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Abstract: To minimise environmental impact, to avoid regulatory penalties, and to improve
competitiveness, energy-intensive manufacturing firms require accurate forecasts of their energy
consumption so that precautionary and mitigation measures can be taken. Deep learning is widely
touted as a superior analytical technique to traditional artificial neural networks, machine learning,
and other classical time-series models due to its high dimensionality and problem-solving capabilities.
Despite this, research on its application in demand-side energy forecasting is limited. We compare two
benchmarks (Autoregressive Integrated Moving Average (ARIMA) and an existing manual technique
used at the case site) against three deep-learning models (simple Recurrent Neural Networks (RNN),
Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU)) and two machine-learning
models (Support Vector Regression (SVR) and Random Forest) for short-term load forecasting (STLF)
using data from a Brazilian thermoplastic resin manufacturing plant. We use the grid search method
to identify the best configurations for each model and then use Diebold–Mariano testing to confirm
the results. The results suggests that the legacy approach used at the case site is the worst performing
and that the GRU model outperformed all other models tested.

Keywords: short-term load forecasting; STLF; deep learning; RNN; LSTM; GRU; machine learning;
SVR; random forest; energy consumption; energy-intensive manufacturing; time-series
prediction; industry

1. Introduction

The industrial sector is the largest consumer of delivered energy worldwide, and energy-intensive
manufacturing is the largest component in that sector [1]. Energy-intensive manufacturing includes
the manufacture of food, beverage, and tobacco products; pulp and paper; basic chemicals;
refining; iron and steel; nonferrous metals, and nonmetallic metals [2]. Energy-intensity is driven
by the mix of activity in these sectors including basic chemical feed-stocks; process (including heating
and cooling) and assembly; steam and cogeneration; and building-related energy consumption,
e.g., lighting, heating, and air conditioning [2]. World industrial energy consumption is forecasted to
grow from c. 242 quadrillion British thermal units (Btu) in 2018 to about 315 quadrillion Btu in 2050;

Algorithms 2020, 13, 274; doi:10.3390/a13110274 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0002-7952-3239
https://orcid.org/0000-0002-8242-9059
https://orcid.org/0000-0001-5378-4732
https://orcid.org/0000-0001-9284-7580
https://orcid.org/0000-0002-9163-5583
http://www.mdpi.com/1999-4893/13/11/274?type=check_update&version=1
http://dx.doi.org/10.3390/a13110274
http://www.mdpi.com/journal/algorithms


Algorithms 2020, 13, 274 2 of 19

the proportion of energy-intensive manufacturing is forecasted to remain at approx. 50% during that
period [1].

It is widely held that energy consumption tends to be positively associated with a higher rate of
economic growth [3]; however, against this backdrop is the environmental impact of this consumption.
As part of the United Nations Sustainable Development Goals (SDG), SDG 9 has industrial targets to
reduce carbon dioxide (CO2) emission per unit of value added through increased resource-use efficiency
and greater adoption of clean and environmentally sound technologies and industrial processes [4].
To meet these targets, governments worldwide are imposing regulations and taxes to reduce the
environmental impact of industrial energy consumption. Firm-level forecasts of energy consumption
are essential for precautionary and mitigation measures decision-making by management to minimise
environmental impact, to manage cash flow, and to reduce or eliminate risk [5]. Accurate firm-level
monitoring can also improve the data quality available to policymakers for local, regional, and national
policies and actions.

Extant literature has typically (i) focused on supply-side perspectives, (ii) aggregated energy costs,
and (iii) failed to recognise the idiosyncrasies of the energy-intensive manufacturing sector and the
associated centrality of energy management in production planning. There is a paucity of studies in
demand-side process-related short-term load forecasting (STLF) using deep learning and machine
learning for energy-intensive manufacturing. The limited studies that have been published do not
compare deep-learning performance against widely used machine-learning models, classical time
series models, or approaches used in practice. In addition to proposing prediction models, we also
address this gap.

In this paper, we focus on performance analyses of deep-learning and machine-learning models
for firm-level STLF considering the energy-intensive manufacturing process of a thermoplastic resin
manufacturer. We use energy consumption and production flow data from a real Brazilian industrial
site. In addition to the energy consumption time series, we use data from two different stages of the
thermoplastic resin production process: polymerisation and solid-state polymerisation. We propose
three deep-learning models—simple Recurrent Neural Networks (RNN), Long Short-Term Memory
(LSTM) networks, and Gated Recurrent Unit (GRU)—and two machine-learning models—Support Vector
Regression (SVR) and Random Forest—for predicting daily energy consumption. These techniques
were selected as they are referenced in the literature on STLF for demand-side energy consumption [6,7].
We use the grid search method to identify the best model configurations. We compare the performance of
the deep-learning and machine-learning models against (i) a classical time series model, Autoregressive
Integrated Moving Average (ARIMA), and (ii) the current manual approach at the case site.

