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Abstract: The properties of most systems composed of many interacting elements are neither
determined by the topology of the interaction network alone, nor by the dynamical laws in isolation.
Rather, they are the outcome of the interplay between topology and dynamics. In this paper,
we consider four different types of systems with critical dynamic regime and with increasingly
complex dynamical organization (loosely defined as the emergent property of the interactions
between topology and dynamics) and analyze them from a structural and dynamic point of view.
A first noteworthy result, previously hypothesized but never quantified so far, is that the topology
per se induces a notable increase in dynamic organization. A second observation is that evolution
does not change dramatically the size distribution of the present dynamic groups, so it seems that
it keeps track of the already present organization induced by the topology. Finally, and similarly
to what happens in other applications of evolutionary algorithms, the types of dynamic changes
strongly depend upon the used fitness function.

Keywords: dynamical organization; random Boolean networks (RBN); evolution; genetic algorithms;
gene knock-out; mutual information; relevance index (RI) methodology

1. Introduction

Many natural, social or artificial systems can be described as networks of interacting elements,
where the dynamical variables are associated to the nodes of the network, and directed links represent
the influence of a variable upon another one. While networks can represent different kinds of systems
and relationships, let us consider here for the sake of definiteness a dynamical system. A variable
xi(t) (i = 1 . . . N), which can take either continuous or discrete values, is associated to every node
i of the network at time t, and a deterministic law (e.g., a differential or finite difference equation)
determines the time behavior of xi. If this equation contains at least one term which depends upon xj
then there is a link from node j to node i.

The study of the properties of networks has become one of the major threads in complexity science.
The discovery of the widespread presence of some types of topological relationships, associated to
important generic properties (like e.g., the presence of hubs), prompted several studies on topology [1–3].
It soon became clear that the properties of these complex systems are neither determined by the
topology of the interaction network alone, nor by the dynamical laws in isolation, but they are the
outcome of the interplay between topology and dynamics [4–9]. This implies that it is difficult to tell in
advance what the properties of a complex system are, unless of course it belongs to a class of already
well-studied cases.
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We will loosely use the term “dynamical organization” to refer to the emergent properties
of the interactions between topology and dynamics. It goes without saying that there may be
different organizational levels, and that in general a simple hierarchical scheme may not be adequate.
Different methods to explore the dynamical organization of complex systems can be proposed. In this
paper, we make use of one such method, which was introduced by us some years ago [10,11] and which
has later been improved [12] and applied to different classes of systems [13–16]. The method identifies
integrated groups of variables, by means of measures based upon information theory (the Relevance
Index methodology—RI in the following), which is briefly recalled in Section 2.1 (referring the interested
reader to the literature [12] for further details).

In this paper, we concentrate on an important class of models, i.e., the so-called random Boolean
networks (RBNs) which were initially conceived by Kauffman as a simplified model of genetic
regulatory networks, and which turned out to be one of the most general and most widely used models
in the field of Complex Systems Science. The definition and properties of RBNs are briefly reviewed in
Section 2.2.

Due to their randomness, the study of single RBNs makes little sense, and it is necessary to study
the behavior of families of networks, built at random while keeping some parameters fixed—in a
way which closely parallels the ensemble approach of statistical mechanics [17–19]. A very important
feature of families of RBNs is that their “typical” behaviors can be ordered or disordered, depending
upon the value of some parameter. This makes them well-suited to study the transitions between order
and chaos and, for this reason, they have been analyzed in-depth by several groups [20].

It can indeed be shown that a single parameter, the so-called Derrida parameter λ (which is
sometimes called the dynamical sensitivity) distinguishes between ordered (λ < 1) and disordered
(λ > 1) systems. In ordered systems, a slight perturbation of the initial conditions tends to die out,
while in chaotic networks it initially increases. In so-called critical systems, i.e., those which are neither
ordered nor chaotic (λ � 1), a small perturbation tends on average to keep the same size unaltered.

