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Abstract: In this investigation, self-learning salp swarm optimization (SLSSO) based proportional-
integral-derivative (PID) controllers are proposed for a Doha reverse osmosis desalination plant.
Since the Doha reverse osmosis plant (DROP) is interacting with a two-input-two-output (TITO)
system, a decoupler is designed to nullify the interaction dynamics. Once the decoupler is
designed properly, two PID controllers are tuned for two non-interacting loops by minimizing the
integral-square-error (ISE). The ISEs for two loops are obtained in terms of alpha and beta parameters
to simplify the simulation. Thus designed ISEs are minimized using SLSSO algorithm. In order to
show the effectiveness of the proposed algorithm, the controller tuning is also accomplished using
some state-of-the-art algorithms. Further, statistical analysis is presented to prove the effectiveness of
SLSSO. In addition, the time domain specifications are presented for different test cases. The step
responses are also shown for fixed and variable reference inputs for two loops. The quantitative and
qualitative results presented show the effectiveness of SLSSO for the DROP system.

Keywords: design of desalination systems; optimization; reverse osmosis; PID controller design;
water treatment plant; salp swarm optimization

1. Introduction

The existence of civilization depends upon the availability of potable water. The studies
are repeatedly indicating that the potable water is acutely depleted in the last few decades.
The main reason for depletion of fresh water is overuse of ground water due to growing population
and industrialization [1]. In order to meet the requirements due to increased population and
industrialization, it is required to explore for sources of fresh water. The desalination of sea water is
one of the possible solutions since the expense of sea water is abundant [2].

The process of removing salts from saline water is called desalination [3]. Desalination is achieved
by (a) thermal distillation processes such as multiple effect evaporation, multi-stage flash (MSF),
vapour compression, etc., and (b) membrane processes such as nano-filtration, electro-dialysis reversal,
forward osmosis, reverse osmosis (RO), etc. Among these, RO has been proved to be economical [4].
RO process also produces high quality water with minimal energy consumption. Additionally, there is
low initial investment in case of RO process.

RO is a filtration process which segregates fresh water from higher concentrated saline water.
In RO process, a semi-permeable membrane is used which passes the fresh water through it and rejects
the concentrated solution. The various plants which use the RO process are Doha RO system [5],
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Chaabene RO system [6], Riverol and Pilipovik [7], etc. The various pilot-scale models [8] for RO
are also presented in literature. The RO models given in literature are interacting having flux and
conductivity as controlled variables generally.

The most common controller used for interacting RO models is a proportional-integral-derivative
(PID) controller. The PID controller is used due to its simple structure and being able to produce
satisfactory performance. The performance of PID controller depends on the quality of tuning.
The classical methods [9] used for tuning are Ziegler–Nichols, gain-phase margin method, Cohen–Coon,
etc. However, the main drawback with classical tuning methods is moderate performance of the
controller [10]. The controller performance can be enhanced by improving the quality of tuning.

Various optimization based methods can guarantee the improved quality of tuning [11].
Recently, the intelligent optimization algorithms like fireworks algorithm [12], bacterial foraging
optimization [13], elephant herding optimization [10], whale optimization algorithm [2,14], monarch
butterfly optimization [15], brain storm optimization [16], etc. are proposed in the existing literature.
Some techniques are proposed in the literature for tuning the PID controller for RO systems. In [11],
PID controller is designed using Luus–Jaakola (LJ) optimization algorithm for the RO system.
Particle swarm optimization (PSO) is utilized for tuning the PID controller parameters in [17].

Grey wolf optimization (GWO) assisted PID tuning for RO system is presented in [4].
Similarly, whale optimization algorithm and elephant herding optimization based controllers are
suggested in [2,10], respectively. Other relevant controller designs can be found in [18,19]. The methods
presented in [2,4,10,19] also provide better response when compared to classical methods of tuning
of PID controller. However, the methods proposed in [2,4,10,19] are providing the tuning with
basic algorithms only. It is well known that the basic algorithms have the problem of local minima
trapping [20]. So sometimes, it becomes necessary to enhance the performance of basic algorithm by
some modifications [21,22].