The remainder of this paper is organised as follows. Section 2 presets the description of the data,
preprocessing, and evaluation metrics used in our work. Section 3 presents the models identified
for evaluation. Our results and most relevant findings are discussed in Section 4. Section 5 presents
a discussion about the related works. The paper concludes with a summary of the paper and future
avenues for research in Section 6.

2. Material and Method

2.1. Dataset

The data used in this study was sourced from the Brazilian subsidiary of an international
thermoplastic resin manufacturer, an energy-intensive manufacturing plant. The plant size is c.
55,000 m2 with a production capacity of approximately 500,000 tons per year. Currently, the case site
calculates energy consumption forecasts manually and prepares a technical energy consumption index
(TECI) as a proxy for energy efficiency. Five years of data from 1 January 2015 to 31 December 2019 for
daily total energy consumption at the plant (ENERGY dataset) as well as process-related data for two
different stages of the manufacturing process—polymerisation (POLY_PRODUCTION dataset) and
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solid-state polymerisation (SSPOLY_PRODUCTION dataset)—were provided. Each dataset comprised
1826 values. Figure 1 presents the time series of the three datasets used in this work.

(a)

(b)

(c)

Figure 1. Daily dataset of (a) the energy consumption, (b) the production flow for the polymerisation
stage, and (c) the production flow for the solid-state polymerisation stage.

To identify the impact of the variations in the production flow data on total plant energy
consumption, we performed a Pearson correlation analysis. It showed a moderate positive correlation
between the ENERGY dataset and the combined production flow dataset (POLY_PRODUCTION
dataset and SSPOLY_PRODUCTION dataset). The correlation coefficient between the ENERGY
dataset and the POLY_PRODUCTION dataset was 0.71, while the relationship between the ENERGY
dataset and the SSPOLY_PRODUCTION dataset was 0.75. Once this analysis was completed, a decision
was made to include all three time series (ENERGY, POLY_PRODUCTION, SSPOLY_PRODUCTION)
as input in the deep-learning models.

2.2. Data Preprocessing

Missing values and measurement errors can lead to unpredictable results. To avoid removing
these, anomalous data were filled with imputed data and then normalised. For the former, we replaced
missing data with the average of the data from the previous seven days as per [8–10]. We then
normalised the data so that all model inputs had equal weights and the Sigmoid activation function
could be applied in the deep-learning models as per [11–13]. Normalization reduces the data range
to zero and one [0, 1]. Sklearn’s MinMaxScaler function was used to normalise the data in this study,
based on Equation (1).

X′i =
Xi −min(x)

max(x)−min(x)
(1)
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where X′i is the rescaled value, Xi is the original value, min(x) is the minimum value in feature,
and max(x) is the maximum value in feature.

2.3. Evaluation Metric

Root mean squared error (RMSE), mean absolute percent error (MAPE), and mean absolute error
(MAE) are the most commonly metrics used in the evaluation of the accuracy of energy-consumption
models [14] and, in particular, studies related to STLF using deep learning [6,7,15].

RMSE is defined as the square root of the mean squared error (MSE) [16] (Equation (2) [17]),
that is, the root of the mean square error of the difference between the prediction (Pi) and the real value
(Ri), where n is sample size. As RMSE is more sensitive to more significant errors (outliers) because it
squares the difference between the predicted value and the real value. RMSE presents error values
in the same dimensions as the analysed variable [16]. It is widely applied in models that use time
series [18].

RMSE =

√
1
n

n

∑
i=1

(Pi − Ri)2 (2)

MAPE is widely used for evaluating prediction models particularly where the quality of the
forecast is required and is used in numerous energy-consumption forecasting studies [6,11–13,19].
MAPE is defined in Equation (3) [6,11,17] and expresses the accuracy of the error as a percentage.
It can be applied in a wide range of contexts, as it is a relatively intuitive interpretation of relative
errors; however, it can only be used if the values in the dataset do not equal zero [20].

MAPE% =
100
n

n

∑
i=1

∣∣∣∣Pi − Ri
Ri

∣∣∣∣ (3)

MAE is defined in Equation (4) [12,17]. Unlike the other metrics presented, MAE depends on
the scale of the data. It is not sensitive to outliers, as it treats all errors in the same way. We use it to
quantify a model’s ability to predict energy consumption.