Particular attention has been devoted to these critical RBNs, since it has been suggested that
they might achieve an optimal tradeoff between the need to be robust with respect to some external
changes and the capacity to react to other external changes—a key property for living systems and
for autonomous robots. Moreover, critical networks might be better evolvable than ordered and
chaotic ones. Note also that the importance of criticality may well go beyond the boundaries of
RBNs: indeed, the criticality hypothesis, i.e., the idea that dynamically critical states possess some
peculiar advantages, so that they tend to be selected under evolutionary dynamics [21–31], can hold
for a much wider class of dynamical models, including the dynamics of the biological neural
networks [32] or the behavior of artificial systems [33]. These very important aspects are major research
topics and they cannot be discussed here in detail, so we refer the interested reader to some recent
papers [27,33]. For the sake of definiteness, this paper concentrates indeed on the features of the
dynamical organization of critical RBNs.

As will be briefly recalled in Section 2.2, RBNs are indeed really random: the connections between
the nodes are drawn at random, and so are the Boolean functions which determine the new state (at time
t + 1) of a node, from the values of its input nodes at time t. Very little “organization” can be expected
here. Yet, we show below that the existence of dynamically integrated groups of nodes in a network can
be inferred from an analysis of the perturbations of gene expression levels (“avalanches”), induced by
a permanent clamping of a node to a fixed value. As anticipated above, the identification of
such integrated groups of nodes can be performed by means of the RI methodology described in
Section 2.2. The fact that dynamical integration actually takes place is demonstrated by comparing the
dynamically relevant groups, which are detected by simulating actual RBNs with those that are found
in “fully random” avalanches, generated at random with the same size distribution (avalanches are
also described in Section 2.2). The comparison of the size distribution of integrated groups of nodes in
avalanches in RBNs with the size distribution of integrated groups of nodes in fully random avalanches
is described in Section 3.1. As it will be stressed in the conclusions (Section 4), the two distributions
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are markedly different, thus showing that the sharing of a common topology induces significant
correlations among the nodes—which cannot of course be observed in purely random avalanches.
To the best of our knowledge, this is the first case where this kind of (dynamical) organization in truly
random BNs has actually been detected.

Given the importance of critical RBNs, we have also introduced an evolutionary algorithm
which ensures that a population of critical Boolean networks remains critical during its evolution.
Starting from purely random Boolean networks, the population evolves according to a Genetic
Algorithm (GA) in order to maximize a given fitness function; for example, the achievement of
attractors with a predefined fraction of active genes. A standard GA easily performs this task by
changing the bias of the set of Boolean functions (see Section 2.2 for a definition of the bias) but, in doing
so, it leads the networks in the ordered region. Thus, if criticality can provide some other advantages,
these are lost in evolution. We have therefore introduced a modified GA which tends to keep the
evolved networks critical. It has been presented elsewhere [34], where we have also shown that it
is successful in maintaining criticality while achieving its goal, in the case where the goal is a fixed
fraction of active nodes (as in the example just discussed), as well as in the case where the target is
that of giving rise to avalanches with a predefined fraction of “up” nodes, i.e., nodes whose activation
is higher in the perturbed network than in the wild type. The modified GA is briefly recalled in
Section 2.3.

Since the RI methodology has been successful in showing some organization of fully random
Boolean networks, we have decided to apply it to also study the differences between RBNs and
the populations of evolved networks in the two cases above. Note that the evolved networks are
no longer fully random, although they are dynamically critical. As will be shown in Section 3.2,
the method proves able to identify measurable differences between the RBNs and the evolved networks,
thus showing its capacity to react to this form of organization. Similarly to what happens in other
applications of evolutionary algorithms to RBNs, the types of changes strongly depend upon the fitness
function, as briefly discussed in the final Section 4.

Note that Section 2 summarizes the results of previous works, while Section 3 presents the new
results of this paper, which are further discussed in Section 4.

2. Materials and Methods

2.1. The Relevance Index

The Relevance Index (RI) methodology, which draws its inspiration from methods used in
neuroscience [35,36], makes use of indexes based on information theory and is suitable for exploring the
organization of complex systems. In particular, we utilize the index called zI (see below), which makes
it possible to identify, as components of a system, sets of variables that show a high degree of internal
coordination. The RI methodology has been applied with interesting results to several systems: some of
them had been artificially designed in order to test the effectiveness of the technique, while others
referred to interesting physical, chemical, biological, or socio-economic systems [13–16].