In this investigation, an improved algorithm, i.e., self learning salp swarm optimization (SLSSO),
is utilized for tuning of PID controllers [23]. The controller tuning is presented for Doha reverse
osmosis plant (DROP). DROP model is having two controlled variables namely, flux and conductivity
and two manipulated variables namely, pressure and pH. These four variables are interacting in nature.
This makes DROP model an interacting two-input-two-output (TITO) system. First, a decoupler
is designed using feed-forward method [24] of decoupling to make the system non-interacting in
nature. Thus obtained model has two non-interacting loops, one for flux and other for conductivity.
Then, two PID controllers are obtained for two non-interacting loops using SLSSO algorithm.
The integral-of-squared-error (ISE) is taken as tuning criterion. For the ease of simulation, the ISE is
formulated in terms of alpha and beta parameters. The key features of proposed method are: (a) it
is utilizing SLSSO for tuning of PID controllers, (b) a decoupler is designed for interacting Doha
RO system, (c) the ISE is formulated in terms of alpha and beta parameters, and (d) the results of
SLSSO are also compared with other algorithms to prove its supremacy. This study also obtained
the PID controllers using artificial bee colony (ABC) algorithm, LJ algorithm, Nelder–Mead simplex
(NMS) algorithm, sine cosine algorithm (SCA) and salp swarm optimization (SSO) algorithm for fair
comparisons of performance of SLSSO tuned controllers. Additionally, time-domain specifications are
tabulated for comparisons. Further, the statistical analysis of ISE obtained for controllers is presented.
Moreover, the closed-loop responses (step, impulse and variable step responses) are also shown for
different controllers.

The structure of the paper is as follows: Section 2 presents the description of reverse osmosis
system in consideration. The interacting TITO system is given in the same section. In addition,
the decoupler design is described in this section. The controller structure is presented in Section 3.
Section 4 is presenting the SSO algorithm. The description of SLSSO algorithm is also given in the
same section. Section 5 presents results and discussion where two case studies are discussed in detail.
Finally, the findings of paper are concluded in Section 6.



Algorithms 2020, 13, 287 3 of 14

2. Reverse Osmosis System

The schematic block diagram of Doha reverse osmosis plant (DROP) system is provided in
Figure 1 [4]. The RO desalination plant comprises of four stages, namely, pre-treatment, high pressure
pump, RO membrane assembly and post-treatment.
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Figure 1. The block diagram of Doha reverse osmosis plant (DROP) system.

During pre-treatment stage, the saline water undergoes filtration to remove any physical or
chemical impurities. This stage is important to ensure membrane longevity. The organic chemicals
which can burn holes in the membrane and can cause irreparable damage to membrane are trapped
using activated cartridge filters. In addition, some inhibitors are added to decrease the pH of the
feed-water which helps in reducing the scaling effect. Besides this, physical impurities like mud
particles and microbial growth on membrane are also removed during this stage to increase the life
of membrane.

High pressure pump is utilized to provide the necessary pressure required for reverse osmosis.
For brackish water, it is in the range of 15–25 bars while it is 54–80 bars for sea water. The pressurized
feed-water is then fed to the membrane assembly which is made up of two or more hollow or spiral
wound composite polyamide membranes. This is the main part of the RO system. It does not allow
impurities to pass through it. The membrane assembly must be able to withstand the high pressure.
The rejected brine from membrane assembly is sent to the discharge channel. In post-treatment stage,
calcium and bi-carbonate ions are removed from the water. In addition, the pH is raised slightly above
7 and water is prepared for distribution. The two controlled variables (flux and conductivity of output
water) are manipulated using two manipulated variables (feed-water pressure and feed-water pH) in
case of DROP model.

2.1. Control-Loops for DROP Model

The block diagram of DROP is given in Figure 2. The transfer function of interacting DROP model
is given as [

Y1(s)
Y2(s)

]
=

[
D11(s) D12(s)
D21(s) D22(s)

] [
R1(s)
R2(s)

]
(1)

where R1(s) and R2(s) are two manipulated variables which are feed-water pressure and feed-water
pH, respectively, and Y1(s) and Y2(s) are two controlled variables which are flow and conductivity of
output water, respectively. The transfer functions D11(s), D12(s), D21(s) and D22(s) are denoting the
individual transfer functions in between two manipulated variables and two controlled variables.

The transfer functions D11(s), D12(s), D21(s) and D22(s) are given as:

D11(s) =
k11(n11s + 1)

s2 + 2ζ11d11s + d11
(2)
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D12(s) = 0 (3)

D21(s) =
k21(n21s + 1)

s2 + 2ζ21d11s + d21
(4)

D22(s) =
k22(n22s + 1)

s2 + 2ζ22d22s + d22
(5)

It can easily be concluded from transfer functions (2)–(5) that both flow and conductivity are
manipulated by feed-water pressure. However, the feed-water pH is affecting only conductivity.
The values of different parameters of transfer functions (2)–(5), are given in Table 1 [4]. The interval
transfer functions of (2)–(5) turn out to be (2)–(5) by considering 40% uncertainty.