MAE =
1
n

n

∑
i=1
|Pi − Ri| (4)

While one or more of RMSE, MAPE, and MAE have been featured in related studies [6,7], we have
chosen to measure all of them for better comprehensiveness and analysis of different aspects of what is
being studied [21].

3. Finding Models to Predict Energy Consumption

Due to the nonlinear characteristics of the datasets used in this research, to the need for both
accuracy and fast run times, and to the promising results obtained in other works that used deep
learning [12,19,22,23], three deep-learning techniques were selected for STLF in this study: simple
RNN, LSTM, and GRU. In addition to these techniques, two different machine-learning techniques
were selected for the purpose of comparison: SVR, and Random Forest. These were selected as
they are featured in related works on STLF for demand-side energy consumption [6,7]. Our models
use three time series as input—(i) energy consumption, (ii) polymerisation production flow (POLY),
and (iii) solid-state polymerisation production flow (SSPOLY)—and have a single output: the predicted
energy consumption. For each input, the model uses data from the preceding seven days.

3.1. Deep Learning Models

As mentioned previously, we propose three deep-learning techniques for STLF: simple RNN,
LSTM, and GRU. RNNs are a type of Artificial Neural Network (ANN) designed to recognise
patterns in sequential data streams. In RNNs, the decision, classification, or learning done at a given
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moment t−1 influence the decision, classification, or learning at a subsequent time t in the time series.
RNNs contain two sources of input: the present and the recent past. These data are combined to
determine how new data is predicted. RNNs have a memory that, for example, multi-layer perceptrons
(MLP) and Convolutional Neural Network (CNN) do not. As such, RNNs use information in the
sequence itself to perform tasks that other ANNs are unable to do. RNNs have limitations, the most
significant of which are difficulties in training RNNs to capture long-term dependencies due to
vanishing and exploding gradient problems [24,25]. LSTM and GRU are variations of RNN that
overcome such problems.

LSTM [26] is a variation of RNN that overcomes gradient problems through the use of a chain
structure containing four neural networks and different blocks of memory [27]. LSTM updates
its unit states using three gates: a forget gate, an input gate, and an output gate. The forget gate
deletes information that is no longer useful in the unit [27]. The current input xt and the output
from the previous unit ht−1 are multiplied by the weight matrix. The result is passed through an
activation function that provides a binary output that causes the data to be forgotten. The input
gate performs addition of useful information to the unit’s status. First, the information is adjusted
using a sigmoid function. Then, the tanh function is used to create a vector that produces −1 to
+1. Finally, the output gate completes the extraction of useful information from the current state of
the unit to be displayed as an output. In order to do so, a vector is generated by applying a tanh
function to a cell. Due to its structure, LSTMs can predict time series with time intervals of unknown
duration [28], a significant advantage over traditional RNNs. Notwithstanding this, long training
times are a significant limitation [29].

GRUs reduce the complexity of LSTMs by only utilising an update gate and a reset gate to
determine how values in the hidden states are computed [25]. In GRUs, only one hidden state is
transferred between the time steps [25]. This state is capable of maintaining long- and short-term
dependencies at the same time. GRU gates are trained to selectively filter out any irrelevant information
while maintaining what is useful. These gates are vectors containing binary values, as in LSTM,
and determine the importance of the information. Crucially, research suggests that GRUs have
significantly faster training times with comparable performance to LSTM [25,29].

Deep Learning Model Settings

To determine the most suitable configuration for each deep-learning model, we use the grid
search method to determine the respective hyperparameters [30–34]. It is used widely as it is quick to
implement, is trivial to parallelise, and intuitively allows an entire search space to be explored [35].

To perform the grid search, the dataset was separated into a training set consisting of 80% of the
original dataset (from 1 January 2015 to 30 December 2018) and a test set comprising 20% of the original
dataset (from 31 December 2018 to 31 December 2019) using percentage split. The hyperparameters
evaluated by the grid search for deep-learning techniques were (i) the number of layers, and (ii) the
number of nodes in each layer (see Table 1).

Table 1. Parameter and levels of deep learning techniques.

Parameter Levels

Number of nodes From 10 to 90, step 20
Number of layers From 1 to 4, step 1

Figure 2 presents the loss convergence during both training and testing of the deep-learning
models. It suggests that the models converge after about 40 epochs (loss stabilisation); there is
no overfitting.

For deep-learning models, the following parameters were fixed: 100 epochs based on (Figure 2),
a batch size of 16, Sigmoid [36] as the activation function, MSE as the loss function, and a method for
stochastic optimisation (Adam) as the optimiser. These parameters were chosen empirically. Due to
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the stochastic nature of the optimisation process, the grid search was performed 30 times, and the
averages of RMSE, MAPE, and MAE were calculated.