Let U be the set of discrete variables {x1, x2 . . . xn} describing a system whose status changes
along a collections of m observations, and a subset S of U composed of k elements. Its integration
I(S), semidefinite positive, is defined as:

I(S) =
k∑

i=1

H(xi) −H(S) (1)

where H represents the Shannon entropy (respectively, of the involved variables and of the subset as
a whole). The integration of a (sub) set of variables could be interpreted as their distance from the
independence condition [35]—the greater the distance, the greater the probability that the variables of
interest are exchanging information. We can note that the number of variables that can be correlated is
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arbitrary (obviously, there are limits to this “arbitrariness”: for further details, see [35]): in particular,
the use of integration allows to (a) overcome the pairwise analysis (a group of four elements is not
always the simple merge of six binary interactions) and (b) to highlight some kinds of nonlinear
relationships otherwise not visible [11,35].

The integration depends on the size of the group under observation and the size of the alphabet of
the elements that compose it (elements that determine the number of degrees of freedom of the system)
and on the number m of observations: in order to rank the examined groups, therefore, we need to
normalize the integration according to these terms. A useful formula could be found in [12]:

zI(S) =
2mI(S) − 〈2mIh〉

σ(2mIh)
=

2mI(S) − d
√

2d
(2)

where we insert within a z-score form the information that the integration multiplied twice by the
number of observations follows a Chi-square distribution with d freedom degree:

d =

 k∏
j=1

L j − 1

− k∑
j=1

(
L j − 1

)
(3)

the Lj terms denoting the cardinality of the alphabet of the j-th variable belonging to the subset S to
be analyzed.

Ideally all possible groups have to be tested and sorted in descending order with respect to the
zI index: the independent non overlapping groups that survive a sieve action are the potentially
Relevant Sets (RSs in the following) [12]. All the first RSs in the list are then selected to be collectively
represented by single variables, which are introduced in place of the original ones to form a new data
series: the cycle of analysis, sieving, and compacting repeats several times until the last computed zI
index reaches a minimum threshold (the number of all possible subsets of a set grows indeed very
rapidly: it is, however, possible to sample the subsets to be tested in various ways (including the use of
optimization strategies) [37,38], while the combination of the compaction and iteration procedures
helps in allowing the identification of large groups [12]). The z-score typically has the purpose of
verifying whether the mean value of a distribution deviates significantly from a certain reference
value: in this paper, we will assume as reference thresholds θ3 = 3.0 and θ5 = 5.0, which in the case of
Gaussian statistics correspond, respectively, to p-values close to 1.3·10−3 and 2.7·10−7.

At the end of the analysis, groups of variables of different sizes (and possibly single not
aggregated variables) are obtained. This grouping is based on the observation of the behavior of the
(single and collective) variables along the observations: its characteristics, therefore, depend on the
system’s dynamics.

2.2. Random Boolean Networks

Random Boolean Networks are a well-known model of gene regulatory dynamics
[17–20,24,30,39–41] able to perform computation [42]. In this section, we present a synthetic description
of the RBN model, referring the reader to [17,18,20,23,24] for more details. Several variants of the
model have been presented and discussed [43–46], but we will restrict our attention here to the
“classical” model.

A RBN, as introduced by Kauffman [23,24,39], is a dynamic system whose components (nodes in
an oriented graph, each one representing a gene of a genetic regulatory network) can assume only
two levels (0 and 1). If the state of a single node can be represented by xi(t), the state of the whole
network can be represented by the vector X(t) = [x1(t), x2(t), . . . xN(t)]. In “classic” RBNs, each node
has the same incoming connectivity, while multiple connections and auto-connections are prohibited.
Each node is associated with a Boolean function, which represents the response to the signals
(proteins—not represented in the model) coming from the upstream nodes. In this paper, in case of
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random generation of the Boolean functions, for each entry, we extract a 1 with probability p (a quantity
called “bias”)—and consequently the frequency of the values equal to 0 is (p − 1).