D11(s) =
[0.402, 0.938] + [0.0225, 0.0525] s

[10.956, 25.564] + [19.938, 46.522] s + [0.60, 1.40] s2 (6)

D12(s) = 0 (7)

D21(s) =
[−3.346,−1.434] + [−1.1711,−0.5019] s

[1.302, 3.038] + [16.65, 38.85] s + [0.60, 1.40] s2 (8)

D22(s) =
[−113,−57] + [−42.63,−18.27] s

[0.774, 1.806] + [1.794, 4.186] s + [0.60, 1.40] s2 (9)

Table 1. Parameters at salinity of 3000 µS/cm.

Parameter k11 n11 ζ11 d11 k21 n21 ζ21 d21 k22 n22 ζ22 d22

Value 0.67 0.056 0.91 18.26 −2.39 0.35 0.76 2.17 −95 0.32 1.16 1.29

 
 22 22

22 2 2
22 22 22

1

2

k n s
D s

s d s d




 
 (5) 
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Figure 2. Block diagram.

2.2. Design of Decoupler

A decoupler is required to be designed to nullify the effect of interaction for interacting TITO
system. Figure 3 shows the decoupler along with the plant. This work employs simplified decoupling
technique [17] to convert interacting TITO system into two non-interacting control loops. The transfer
function of decoupler is obtained by

T = CpCd (10)
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such that

T =

[
T11(s) 0

0 T22(s)

]
(11)

Cd =

[
1 x
y 1

]
(12)

where Cp and Cd are, respectively, the transfer functions of plant and decoupler. From (10), it is obtained

x = −D12(s)
D22(s)

(13)

y = −D21(s)
D11(s)

(14)

T11 =
D11(s)D22(s)− D12(s)D21(s)

D22(s)
(15)

T22 =
D11(s)D22(s)− D12(s)D21(s)

D11(s)
(16)

Hence, it is clear from (13)–(16) that by choosing x and y as given in (13) and (14), respectively,
the interacting system is decoupled into two non-interacting loops with transfer functions, T11 and T22

as given in (15) and (16), respectively. Thus, two independent PID controllers, CPID1 and CPID2, can be
obtained for two non-interacting loops having transfer functions, namely T11 and T22 .

Decoupler Plant

P

pH

F

C

1PIDC

2PIDC

dC pC

 
Fig. 3. Decoupler with TITO system. 
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Figure 3. Decoupler with TITO system.

3. Controller Design

3.1. Controller Structure

In literature, many structures of PID controller are existing. However, the simple and widely used
parallel form given in (17) is used in this work.

u(t) = Kpe(t) + Ki

∫ t

0
e(t)dt + Kde(t) (17)

The parameters, Kp, Ki and Kd are, respectively, the proportional, integral and derivative gains.
However, u(t) and e(t) denote the control effort generated by controller and error signal fed to
controller, respectively. In Laplace domain, (17) becomes as given in (18).

CPID =
U(s)
E(s)

= Kp +
Ki
s
+ Kds (18)
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3.2. The Determination of ISEs for DOHA Plant

The ISE is utilized for obtaining the controller parameters. The ISE is obtained in terms of alpha
and beta parameters. The ISE for two independent loops, i.e., pressure-flux and pH-conductivity loops,
is given below.

(a) ISE for pressure-flux loop:

ISE1 =
∫ ∞

0
e2

1(t)dt =
k

∑
i=1

β2
i

2αi
(19)

(b) ISE for pH-conductivity loop:

ISE2 =
∫ ∞

0
e2

2(t)dt =
k

∑
i=1

β
2
i

2αi
(20)

The alpha and beta parameters are obtained utilizing alpha and beta tables. The alpha and beta
tables are derived from respective error in Laplace domain. Suppose the error in Laplace domain is
given as

E(s) =
Um−1sm−1 + · · ·+ U1s + U0

Vmsm + Vm−1sm−1 + · · ·+ V1s + V0
(21)

The alpha and beta tables are constructed as given in Tables 2 and 3, respectively [4]. The first two
rows of Tables 2 and 3 are obtained from (21). The rest of the elements are obtained using elements of
these two rows.