(a) (b)

(c) (d)

Figure 2. Convergence results for (a) Recurrent Neural Network (RNN)-1-30, (b) RNN-4-30, (c) Long
Short-Term Memory (LSTM)-1-30, and (d) Gated Recurrent Unit (GRU)-1-30.

Figures 3–5 present the grid search normalised results for RMSE, MAPE, and MAE, respectively.
The configuration with one layer and 30 nodes generated the best models—RNN-1-30, LSTM-1-30,
and GRU-1-30—for all deep-learning techniques, except in one instance where the average MAPE
presented the best result for RNN with a configuration of four layers and 30 nodes, i.e., RNN-4-30.
These four model configurations will be used in our benchmark evaluation.

(a) (b) (c)

Figure 3. Root mean squared error (RMSE) grid search result for (a) simple RNN, (b) LSTM, and (c) GRU.

(a) (b) (c)

Figure 4. Mean absolute percent error (MAPE) grid search result for (a) simple RNN, (b) LSTM, and (c) GRU.
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(a) (b) (c)

Figure 5. Mean absolute error (MAE) grid search result for (a) simple RNN, (b) LSTM, and (c) GRU.

As model complexity increases, deep-learning models learn more from the greater volume of
available data in the training dataset.

3.2. Machine-Learning Models

In addition to deep-learning models, we also propose two machine-learning models: SVR and
Random Forest.

Support Vector Machines (SVM) has been proposed as an alternative to traditional ANNs for
classification and regression tasks. In particular, SVM provides better support for forecasting time
series from nonlinear systems [37]. SVM is a machine-learning technique based on statistical learning
theory [38]. Extant literature suggests that SVM performs well in forecasting time series [37,39,40].
Support Vector Regression (SVR) is a regression technique based on SVM [41]. The main differences
relate to the formats and types of input and output. Kernel functions are used to map the data through
nonlinear functions in an n-dimensional space. In this way, it is possible to transform nonlinear
problems into linear problems. Research suggests that SVR presents accurate results for predicting
energy consumption and, as such, is commonly used in the field [42]. Despite its advantages, the lack of
predetermined heuristics for both the design and parameterisation of SVR models is a major drawback
in using SVR [37]. As such, studies tend to be application-specific and to lack generalisability [37].

Random Forest is a machine-learning technique based on different decision trees. Random Forests’
implementation involves random selection of features based on the position of the root node.
The model output consists of the average of the results for all trees. When compared to a single
decision tree, Random Forest presents a better performance [43–45]. The greater the number of trees,
normally the better the performance of the model but the slower the model and the more inefficient the
real-time predictions. It is one of the most popular machine-learning techniques used for classification
and regression problems [21,46,47]. Random Forest’s popularity is often attributed to its higher
accuracy when compared with ANNs and SVR [48].

Machine-Learning Model Settings

Similar to the deep-learning models, we also perform grid search to find the best hyperparameters
of the machine-learning models, using the same data set splitting procedure. The hyperparameters
used vary according to the technique (see Table 2). For SVR, cost and the type of kernel were used,
whereas the maximum depth of trees and the number of trees were used for Random Forest.

Table 2. Machine-learning parameters and levels.

Technique Parameter Levels

SVR Number of C 0.1, 1 and 10
SVR Type of kernel Linear, polinomial and RBF

Random Forest Number of max. depth From 3 to 6, step 1
Random Forest Number of trees From 50 to 200, step 50
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Figures 6–8 present the grid search results for RMSE, MAPE, and MAE, respectively. For SVR,
the best configuration across the three metrics used—RMSE, MAPE, and MAE—is represented
by SVR-0.1-linear, for which the C value is 0.1 and used the linear kernel. For Random Forest,
the models with configurations with (a) a maximum depth of three with 50 trees (Random Forest-3-50),
(b) maximum depth of six with 50 trees (Random Forest-6-50), and (c) a maximum depth of six
with 100 trees (Random Forest-6-100) generated the best results for RMSE, MAPE, and MAE,
respectively. These four model configurations will be used in our benchmark evaluation.

(a) (b)

Figure 6. RMSE grid search result for (a) SVR and (b) Random Forest.

(a) (b)

Figure 7. MAPE grid search result for (a) SVR and (b) Random Forest.

(a) (b)

Figure 8. MAE grid search result for (a) SVR and (b) Random Forest.