The topology and Boolean function associated to each node do not change in time, and the network
dynamics is discrete and synchronous, so fixed points and cycles are the only possible asymptotic
states in finite networks.

The RBN’s average degree of connectivity and the type of Boolean functions influence the behavior
of the system, which can show ordered or disordered dynamic regimes. In ordered regimes, there are
few attractors, whose period scales as a power law with the number of nodes N of the system, while in
disordered regimes, the period of the very numerous attractors scales as a more than polynomial
function [23,24]. The disordered regime also shows a strong sensitivity to initial conditions, which is
not present for the ordered regime.

As mentioned in Section 1, these different behaviors can be related to the value of a single
index, often called the Derrida parameter λ: on average, a small perturbation tends to vanish in
“ordered” networks (λ< 1), while in chaotic networks (λ> 1) it increases in time, and in critical networks
(λ = 1) it tends to maintain its size. The Derrida parameter can be determined by studying the average
behavior in time of the distance between two close initial states of a network and taking its limiting
value when the initial distance approaches its minimum value (dynamical sensitivity) [20,47,48].
However, direct measurement of the dynamical Derrida parameter in physical biological systems may
be prohibitive, due to their transient nature, but it is sometimes possible, under plausible assumptions,
to circumvent this problem and to infer the value of λ from other data. This is the case of the effects of
gene perturbations, induced by permanently inhibiting the expression of a single gene (knock-out)
and by observing the changes of the expression levels of the other genes.

In synthetic networks (by means of simulations), it is possible to evaluate these effects by comparing
the behavior of a non-perturbed system (“wild type”, briefly WT) with the behavior of a perturbed
system, which differs from the previous one in that one of the genes, which are active in the WT
system, is silenced (its Boolean function is fixed at False—“knock-out” event). It is possible to observe
the two systems over time, and to mark nodes having different values in the different systems as
“perturbed” nodes: the number of such nodes (different from the silenced node) provides the size of the
“avalanche of changes” (or more briefly “avalanche”) to which these nodes belong. In order to avoid
the idiosyncrasies of single networks, each perturbation is carried out on a different RBN belonging to
the same statistical “ensemble” (same number of nodes N and same bias p). Avalanches are important
in this study because they constitute the experimental observations from which some aspects of the
dynamic organization of systems subject to perturbation can be deduced [40].

2.3. Genetic Algorithm

In this paper, we are interested in highlighting the presence of significant dynamic structures in
dynamic systems, and in observing the changes in their characteristics passing from random systems,
to systems with organization, up to evolved systems—in our case, evolved by means of Genetic
Algorithms (GA in the following) [49].

It should be noted that in this article, we make use of genetic algorithms in a twofold way, since we
are interested in their ability (a) to solve problems, and (b) to emulate evolution.

Indeed, evolutionary and in general bio-inspired algorithms—based on the principles of the
biological evolution [49,50], or on the self-organized behavior of some groups of animals such as
colonies of ants, flocks of birds, and schools of fish [51–54]—play a fundamental role in complex
optimization problems, allowing the development of new and robust techniques. These techniques
show characteristics such as adaptation, scalability, speed, autonomy, parallelism, and fault tolerance.
As consequence, several algorithms inspired by evolution [55,56] or biological behaviors of groups of
animals [52,57–59] have been used to find near-optimal solution to complex optimization problems in
several areas. Alongside these by now “classic” themes, in recent years, there has been an interesting
increase in the variety of bio-inspired algorithms, inspired by the success of plant lifestyles [60,61],



Algorithms 2020, 13, 272 6 of 15

by some flight behaviours [62] or hunting behaviours in mammals [63–66], or by the presence of
hierarchies [67] and opportunistic behaviours [68] in birds. Very often, this type of algorithms turns
out to be the best option when an exact optimizer would not be able to give results in admissible
times [55]. Bio-inspired meta-heuristic optimization algorithms are turning out to be increasingly used
in different applications since they are: (i) based on simple ideas, easily implemented; (ii) typically not
strongly dependent on the structure of the optimization problem; (iii) able to find a near-optimal
solution; and (iv) easily applicable in different areas [52]. In this context, the GA framework plays a
significant role [50].

