dimension and determine the threshold at which the
highest ranking elements are equal in value to all the others; and, (2) this threshold is then the value of
the scale factor ki for dataset i. The mapping of coordinate xj from coordinate xi is given by

xj = (xi/ki)k j.

Figure 3. Selection over different datasets in the scatterplot is facilitated by our distribution-aware
selection tool. A range selected in one scatterplot is not merely transposed to a, which would probably
end in an empty selection, but linearly transformed into b, according to the grid automatically defined
based on the distribution of each dataset.
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For the particular case of mobility flows, we deemed that using this technique only in the
magnitude dimension was the most sensible choice, because using distribution-aware selection over
distance would change the original meaning of a selection.

4.6. OD Matrix

We present two optimizations, in terms of our design requirements, for the OD matrix: (1) a
disaggregated layout option for showing zonal flows (R1); and, (2) a color encoding for mode split
following the color map previously defined (R3).

In the disaggregated layout, each cell of the municipal OD matrix is horizontally divided by the
number of zones in the destination municipality and vertically by the number of zones in the origin
municipality, thus producing equally sized submatrices. At the cost of not having equally sized cells
in the submatrices, this procedure preserves the space filling layout and the visual correspondence
between aggregation states.

4.7. Flow Map with Sinusoidal Encoding

The flow map is the overlaying of a graph (where nodes are georeferenced points and flows are
directed edges) on top of a geographic map. Its function is to reveal geospatial patterns, like sinks and
sources of flows. However, as representing the flows for a whole city leads to a lot of clutter and low
readability in the direction of flows, we developed a novel encoding for flows that uses a sinusoidal
curve rather than an arrow or arc.

Jane Jacobs conceptualized transport as “a set of networks stitching together spaces and places,
from which locations naturally emerge” [47]. This metaphor of transport weaving the fabric of the
city is evocative of a graph-like visualization of flows. Through it, we were inspired to design a new
encoding to facilitate distinguishing incoming from outgoing flows, particularly over a geographic
layout. Figure 4 schematically shows the two most common encoding alternatives for links in a graph,
followed by our novel sinusoidal encoding. This encoding was designed, so that it brings a new
symmetry into perspective, where directed links that go through a node get immediately divided into
incoming and outgoing in the vertical dimension, which makes for an intuitive way to select them,
as shown in Figure 4.

Figure 4. Sinusoidal encoding design space and working schema. Left: Bidirectional flow encoding
alternatives: (a) straight; (b) arched; and, (c) sinusoidal, which projects a third dimension into
perspective, differentiating in- and outflows in the vertical dimension. Right: schematic view of
incoming and outgoing flows at a certain node. Flow direction becomes quickly distinguishable thanks
to the sinusoidal flow encoding.
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The sinusoidal encoding is achieved using a centripetal Catmull–Rom spline for each directed
node-pair. The spline is defined by control points P0, P1, P2, and P3, where P1 and P2 are the position
of the start node and end node, correspondingly, and

P0 = (P1x, P1y + k ∗ distance(P1, P2)),

P3 = (P2x, P2y− k ∗ distance(P2, P1)),

where k is a constant that ponders the vertical elongation of the curves.
As this new edge drawing technique does not get rid of the clutter, but rather tries to improve

its visual organization, two known techniques to improve readability were also implemented in
the rendering of flows: edge sorting (edges representing bigger flows are drawn on the front) and
transparency (edges that represent less flow magnitude are less opaque).

4.8. Edge Bundling

An edge bundled view of the flows is also available [48]. This encoding for the flow map is
used in order to produce visual structures with coarser features to show major trends in the data,
particularly for mode-filtered dataset comparison (R1), and so, this is the only encoding where the
modal color scale is not used, but a radial color scale here is used to encode bundled flow direction.

Taking into account our data-set specificity, we selected the most appropriate edge bundling
technique, which allies computation simplicity and a sufficient visual aggregation results,
which balances data distortion and visual accuracy [16]. For this reason, we applied the KDEEB
technique [49].

5. Results

Here, we describe the insights that we, as researchers and users of the system, learned by
comparing pervasive data to survey data, in a general sense, and about the particular inference model
behind the XDR dataset.

The scatterplot reveals that pervasive data capture shorter and longer flows better than the survey,
which has a slightly narrower distance range and is also biased towards mid-distance flows, as shown
on Figure 5. This difference can have a rather important effect on the interpretation of data: a steeper,
long-tailed (powerlaw) distribution of flows suggests a scale-invariant network phenomenon, while the
flatter survey distribution does not, and thus surveys do not capture the full complexity of mobility.

XDR has almost total municipal origin-destination pair sampling coverage for a given period,
whereas survey data do not, as shown through the OD Matrix in Figure 6. Additionally, there is an
observable pattern of sampling in survey data: short active flows are unintentionally oversampled
(showing in the bright diagonal). However, when flows are expanded, these flows are downplayed
and overshadowed by expanded public and private mode longer-distance flows.