3.3. Benchmarks

Two additional benchmarks were selected for comparison purposes. The first benchmark is the
manual technique used by the case site providing the dataset for this study. The second benchmark
is an ARIMA model. ARIMA was selected because of its widespread use in energy forecasting and,
in particular, in related works [6].

The manual technique used by the case site is performed by a simple calculation as per
Equation (5), where the energy consumption of a given day, Cpredicted, is the planned production
flow (Fplanned) and the TECI (nprevious) based on measured data collected on the previous day.

Cpredicted = Fplannednprevious (5)
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The choice of the ARIMA model for this study was based on the time-series nature of our dataset
(data numbers and the output variable relates to your past data). Equation (6) [49] represents the
mathematical expression for the autoregressive part.

x(t) =
p

∑
i=1

αix(t− i) (6)

where t is the index represented by an integer, x(t) is the estimated value, p is the number of
autoregressive terms, and α is the polynomial related to the autoregressive operator of order p.

Equation (7) [49] reflects the dependency of time-series values on the errors of previous estimates,
i.e., the errors of the forecast are taken into account when estimating the next value in the time series.

x(t) =
q

∑
i=1

βiε(t− i) (7)

where q is the number of moving average terms, β is the polynomial related to the moving average
operator of order q, and ε is the difference between the estimated and actual values of x(t).

Equation (8) [49], a combination of Equations (6) and (7), represents the ARIMA model (p and q)
used as a benchmark for this study.

x(t) =
p

∑
i=1

αix(t− i)−
q

∑
i=1

βiε(t− i) (8)

After empirical analysis, the selected ARIMA model presented the order of the autoregressive
(p = 1), the degree of differencing (d = 0), and the order of the moving average (q = 1).

4. Results and Discussions

Table 3 presents the RMSE, MAPE, and MAE results for the four deep-learning models (RNN-1-30,
RNN-4-30, LSTM-1-30, and GRU-1-30), and the four machine-learning models (SVR-0.1-linear, Random
Forest-3-50, Random Forest-6-50, and Random Forest-3-100) identified by the grid search method as
well as by the manual and ARIMA benchmarks.

Table 3. RMSE, MAPE, and MAE results for the selected analysed model.

Models RMSE MAPE (%) MAE

ARIMA 0.0471 3.52 0.0249
RNN-1-30 0.0316 4.42 0.0316
RNN-4-30 0.0320 4.40 0.0320
LSTM-1-30 0.0310 4.37 0.0310
GRU-1-30 0.0305 4.33 0.0305

SVR-0.1-linear 0.0556 5.09 0.0400
Random Forest-3-50 0.0561 4.94 0.0377
Random Forest-6-50 0.0573 4.82 0.0356

Random Forest-6-100 0.0580 4.83 0.0355
Case site technique 0.4119 51.61 0.4039

Based on the RMSE metric, the deep-learning models outperformed the machine-learning
models and the manual and ARIMA benchmarks. This behavior can be explained by the ability
of deep-learning models have to achieve insights outside of the domain of training data. The GRU
model presented the best performance of all models tested as well as reduced the complexity inherent
in the other deep-learning models analysed; the simple RNN models presented the worst performance.
In contrast, based on MAPE and MAE, the ARIMA model outperformed the deep-learning models,
the machine-learning models, and the legacy manual approach.
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Table 4 presents the average inference times for the four deep-learning models (RNN-1-30,
RNN-4-30, LSTM-1-30, and GRU-1-30), the four machine-learning models (SVR-0.1-linear,
Random Forest-3-50, Random Forest-6-50, and Random Forest-3-100), as well as the manual and
ARIMA benchmarks.

Table 4. Average inference times for all models.

Models Inference Time Average
(s)

ARIMA 56.3565 ± 0.6802
RNN-1-30 0.3896 ± 0.1289
RNN-4-30 0.5939 ± 0.2070
LSTM-1-30 0.6751 ± 0.2480
GRU-1-30 0.7058 ± 0.2866

SVR-0.1-linear 0.0014 ± 0.0004
Random Forest-3-50 0.0043 ± 0.0004
Random Forest-6-50 0.0046 ± 0.0001

Random Forest-6-100 0.0080 ± 0.0012

With average inference times of 0.8 and 0.0085, respectively, the deep-learning and
machine-learning models performed best as a whole; standard deviations were insignificant. Random
Forest-3-50 is the model with the shortest average inference time of those compared, while the ARIMA
model is the worst performing when compared to the machine-learning and deep-learning models.
Although achieving good RMSE, MAPE, and MAE results, the ARIMA inference time is much longer
than the deep-learning models, a significant limitation for practical use.