On the other hand, for our aims, the GA’s ability to mimic the natural evolutive processes
[49,69] is also very interesting.

Because of the evolution, the final populations are no longer random as in the
beginning—although they still preserve some randomness—so in the following, we will indicate
them with the term “BN”, where the character “R” for “random” has been removed.

The initial populations on which the GA acts are composed by RBNs sharing the same topology,
the genotype of each individual being composed of the sequence of the truth tables of the Boolean
functions that guide the dynamic response of each individual’s node. Due to the arbitrariness of
the numbering of nodes, the fixed topology does not limit the set of networks that can be generated.
We run a series of experiments with networks whose nodes have two inputs each, the first generation
being composed of random systems having the Boolean function bias equal to 0.5—and therefore
typically showing a critical dynamic regime (see the previous section).

Given that criticality is supposed to be an important property, it is particularly interesting to
consider a modified version of the GA, presented in [34], which preserves the bias of the Boolean
functions during inheritance from parents to children. This GA maintains the usual selection procedure
(a roulette wheel) and has a slightly modified mutation and crossover. In particular, we use the
single-point crossover (where the cut-off point is randomly chosen among those that keep the parental
bias as much as possible), while the mutation hits randomly, but in a way to again get closer to the bias
of the parents. It has been verified that this modified GA preserves the bias of the initial individuals:
additionally, in case of populations composed of dynamically critical individuals, the property of
criticality is maintained over the generations [34]. (In this article, we follow the classic criticality
measure for RBNs, represented by the Derrida procedure carried out on a high number of random
initial conditions [20,47].)

By following this approach presented in [12], we aim to obtain two populations of BNs, evolved with
two different purposes: in one case, we search for the highest possible number of active nodes on
attractors (a non-trivial task, wanting to keep the BNs in critical regime—Fit1 in the following),
while in the other, we want avalanches following knock-out events to be composed of nodes whose
response to stress is more of an increase than a decrease in activity (Fit2 in the following), a feature
present in knock-out events in living systems [70]. (In particular: Fit1 identifies the system attractors,
computes the average value of each node among each attractor, and computes the fitness function as
the fraction of average values greater than 0.5; Fit2 reaches a random chosen attractor, computes the
average value of each node among the attractor, and performs knock-out events on nodes having
positive averages, recording the fraction of nodes (downstream from the silenced ones) that present an
increase in activity with respect their state in the unperturbed situation: the fraction is the fitness value.
See [12] for more details.)

As already commented, in each GA run, the population of BN is made up of networks sharing the
same topology, the genotype being composed by the sequence of Boolean functions that determine
the dynamic response of each node. (Due to the arbitrariness of the position of nodes, the fixed
topology does not limit the set of networks that can be generated.) For each fitness, we made 50 GA
runs; Table 1 presents the parameter values used during simulations. (In the cases we analyzed,
100 generations were enough to reach a maximum fitness that could not be further improved, while the
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increase in average fitness also stopped. We made some sample of runs even considerably longer,
without observing substantial changes.)

Table 1. The parameter values used during simulations. In order to characterize the systems under
analysis, when necessary (searching for attractors, determination of the Derrida parameter), we used
10,000 initial conditions. The used BNs are composed by nodes having two inputs each: RBNs with
this topology have a critical regime if their bias is equal to 0.5.

System Parameter Value

GA number of generations 100
GA number of RBNs in population 100
GA crossover probability 0.7
GA mutation probability per node 0.02

GA number of best individuals directly
transmitted to next generation (elitism) 3

BN number of nodes per BN 50
BN number of inputs per node 2
BN average initial bias in initial population 0.5
BN number of initial conditions per BN 10,000

3. Results

3.1. Random Avalanches and Avalanches in Random Boolean Networks

A well-known technique in the study of gene regulation is that of inducing a permanent clamping
of the activation value of a gene to a fixed value, e.g., by silencing it (knock-out events) [70]. The genes
involved in each avalanche can react to the perturbation by increasing or decreasing their activity,
situations identified later in the article by the terms UP and DOWN.