The geographic view of the flows is quite dissimilar for both datasets, exhibiting rather different
features, as can be observed in Figure 7. Pervasive data show notorious change in behaviour during the
day: in the morning, peripheral flows are directed towards the center and northeastern part of the city
(the small peaks appearing on these nodes); flows in the afternoon show roughly the opposite pattern,
but also an emergence of active flows around certain parts of the city; at night, short flows become
totally predominant across the city. On the other hand, survey data, apart from density changes, do not
exhibit a coherent structure in each period or in time, as its most prominent features are chaotic mid-
and long-distance flows.
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Figure 5. Pervasive (a) and survey (b) flows at night time. Each circle is an origin-destination pair, its
area the flow magnitude, with color coded mode split. Highlighted are the different overall shapes
present in their distribution.

The high density and large flows inside neighbors suggests that network-based analysis
(e.g., community analysis) could be possibleusing XDR data, while, with the travel survey, a network
structure does not appear so clearly, as shown by the OD matrix in Figure 8. Also, the fact that
pervasive data resembles more a powerlaw mean that it could be a much better fitted by a model,
e.g., the gravitational model [50], and so it would be a better input choice for a trained model, and for
network-based analysis.

Figure 6. XDR (a) and survey (b) flows at morning peak 1 at municipal aggregation level. Even at a
time period where they show a similar total flow magnitude, the sampling density is different.
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Figure 7. One day of mobility according to a travel survey (EOD) and a pervasive (XDR) dataset,
visualized as flow maps on Modalflow.

Figure 8. Zone-level OD matrix of XDR (a) and survey (b) flows for the night valley period. Sparser
measures and an over representation of intramunicipal flows can be appreciated in the survey.

Regarding modal distribution, the results are less general and more specific to the particular mode
of transportation inference model. This is due to the fact that the visualization reveals many features
that point to an over-fitted model, which is explained by the extended context in which the model was
applied (and not prepared for).

A quick observation of bundled flows on Figure 9 a particularly harsh contrast between private
mode distributions, with flows in the northeastern corner of the city heavily charged towards private
car usage and almost none in the rest of the city. Public transport is known to be less predominant in
the northeastern area of the city, which leads to the hypothesis that the current inference model may be
drifting toward extreme border conditions that are based on a small spatial trend. By looking through
different periods, as in Figure 7 we observe that this spatial partitioning of the city is stable, but it has
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a dynamic component, as sometimes the private mode cluster changes its geographical reach (private
is displaced to the southeast at Night Valley, but then goes back to its most common post).

The system is also able to reveal a strange pattern in the active flows: although they look
evenly sparsed geographically, a suspicious trend appears in the relation of the distance-modal split
distribution of active trips. This analytical task is achieved by dragging a narrow selection range
horizontally in the scatterplot, while looking at the ternary plot. By using this interaction technique,
the modal progression of the partial flow distribution as distance grows can be observed, which reveals
that inferred active trips dominate the very short distance up to the limit of around 2 km, where they
abruptly recede, but at all distances keeping at least one flow that is purely attributed to active mobility
(a certain artifact of the model). By doing the same experiment, a heavier correlation of inferred private
trips with distance is observed (compared to the survey data).

Finally, by looking at the compared modal distribution of flows that are aggregated by origin
municipality in the ternary plot (see Figure 10), an overall trend towards a bigger proportion of
active and public mode is observed in the XDR data. This result can be attributed to a bias in the
model, but also to the fact that pervasive data are more capable of detecting these trips than the
traditional survey.

Figure 9. Comparison of survey (EOD) and pervasive (XDR) data with geographic bundling by mode
of transportation.

Figure 10. XDR (a) and survey (b) flows aggregated by origin municipality positioned on the ternary
plot according to mean trip mode split (also encoded by background color), with radius encoding total
magnitude.
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6. Discussion

We showed Modalflow to domain experts and potential users working in Santiago through an
asynchronous qualitative evaluation process lasting a month. Each week, a new view of the system
would be uploaded to the demo page and iterated according to modifications that were suggested by
the freely commenting participants in the online discussion room. In some occasions, the participants
would even mock-up a new solution and present it to the group of their own will. In total, eight people
(four visualization/urban studies students and four urban planners from the private sector) voluntarily
participated throughout the whole process. After this, a one-session workshop was arranged with
governmental transport authorities, where five experts were shown the final system. Here, we report
on the results.

Early feedback was incorporated into the design, like the use of black background, only three
modes of transportation and the size of the visual elements, which can be switched between fixed
and variable (dependant on encoded flow magnitude). The sinusoidal encoding of flows was
deemed to be beautiful, but a bit confusing and using the more familiar arc encoding was suggested.
We explain this comment based on familiarity but we are aware that a formal evaluation is needed.
Interestingly, the sinusoidal encoding was more readable when dealing with XDR, rather than survey
data, arguably due to the artificial modal clustering computed for the former.