Figures 9–11 illustrate the daily load forecasts for the deep-learning and machine-learning models
and the manual and ARIMA benchmarks compared against the ground truth data. These clearly
show that the proposed deep-learning models (Figure 9a–d) are very similar to the ground truth data
compared to the existing manual technique used at the case site (Figure 11b).

(a)

(b)

Figure 9. Cont.
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(c)

(d)

Figure 9. Daily load forecasting using (a) the RNN-1-30 model, (b) the RNN-4-30 model, (c) the
LSTM-1-30 model, and (d) the GRU-1-30 model.

(a)

(b)

(c)

(d)

Figure 10. Daily load forecasting using (a) the SVR-0.1-linear model, (b) the Random Forest-3-50 model,
(c) the Random Forest-6-50 model, and (d) the Random Forest-6-100 model.
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(a)

(b)

Figure 11. Daily load forecasting using (a) the case site technique and (b) the ARIMA model.

Diebold–Mariano Statistical Test

Table 3 suggests that GRU-1-30 and ARIMA achieved the best results for the RMSE,
MAPE, and MAE metrics. As the values of RMSE, MAPE, and MAE are very similar, we used
the Diebold-Mariano [50] test to confirm the results. The Diebold-Mariano is a hypothesis test used
to compare the significance of differences in two different prediction models. Table 5 presents the
results obtained.

Table 5. Two-sample Diebold-Mariano test results for the deep-learning and machine-learning models
and the manual and ARIMA approaches.

ARIMA RNN-1-30 RNN-4-30 LSTM-1-30 GRU-1-30 SVR-0.1-
Linear

Random
Forest-3-50

Random
Forest-6-50

Random
Forest-6-100

Case site
technique 51.38 51.55 51.27 50.79 51.30 51.06 50.20 49.76 49.70

ARIMA - −0.54 −0.83 −1.46 0.45 −2.96 −3.36 −2.95 −3.18
RNN-1-30 - - −1.39 −1.34 1.99 −2.43 −2.76 −2.41 −2.56
RNN-4-30 - - - −0.99 3.04 −2.07 −2.57 −2.25 −2.40
LSTM-1-30 - - - - 6.56 −1.96 −2.81 −2.37 −2.54
GRU-1-30 - - - - - −3.87 −4.47 −3.61 −3.71

SVR-0.1-linear - - - - - - −0.24 −0.78 −1.08
Random

Forest-3-50 - - - - - - - −0.76 −1.15

Random
Forest-6-50 - - - - - - - - −1.83

The Diebold–Mariano test result equals zero when the techniques being tested are equal;
negative values are present when the left technique obtains a better performance and vice-versa.
If the absolute Diebold–Mariano results are high, the tested techniques have significantly different
prediction values. The first line of Table 5 shows the comparison between the case site technique
compared to all other models.

It is clear that the existing manual technique used at the case site has the worst performance in
comparison to the all models examined. The high statistical values obtained for this technique confirms
that it is suboptimal for STLF in this case. The only model that outperformed the ARIMA model
was the GRU-1-30 model. All deep-learning models outperformed the machine-learning models.
However, the variance in Diebold-Mariano values are not as significant. While the Diebold-Mariano
test results for deep-learning models are similar, the GRU-1-30 model achieved the best prediction
indexes when compared to all models tested. As such, the initial hypothesis from the grid search
results are confirmed.

These results suggest a significant improvement in the accuracy of the STLF for this
energy-intensive manufacturer. This can be used to provide more accurate energy management to
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meet production demands, to improve cashflow, to reduce environmental impact, and to mitigate risks
associated with energy inefficiencies. Accurate STLF results can be used for anticipatory optimisation
and remediation. For example, anomaly detection can be used to identify possible machine degradation
or failure from anomalous loads at different stages in the manufacturing process. This would enable
predictive maintenance and avoid production downtime.

5. Related Work

Short term load forecasting using deep learning and machine learning has been examined from
a variety of perspectives. For example, there is a well-established literature on supply-side energy
consumption and demand forecasting using deep learning from the perspective of the management
and optimisation of power systems and electricity grids. These include studies using deep neural
networks [6], deep belief networks [51], CNNs [52], Autoencoder and LSTM [53], SVM and Random
Forest [21] amongst others. The focus of this paper is demand-side. STLF for grids and utility
companies have a fundamentally different motivation and context than manufacturing firms, not least
the public interest aspect of energy systems, as opposed to profit maximisation, operational efficiencies
and other business objectives.