We then performed knock-out experiments in 50 RBNs each composed by 50 nodes—following an
approach already developed in [12]—blocking to zero, one at a time, each node whose average activity
on the attractor was greater than 0.5. In each of the analyzed systems, we obtained from 18 to a
maximum of 45 avalanches, with an average on the total of 50 RBNs very close to 30 avalanches;
in doing this in each system on average, about 40 nodes were affected by at least one avalanche
(Figure 1, “RBN” system class). (For presentation convenience, in the following, we will use the term
“RBN” to indicate in general the framework of the Random Boolean Networks, to indicate a system
“class” (the particular collection of RBNs we use in this paper), and to indicate a single exponent
belonging to the aforementioned class. In the rare case of ambiguity, we will explicitly manage the
different situations.)

We then created 50 groups of avalanches, each group being composed by 30 avalanches with a
size distribution like the one found in the 50 RBNs; each node belonging to an avalanche can have UP
or DOWN value with equal probability (the typical situation for RBNs). In these random avalanche
groups, typically all nodes were affected by at least one avalanche (Figure 1, “RND” system class).
(Let us discuss first the results regarding these first classes of systems, by leaving to next sessions
the introduction and discussion of the two classes of evolved systems (indicated as Fit1 and Fit2 in
Figure 1.))

In each RBN (and in each group of the RND class) the nodes constitute the variables to be grouped,
depending on their behavior in the m observations, each observation being a complete measure of
response to the initial perturbation, that is, an avalanche. The final distribution of the groups identified
by the RI analysis based on the index zI (i.e., the final RSs) provides us with clues about the dynamic
organization of each system—that is, how the nodes form dynamically integrated groups, influencing in
such a way the progress of the perturbations.
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Figure 1. The average number of performed avalanches (red) and the average number of nodes involved
in at least one avalanche (green), for the four classes of system under examination (50 systems composed
by 50 nodes in each classes).

We can perform the RI analysis by using in succession the two previously introduced threshold
levels: in the case of the θ5 threshold, we are focusing our attention on the most dynamically active
elements, while the θ3 threshold has so far been used as a level below which it is no longer correct to
carry out mergers (create larger collective variables) [12].

Figure 2a shows some of the main average characteristics of the obtained RSs’ distributions by
using the θ5 threshold. We can note that, despite the fact that the avalanches in RND systems involve a
very high number of nodes, the nodes present within a RS are significantly less than the nodes present
within a RS in RBN systems.
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In other words, in RND systems, most of the nodes show absence of correlation with other nodes
(a clue indicating absence of dynamic organization). Furthermore, it is possible that some group
of nodes is present by chance, but their sizes compared to those of the groups in RBN systems are
extremely limited, as evidenced by the comparison between the average size of the maximum and
median RS of the two system classes.

The same observations can be made by analyzing the systems with the θ3 threshold (Figure 2b),
with the obvious remark that the total number of nodes belonging to at least one RS increases; the average
and median RSs’ sizes also increase, but the ordering between the classes remains unchanged. The same
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holds in all our experiments: therefore, for the sake of simplicity, in the following, we will always use
the θ5 threshold.

As a final comment of this section, we can note that the propagation of perturbations in random
systems is considerably different from having perturbations themselves random: the introduction of a
topology—even if it is itself random—introduces an strong element of dynamic organization.

3.2. Static and Dynamic Characteristics in Evolved Systems

The evolved systems present a dynamic organization that is certainly different from that present
in random systems. Interestingly, this difference is not always evident using structural analyses alone.

A first difference with respect to random system with structure (the RBN class) can be seen in
Figure 1 (Section 3): the increased number of genes active on attractors in systems evolved with Fit1
fitness allows a higher number of knock-out events; nevertheless, the increase in the number of nodes
involved in avalanches does not increase in proportion. On the contrary, systems evolved with Fit2
fitness present very few nodes susceptible of knock-out events. These differences in external behavior,
however, do not provide clues to identify the internal dynamic organization of these systems.

Remember that all individuals of each GA run share the same initial random topology:
thus, the action of the GA involves frequency distribution of the Boolean functions, and/or the
adjacency map of all the possible pairs of Boolean functions.