Table 2. Alpha table.

c0
0 = Vm c0

2 = Vm−2 c0
4 = Vm−4 c0

6 = Vm−6
c0

1 = Vm−1 c1
2 = Vm−3 c1

4 = Vm−5 · · ·

α1=c0
0

/
c1

0 c2
0 = c0

2 − α1c1
2 c2

2 = c0
4 − α1c1

4 c2
4 = c0

6 − α1c1
6 · · ·

α2=c1
0

/
c2

0 c3
0 = c1

2 − α2c2
2 c3

2 = c3
4 − α2c2

4 c3
4 = c1

6 − α2c2
6

. . .

α3=c2
0

/
c3

0 c4
0 = c2

2 − α3c3
2 c4

2 = c0
4 − α3c3

4

...

α4=c3
0

/
c4

0 c5
0 = c3

2 − α4c4
2

...

α5=c4
0

/
c5

0

...
...

Table 3. Beta table.

d1
0 = Um−1 d1

2 = Um−3 d0
4 = Um−5 d1

6 = Um−7
d2

0 = Um−2 d2
2 = Um−4 d2

4 = Um−6 · · ·

β1=d1
0

/
c1

0 d3
0 = d1

2 − β1c1
2 d3

2 = d1
4 − β1c1

4 d3
4 = d1

5 − β1c1
6 · · ·

β2=d2
0

/
c2

0 d4
0 = d2

2 − β2c2
2 d4

2 = d2
4 − β2c2

4 d4
4 = d2

6 − β2c2
6

. . .

β3=d3
0

/
c3

0 d5
0 = d3

2 − β3c3
2 d5

2 = d3
4 − β3c3

4

...

β4=d4
0

/
c4

0 d6
0 = d4

2 − β4c4
2

...

β5=d5
0

/
c5

0

...
...
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4. Salp Swarm Optimization

Salp swarm optimization (SSO) [25] is a nature inspired swarm-based meta-heuristic optimization
algorithm. It is proposed recently by Mirjalili et al. [26] in 2017. This algorithm is derived from
the swarming behavior of salps. Salps are found in deep ocean and are very similar to jelly fishes.
The salps’ population can be categorized into (i) leaders and (ii) followers. The leaders lead the whole
population while followers follow the instructions of leaders, directly or indirectly. The salps form
chain to move. The salps at front of chain are known as leaders and remaining salps are known as
followers. The better half of the population is treated as leader salps. However, remaining salps are
considered as followers.

At first, the candidate solutions for leaders are updated. Since, followers follow the leaders,
the candidate solutions for followers are updated using the solutions obtained for leaders. Suppose,
Xi,j, i = 1, 2, · · · , M and j = 1, 2, · · · , N denote initial candidate solutions for whole population where
M and N represent population size and number of decision variables, respectively. The candidate
solutions for leaders and followers are updated as follows.

4.1. Update of Candidate Solutions for Leaders

The candidate solutions for leaders are updated as

Xnew
i,j =



Tj + k1((X+
j − X−j )k2 + X−j )

k3 ≥ 0.5

Tj − k1((X+
j − X−j )k2 + X−j )

k3 < 0.5

(22)

where Xnew
i,j is updated candidate solutions for Xi,j, Tj is the position of food source, X−j and X+

j
represent the minimum and maximum values of decision variables, k2 and k3 are random numbers
distributed uniformly in the range [0,1], and k1 is modified during course of iterations as

k1 = 2e
−
(

4t
T

)2

(23)

where T and t, respectively, are maximum number of iterations and current iteration.

4.2. Update of Candidate Solutions for Followers

The candidate solutions for followers are updated using the solutions of leaders. The mathematical
expression used for updating the candidate solutions for followers is

Xnew
i,j =

Xi,j + Xi−1,j

2
(24)

where Xnew
i,j denotes updated candidate solution for follower Xi,j.

After updating the whole population as suggested in (22) and (24), candidate solutions violating
the minimum and maximum values of decision variables are reinitialized at respective minimum and
maximum values of decision variables. The pseudo code of SSO is presented in Figure 4.
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where 2i  , and  new
,i jX  denote  updated candidate solution for follower ,i jX .  

After updating the whole population as suggested in (17) and (19), candidate solutions violating 

the minimum and maximum values of decision variables are reinitialized at respective minimum 

and maximum values of decision variables. The pseudo code of SSO is presented in Table 1. 