Similarly, there has been a number of studies on the use of deep learning for forecasting
load prediction for different energy consumer types—residential [19,22,54], commercial [55,56],
and industrial [11,57]. While there are certainly new knowledge generated by these works, their focus
is overwhelmingly on load forecasting for utility companies and grids. Residential and commercial
use cases have fundamentally different energy consumption patterns than industry in terms
of decision-making time horizon, building code standards, population density, building design,
and response to regional climate, amongst others [58]. As discussed in Section 1, energy-intensive
manufacturing has a significantly different energy consumption profile than other industry sectors,
leaving aside the obvious differences with residential and commercial use. As a result, the motivation
for load forecasting is substantially different than other industrial use cases. In particular, these
operations tend to have high process-related energy requirements, are not subject to climate changes,
and energy management is core capability in their business. As production is central to manufacturing,
the demand for energy is derived from production planning and energy forecasting and optimisation
based on the over-riding demands of production [59].

Ryu et al. [6] explore demand-side STLF for variety of industry categories including manufacturing.
Using data sourced from a Korean utility company, they propose a deep neural network (DNN) based
STLF framework based on industry category, temporal patterns, location and weather conditions.
A comparative analysis was performed with three different forecasting techniques—shallow neural
network (SNN), double seasonal Holt–Winters (DSHW) and ARIMA. Using MAPE and relative root
mean squared error (RRMSE). The results suggest that the DNN-based STLF model achieved the
best performance when compared to the other models with lower MAPE (2.19%) and lower RRMSE
(2.76%). Our approach differs in three important ways. Firstly, we adopt RNNs that have significant
advantages in terms of time series data. Second, in [6], because the data comes from the power
company, all energy consumption at a firm level is bundled up and it is not possible to distinguish
different sources of energy consumption and their impact from within the firm e.g., buildings vs.
process-related consumption. Third, we focus on energy-intensive manufacturing. It is not clear
whether energy-intensive manufacturing is included in [6].

Mawson & Hughes [60] explore the use of a deep feedforward neural networks (DFNN) and a
deep RNN (DRNN) to predict STLF for a medium-sized manufacturing facility. Inputs to the DNNs
included weather conditions and machining schedules. Results suggest that both models performed
well but that the DRNN outperformed the DFNN for predictions of building energy consumption,
achieving an accuracy of 96.8% compared to 92.4% for DFNN. The focus of [60] was optimising heating,
ventilation and air conditioning (HVAC). As such, the impact of the production process was not a focus
per se. While data for boiler energy, cooling energy and machine scheduling were taken in to account,
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again, unlike our work, specific process-related energy consumption was not considered and the focus
was not energy-intensive manufacturing. Additionally, Mawson & Hughes [60] use simulated data
whereas we use ground truth data to train and validate the models.

In contrast to [6,60], Chen et al. [7] study the use of DNN for STLF in an energy-intensive
manufacturing use case. Using data from the melt shop of steel plant, they sought to use DNN to
predict energy consumption for one specific process, the electric arc furnace (EAF) for different types
of scrap. The performance of the DNN was compared with linear regression (LR), SVM, and decision
tree (DT) based on the model correlation coefficient and MAE. The proposed DNN outperformed
other models with the highest correlation index, at 0.854, and the lowest MAE, at 1.5%. While [7] is the
closest use case to our paper, it focuses exclusively on one process and does not seek to calculate the
overall plant energy consumption. While they identify the potential of deep learning over traditional
statistical and machine learning approaches, they do not evaluate the relative performance against
other deep learning architectures.

Yeom & Choi [15] describe a platform, E-IoT, for collecting a wide range of data (over 1556
variables for one process) at a Korean manufacturing plant. From the data collected by E-IoT,
they use a least absolute shrinkage and selection operator (LASSO) technique, based on machine
learning, to extract relevant variables to predict plant-level STLF based on the first stage of one process,
using LSTM. The proposed LSTM model achieved an MAE of 0.07 and an accuracy of 79%. The paper
suffers from a significant lack of detail. For example, while the energy consumption profile for the
process presented in [15] appears energy-intensive when compared to total plant energy consumption,
it is unclear from the paper whether the manufacturing plant was energy-intensive or not. It is also
unclear why only the first stage of the manufacturing process was used, and how many other processes
are involved. Furthermore, no detail is provided on how the LSTM model configuration was selected,
and it is not compared with existing techniques or other deep learning models.