Each of the 16 Boolean functions has 50 chances of appearing in an RBN, and in each group,
there are 50 RBNs: indeed, out of the 2500 potentially possible presences, each Boolean function
appears less than 250 times. To verify the distance from a uniform distribution situation (156 presences
for each Boolean function), it is therefore possible to apply the Chi-square test [71].

The Chi-square test indicates that the distribution of the Boolean functions in the case of Fit1 systems
is significantly anomalous (a values of 286 vs. a significance threshold of 25): by analyzing the observed
frequency of each Boolean function vs. the expected ones (in case of uniform random distribution),
10 out of 16 functions show a significant deviation at the level of 1% (Figure 3a). The Chi-square
test conducted on the Boolean function adjacency matrix (given the observed frequencies of each
Boolean function) highlights a further deviation (a value of 513 vs. a significance threshold of 291).
The frequencies of the pairs of Boolean functions deviate strongly from the expected ones: that is,
the dynamical organization of the system derives from an adjustment of both the frequencies of
the Boolean functions and their linking. In Figure 3a, the Boolean functions of Fit1 systems are in
order by final bit, so as to highlight the decrease in frequency of the functions having a “0” output in
correspondence with an input “1,1”, and an increase in the functions having a “1” output in the same
case. This observation is compatible with the fact that the asymptotic states of these systems must have
a high number of active genes. (This observation is compatible with a remark present in [34], albeit this
latter remark provides a lower evidence because of the smaller number of analyzed systems.)

The results are markedly different in the case of Fit2 systems. The Chi-square test indicates that
the distribution of the Boolean functions is only slightly anomalous (a values of 31 vs. a significance
threshold of 25): by analyzing the observed frequency of each Boolean function vs. those predicted
in case of random uniform distribution, only 1 out of 16 functions show a significant deviation at
the level of 1% (Figure 3b). The Chi-square test conducted on the Boolean function adjacency matrix
(given the observed frequencies of each Boolean function) does not evidence deviations (a value of
269 vs. a significance threshold of 291). That is, the static analysis does not evidence almost any
significant modification with respect to a random organization.

Interestingly, a more direct observation of the dynamic organization highlights some characteristics
of the systems under investigation.

Figure 4a has a structure like that of Figure 2a: however, here we have also inserted the values of
the Fit1 and Fit2 systems. We can note that the evolved systems maintain some characteristics of the
RBN class: the nodes present within a RS are more than the nodes present within a RS in RND systems,
as well as the mean and median size of the RSs. This situation confirms and better defines our earlier
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statement, that even the mere introduction of a topology—even if it is itself random—introduces a
strong element of dynamic organization.
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Figure 3. The observed frequency of the Boolean function present in evolved systems vs. the frequency
characteristic of RBN class (uniform distribution, red line). The vertical dotted line separates on the left
the Boolean functions which to an input of double “1” correspond to an output equal to “0”, and on the
right the Boolean functions that correspond an output equal to “1”. The red ellipses highlight the cases
of significant deviations from the hypothesis of uniform distribution (at the level of 1%). (a) Fit1 class
systems; (b) Fit2 class systems.
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(RI threshold θ5).

Another important remark is that the action of the GA can significantly change the static structure
of the system (Fit1 case), or achieve the dynamic result without producing significant changes at the
“architectural” level of the static components of the system (Fit2 case). The used indicators do not show
large deviations: thus, it seems that evolution keeps track of the already present organization induced
by the topology.

To observe the evolutionary changes, the indicators of Figure 4a are not sufficient, and it is
necessary to examine in more detail the final distribution of the sizes of the RSs of the systems Fit1
and Fit2.