Table 1: Pseudo Code of SSO Algorithm 

Initialize salps’ population ,i jX , 1, 2, ,i M   and 1,2, ,j N   

While (termination criterion is not met) 
 Evaluate whole population 
 Find the best salp i.e. T  
    

 For (leaders)   
   
 End 
 For (followers) 
    
 End 
 Amend candidate solutions violating the minimum and 

maximum values of decision variables 
End 
Print result  

 

5. Self-Learning Slap Swarm Optimization 

In this phase, a self-learning rule exploit the space in close proximity of the individual position to 

reach its global optima [37]. The rule provides an opportunity to each learner to enhance the 

individual knowledge from self-surrounding space. This phase can be mathematically expressed 

as: 

      , , 1 0.5new
i j i jX k X k r      (20) 

Where,   determines the individual self-learning capability and termed as self-learning factor, 

 ,
new
i jX k  is the new solution vector in this phase and  0,1r . The self learning factor,   is 

considered as 3 in this work. The solution vector, , ( )i jX k , has been updated using greedy 

selection criterion. Thus, updated , ( )i jX k   after this phase takes part in the next iteration. 

 

6. Results and Comparisons 

  

  

   

Update candidate solutions using (22)

Update candidate solutions using (24)

Modify 1k using (23)

Figure 4. Pseudo code of SSO algorithm.

4.3. Self-Learning Salp Swarm Optimization

A self-learning rule exploits the space in close proximity of the individual position to reach its
global optimum [23]. The rule provides an opportunity to each learner to enhance the individual
knowledge from self-surrounding space. This phase can be mathematically expressed as:

Xnew
i,j (k) = Xi,j(k)(1 + λ(r− 0.5)) (25)

where, Xnew
i,j (k) is the new solution vector in this phase, λ is the self-learning factor which determines

the self-learning capability of each individual and r ∈ [0, 1]. The value of λ is considered 3 in this work.
Update the solution vector, Xi,j(k), using greedy selection. Thus, the updated Xi,j(k) after this phase
takes part in the next iteration.

5. Results and Comparisons

Two case studies are performed to highlight the findings and contributions of this article.
One proportional-integral-derivative (PID) controller is designed for pressure-flux loop and other
PID controller is tuned for pH-conductivity loop. In both the case studies, ISE of respective loop
is minimized using SLSSO algorithm [23]. For fair presentation of efficacy of SLSSO algorithm,
other algorithms namely, SSO, ABC, LJ, NMS, SCA and PSO are applied to tune the PID controller.

5.1. Case Study I

The results presented in this case study are obtained for pressure-flux loop by minimizing the
performance index given in (19). Table 4 presents PID gains i.e., Kp, Ki, and Kd obtained using SLSSO.
Same table also tabulates the PID gains obtained using ABC, LJ, NMS, PSO, SCA and SSO. The mean
and minimum values of ISE along with standard deviation are also presented in this table. The time
domain specifications of step response obtained due to all algorithms (ABC, LJ, NMS, PSO, SCA,
SSO and SLSSO) are tabulated in Table 5. The Figure 5 shows the step response obtained due to
ABC, LJ, NMS, PSO, SCA, SSO and SLSSO. In addition to this, the response of pressure-flux loop for
variable input due to SLSSO algorithm is plotted in Figure 6. The Figure 7 is showing the response
with disturbance.

The mean value of ISE is minimum in case of SLSSO algorithm as shown in Table 4. The same
is true for minimum value of ISE and standard deviation. The time domain specifications tabulated
in Table 5 also supports the response obtained for pressure-flux loop. The step response of
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SLSSO algorithm is also reaching steady state as shown in Figure 5. For variable input and input
having disturbance also, the SLSSO tuned controller is providing stable step response as shown in
Figures 6 and 7. Hence, it can be inferred that SLSSO algorithm is a better choice for tuning the PID
gains for pressure-flux loop of DROP system.

Table 4. Values of controller parameters for control loop I.

ABC LJ NMS PSO SCA SSO SLSSO

Kp1 100 95.21149 99.12550 100 100 100 100

Ki1 100 100 99.97304 100 100 100 100

Kd1 7.62050 27.67958 87.63271 11.42217 6.90757 7.71729 7.71729

Mean 2.07748 2.48291 2.23661 2.14169 2.24482 2.06634 2.06630

min 2.06630 2.08290 2.07079 2.06630 2.06630 2.06630 2.06630

SD 0.01233 0.22128 0.11820 0.17547 0.14121 0.00021 0.00002

Table 5. Comparisons of performance for control loop I.