Li et al. [21] explore STLF for industrial customers in China and source data from a cable
factory and a lithium factory located in Chongqing. They propose two short-term (20 days) energy
consumption forecasting models using SVM and Random Forest based on historical consumption
data as well as seasonal factors (holidays) and upstream value chain data i.e. the price of non-ferrous
metals and raw material consumption at each factory. Both models accurately predicted the electricity
loads for both factories. The MAPE for both the SVM and Random Forest model were similar for each
factory - 5% for the cable factory and 2% for the lithium factory. The study highlighted the need for
research using additional industry- and firm-specific variables to increase accuracy.

As can be seen from the above, there is a paucity of research on demand-side STLF for
energy-intensive manufacturing using deep learning and machine learning models. Decision making
for utility companies has little in common with manufacturers. Similarly, STLF for residential and
commercial use has little relevance to industrial use cases, and within industrial energy consumption,
energy intensive manufacturing is idiosyncratic. The few similar studies lack detail on the degree
to which they are energy-intensive manufacturers, aggregate all energy consumption, or focus on
one process alone. Furthermore, where proposed deep learning and machine learning models were
compared, they were either evaluated against only traditional techniques or only other deep learning
models, or not at all. We addressed all of these shortcomings in our paper.

6. Conclusions and Future Work

This paper is one of the first papers to compare the efficacy of deep-learning and machine-learning
models for short-term load forecasting for energy-intensive manufacturing plants. In addition,
we benchmark these models against the incumbent manual prediction technique and a classic
time-series forecasting technique, ARIMA. Unlike existing studies, we consider multi-year ground
truth data including total plant energy consumption data and data from two stages in a complex energy
intensive manufacturing process. The use of production data contributed significantly to improving
STLF accuracy by reducing the RMSE.
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Based on both the grid search results and Diebold–Mariano test results, we found that all
the deep-learning and machine-learning models outperformed the incumbent manual technique.
Furthermore, the GRU model (GRU-1-30) outperformed the basic RNN and LSTM models in RMSE
(0.0305), MAPE (4.33%), and MAE (0.0305) in a very short inference time (0.7058 s).

Accurate STLF can be used in a variety manufacturing processes to achieve energy efficiencies
and can be used as an input in a range of operational decisions including energy management
(e.g., heat storage and cooling), anomaly detection, predictive machine maintenance, and proactive
plant and machine management, amongst others. The reduction of machine idle-times would seem
to be particularly attractive to such manufacturers. Given the dearth of research on this topic in
energy-intensive manufacturing, there are many avenues for future research. As the industrial Internet
of things matures, a significantly larger volume of time-series data will be available to further refine
the accuracy of the models and to extend the use of deep learning beyond prediction to actuation.

For near real-time prediction, very short-term load forecasting (VSTLF) may be needed. In such
use cases, rapid training times will be required. While GRUs may meet this criteria, further research is
required. Furthermore, medium-term load forecasting may prove that fruitful, deep-learning training
models may need to be augmented with historic trend data to account for longer seasonal cycles or
predictable events. Medium-term load forecasting may enable new use cases including switches to
more sustainable or lower-cost power supplies. Similarly, as production planning is prioritised over
energy management in energy-intensive manufacturing, multi-step forecasting strategy may be more
appropriate or preferable. This may require ensemble solutions and is worthy of exploration.

This paper highlights the potential of deep learning and ARIMA in energy-intensive
manufacturing. The adoption of deep learning, like all data science technologies, requires overcoming
human, organisational, and technological challenges; however, against intense rivalry, firms may not
have a choice.
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The following abbreviations were used in this manuscript:

ANN Artificial Neural Networks
ARIMA Autoregressive Integrated Moving Average
Btu British Thermal Units
CNN Convolutional Neural Network
CO2 Carbon Dioxide
DFNN Deep Feed Forward Neural Networks
DNN Deep Neural Network
DRNN Deep Recurrent Neural Networks
DSHW Double Seasonal Holt–Winters
DT Decision Tree
EAF Electric Arc Furnace
GRU Gated Recurrent Unit
HVAC Heating, Ventilation, and Air Conditioning
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LASSO Least Absolute Shrinkage and Selection Operator
LR Linear Regression
LSTM Long Short-Term Memory
MAE Mean Absolute Error
MAPE Mean Absolute Percent Error
MLP Multi-Layer Perceptrons
MSE Mean Squared Error
POLY Polymerization
RMSE Root Mean Squared Error
RNN Recurrent Neural Networks
RRMSE Relative Root Mean Square Error
SDG Sustainable Development Goals
SNN Shallow Neural Network
SSPOLY Solid-State Polymerization
STLF Short-Term Load Forecasting
SVM Support Vector Machines
SVR Support Vector Machine Regression
TECI Technical Energy Consumption Index
VSTLF Very Short-Term Load Forecasting
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