Figure 4b shows with the increase of the size of the groups a rapid disappearance of the RSs in the
RND systems, and a persistence of the RSs of the other classes of systems. However, the distributions
of the evolved systems seem to have different trends from those of the random systems: the size of the
RSs of the Fit1 systems shows a small peak, and then decreases faster than the RND systems, while the
Fit2 systems show a persistent presence of large groups.
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These observations are confirmed by the data present in Figure 5, where the fraction of the
groups that exceeds a certain size is shown: the distribution of the sizes of the RSs of the evolved
systems deviates from the distribution of the RBN class. An interesting observation is that these
deviations can have different directions: towards small groups (systems of the Fit1 class) or larger
groups (systems belonging to Fit2 class).Algorithms 2020, 13, x FOR PEER REVIEW 11 of 15 
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(b) scale. The dynamic organization of RBNs involves a number of large RSs that is much higher
than that of large RSs randomly present in random avalanches. The action of evolution modified this
dynamic organization in different directions for different fitness (amplifying or reducing the dimensions
of the RSs).

4. Conclusions

The properties of many systems composed of many interacting elements are neither determined
by the topology of the interaction network alone, nor by the dynamical laws in isolation, but they
are the outcome of the interplay between topology and dynamics. (An interesting exception could
be that of some systems exhibiting the so-called “swarm intelligence” [54,72], in which the topology
of the interactions is variable and depends on the moves of the individual agents—in these cases,
the topology can be seen as dependent on both the interaction rules and the history of the system.
These systems are, however, outside the present discussion.) In this work we study this relationship by
carrying out a systematic comparison on a particularly interesting and understood class of systems,
a well-known model of gene regulatory dynamics.

We considered four different groups of structures with increasingly complex dynamical
organization (loosely defined as the emergent property of the interactions between topology and
dynamics, and identified by us through the distribution of the dynamic groups acting in the system),
starting from a completely random situation to a situation with structure, up to organizations with
structure and subject to evolution. All the involved systems are in (or very close to) critical dynamic
regimes. Whenever possible, we have used analytic methods based on the static structure of the
systems under investigation, while it has always been possible to use the dynamic analytic method.

A first significant observation is that the topology per se induces a notable increase in dynamic
organization: to the best of our knowledge, this is the first case where this kind of dynamical
organization in truly random BNs has actually been detected. It is also interesting that this organization
cannot be deduced from observations of static nature, since the RND system has no static structure.

A second noteworthy observation is the fact that the dynamic organization of the classes of systems
subjected to evolution does not consist of a large change in the distribution of the RSs: the evolutionary
action supplied by the GA keeps track of the already present organization induced by the topology.
A suggestive hypothesis on which it is worth working is that this situation may also be valid in other
systems, or more in general for the same natural evolution.
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Finally, and similarly to what happens in other applications of evolutionary algorithms to RBNs,
the types of dynamic changes strongly depend upon the fitness function. Fit1 systems have fewer big
RSs than random systems (the RBNs), while Fit2 systems, although involving fewer nodes in the RSs
with respect to the other systems, have a greater number of big RSs. It should be noted that the static
measurements are able to identify structural changes with respect to random systems (RBN) in Fit1
systems, while they are unable to detect anything significantly different from random systems in the
case of Fit2 systems.

Alongside these three noteworthy observations, we could actually note that the fundamental
contribution of this work is that of addressing the problem of quantitative identification of the dynamic
organization of a system, and that of suggesting for this aim a method (the RI methodology) capable of
identifying some interesting observables (the Relevant Sets). The identification of these structures
allows a better observation and understanding of the phenomena under investigation, and often as
consequence allows asking interesting new questions.

There are many interesting directions for future works: the two most stimulating seem to
be the deepening of the possible mechanism of the re-use by evolution of the already existing
dynamic organization, and the understanding of the dynamic interaction between the various RSs.
Both directions require individual-level analysis.

In the first case, it is possible to keep track of the composition of the RSs in the parent-child
sequence that leads from the initial random individual to the final one. In this case, it could be useful to
use a learning algorithm without the horizontal exchange of information among individuals belonging
to the same generation, as for example the stochastic descent, a strategy already used in RBN case [73],
and verifying the distance distribution between these compositions: in the case of low distances, it can
be concluded that evolution works based on the already existing dynamic organization, induced by
the topology.

The second research line includes the characterization of the information exchange between
the different RSs of the evolved individuals—for example by means of measures of information
theory—with the consequent possibility of identifying their functional roles.
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