ABC LJ NMS PSO SCA SSO SLSSO

Rise time 13.07413 12.89226 12.75271 13.05996 13.07628 13.07377 13.07377

Settling time 23.48781 23.33940 23.51330 23.50330 23.56116 23.48848 23.48849  
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Figure 5. Unit step response for control loop I.



Algorithms 2020, 13, 287 10 of 14 

 

 

  

0 20 40 60 80 100 120 140 160 180 200

Time (s)

0

20

40

60

80

100

A
m

p
lit

u
d

e

Actual output

Reference

Figure 6. Response of SLSSO-based controller for variable step input for loop I.
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Figure 7. Response of SLSSO-based controller for variable step input with disturbance for loop I.

5.2. Case Study II

This case study presents the analysis of results obtained for pH-conductivity loop. In this case,
the performance index given in (20) is minimized using SLSSO algorithm. The PID gains (Kp, Ki,
and Kd) obtained using SLSSO are presented in Table 6. The Table 6 also provides gains obtained due
to ABC, LJ, NMS, PSO, SCA and SSO. The mean and minimum values of ISE along with standard
deviation are also shown in Table 6. The time domain specifications (rise time and settling time) of step
response are given in Table 7 which are obtained due to ABC, LJ, NMS, PSO, SCA, SSO and SLSSO.
The Figure 8 plots the step response of pH-conductivity loop due to ABC, LJ, NMS, PSO, SCA, SSO
and SLSSO. Moreover, the response of pH-conductivity loop for variable step input and step input
having disturbance due to SLSSO algorithm is presented in Figures 9 and 10, respectively.
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In this case also, the mean value of ISE is the minimum for SLSSO algorithm as shown in Table 6.
The same conclusion can be derived for minimum value of ISE and standard deviation. Table 6,
Figures 8–10 also prove that the SLSSO algorithm is an excellent alternative for tuning of PID controller
for DROP system.

Table 6. Values of controller parameters for control loop II.

ABC LJ NMS PSO SCA SSO SLSSO

Kp2 −100 −79.93280 −99.29953 −100 −100 −100 −100

Ki2 −100 −85.25339 −84.53067 −100 −99.87994 −100 −100

Kd2 −100 −100 −98.73694 −100 −97.57030 −100 −100

Mean 5.6866× 10−8 1.7143× 10−7 7.8758× 10−8 6.2789× 10−8 6.9226× 10−8 5.2441× 10−8 5.2396× 10−8

min 5.2396× 10−8 6.7616× 10−8 5.5918× 10−8 5.2396× 10−8 5.3462× 10−8 5.2396× 10−8 5.2396× 10−8

SD 2.3733× 10−8 7.0918× 10−8 2.3465× 10−8 2.3200× 10−8 1.8263× 10−8 2.5872× 10−10 2.6922× 10−23

Table 7. Performance parameters using different algorithms for control loop II.

ABC LJ NMS PSO SCA SSO SLSSO

Rise time 1.51527 1.84908 1.70050 1.51527 1.48409 1.51527 1.51527

Settling time 7.17368 8.61641 5.65413 7.17368 6.86024 7.17368 7.17368
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Figure 8. Unit step response for control loop II.
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Figure 9. Response of SLSSO-based controller for variable step input for loop II.
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Figure 10. Response of SLSSO-based controller for variable step input with disturbance for loop II.

6. Conclusions

This contribution presented design of proportional-integral-derivative (PID) controller for Doha
reverse osmosis plant (DROP). The DROP system is interacting in nature and has two inputs and
two outputs resulting in TITO system. Since, this TITO system is interacting, the interaction effect
should be eliminated before designing the PID controllers for two manipulated variables. In this article,
simplified decoupling technique is adopted to design decoupler for interacting TITO DROP system.
After designing the decopuler, two PID controllers for pressure flux and pH conductivity loops are
designed to manipulate the pressure and pH in order to generate specified flux and conductivity.
For designing the PID controllers, integral-square-error (ISE) of the respective loop is minimized using
lelf-learning salp swarm optimization (SLSSO) algorithm [23]. It was proved that SLSSO algorithm is
an excellent choice for tuning the PID gains for two loops of the DORP system.
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As far as the further extension of this work is considered, it is aimed to obtain the interval
model in discrete domain. The reduced-order model for discrete domain will be designed in
further research. It would also be interesting to investigate the controller design using intelligent
optimization algorithms like fireworks algorithm [12], bacterial foraging optimization [13], elephant
herding optimization [10], whale optimization algorithm [2,14], monarch butterfly optimization [15],
brain storm optimization [16], etc.
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