Admittedly, the domain experts were deterred at a later stage by the modal distribution of the
mobile phone network data, which, being still undergoing research, did not meet their expectations.
It seemed hard for them to abstract the visualization tool from the data being visualized, expecting to
see results rather than a tool to evaluate results by themselves. Conversely, the group of experts from
the private sector received the tool with much more interest and excitement. Even though both domain
expert profiles work on similar problems, experts working in the public sector seemed to be more
focused on strict results that could be readily applied, whereas experts in the private sector were
more open to new methodologies and how these visualizations “create” a new reality for the data
that can be used to strongly communicate and innovate. This difference has implications in how we
define and apply methodologies to enable collaborative work between transportation and data science,
using visualization as intermediary between disciplines [39].

The distribution-aware selector tool in the scatterplot was received as an interesting feature
and its implications could be further developed, attending to the idea of an “equivalence principle”
between flows of different datasets. Such an endeavour could be an interesting area of research for
modelling and mixed data analysis. This also poses new questions regarding the layout of the system.
Modalflow was designed with linked, juxtaposed visualizations, where the selector tool provided a
way to link data semantics. However, there exist other ways of composing visualizations in layouts,
such as superimposition, overloading and nesting [51], which would imply a different implementation
of the selection, while maintaining the data-semantic approach. These layouts will be studied in future
work. Because of the notebook layout, they are not exclusive—for instance, the OD matrices may be
juxtaposed, whereas the flow maps may be partitioned or nested, enabling an advanced comparison
and interaction with cross-origin datasets.

Other shortcomings of the design that were noted by experts were that the color encoding used
is not color-blind safe (making a three-component color scale to be inclusive is a challenge by itself,
which we propose as a future line of research) and that defining a three-fold categorical variable as
basis for the system seems like a limited choice, as some urban planners may want to disaggregate
the modes of transportation into four, or the usage of another categorical variable may need more
categories (for instance, income quintiles). From a technical standpoint, our choice presents a trade-off
between an overview and a detailed view of the datasets. The use of a notebook-style layout allows
to dive into a deeper level of details through adding more visualizations. These improvements will
be addressed in future versions of the system. Still, the use of three categories seems to be enough
to already tackle on-going problems in mobility, for instance, there are several gaps in mobility that
can be explored with two or three variables [52]; thus, Modalflow would allow for urban planners to
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uncover not only biases in methodological workflows, but also gaps in behaviour that are commonly
hidden in traditional analyses and visualizations [31,32].

7. Conclusions

In this paper, we have presented the Modalflow system for visualizing modal flow data in
mobility, with an emphasis comparing cross-origin flow data sources. The research contribution of our
paper consists of two main components: a set of considerations regarding the nature of pervasive and
traditional data sources, which we then used to determine the requirements for our system design,
and a set novel visualization techniques to fulfill those requirements, including a distribution-aware
selection tooltip and a bidirectional flow encoding. We validated our approach with a case study while
using real-world cross-origin datasets: XDR-inferred and traditional survey data of the city of Santiago.

Our aim was to create a tool that could help domain experts in urbanism to assess new datasets
from non-traditional sources and hopefully incorporate them into their workflow, at the same time
fostering interaction between data science and urbanism, as we saw this as an important gap to be filled
by the visualization community. Having presented the tool to different groups of experts, the experts
emphasised the importance of the problem addressed in this research and recognized Modalflow as a
notable tool to communicate the model results across disciplines.

While there is room for improving and extending each of the techniques presented in this paper
(geographical flow map with sinusoidal encoding/edge bundling, distance/magnitude scatterplot,
disaggregated origin-destination matrix, and ternary modal plot), we other important aspects of future
work: (1) exploring the temporal dimension: some visualizations developed point to new ways of
looking at multivariate flows that could be further researched (e.g., in the ternary plot, when flows
are aggregated by origin municipality, it gives a condensed image of the modal partition of the city;
enhancing it with the curves that were described by each municipality in the modal space through
time, an interesting research about daily mobility behaviour of cities could be conducted). (2) Finding
ways to visualize and compare accessibility (i.e., the analytical dimension of flows in urbanism that
considers the time that it takes to make a certain trip and other physical constraints) between datasets,
a dimension that was not considered in our current work, which adds a new layer of complexity to the
data. (3) Using the system to extend our study to different sources of pervasive data, thus developing a
better understanding of their differential biases, and to leverage human critical thinking in the task of
finding ways of making cross-origin datasets complement each other. We think that this paper stresses
the importance of visualization as a critical tool from a human-in-the-loop perspective, particularly in
complex scenarios, where no benchmark or ground truth is available, such as urban mobility.
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