
algorithms

Article

Multispectral Fusion Approach for Traffic Target
Detection in Bad Weather

Yajing Han 1,2 and Dean Hu 1,2,*
1 State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University,

Changsha 410082, China; hanyj@hnu.edu.cn
2 Key Laboratory of Advanced Design and Simulation Techniques for Special Equipments,

Ministry of Education, Hunan University, Changsha 410082, China
* Correspondence: hudean@hnu.edu.cn; Tel.:+86-13317315065

Received: 12 October 2020; Accepted: 25 October 2020; Published: 28 October 2020
����������
�������

Abstract: Visual traffic surveillance using computer vision techniques can be noninvasive, automated
and cost effective. Traffic surveillance systems with the ability to detect, count and classify vehicles
can be employed in gathering traffic statistics and achieving better traffic control in intelligent
transportation systems. This works well in daylight when the road users are clearly visible to the
camera, but it often struggles when the visibility of the scene is impaired by insufficient lighting or bad
weather conditions such as rain, snow, haze and fog. Therefore, in this paper, we design a dual input
faster region-based convolutional neural network (RCNN) to make full use of the complementary
advantages of color and thermal images to detect traffic objects in bad weather. Different from
the previous detector, we used halfway fusion to fuse color and thermal images for traffic object
detection. Besides, we adopt the polling from multiple layers method to adapt the characteristics of
large size differences between objects of traffic targets to accurately identify targets of different sizes.
The experimental results show that the present method improves the target recognition accuracy
by 7.15% under normal weather conditions and 14.2% under bad weather conditions. This exhibits
promising potential for implementation with real-world applications.
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1. Introduction

A traffic surveillance camera system is an important part of an intelligent transportation
system [1], which monitors traffic conditions and pedestrians by cameras mounted above the driveway.
Surveillance video includes a lot of information [2], such as traffic flow, lane occupancy and vehicle
type, that can be further processed by a computer to get real-time traffic conditions, accurate prediction
and discrimination, to ultimately improve traffic congestion, accidents, environmental pollution and
other issues.

In recent years, with the development of computer vision, more and more algorithms are applied
to the field of traffic surveillance [3–5]. These methods improve the efficiency of road monitoring and
let people get rid of boring and tedious work in front of the monitor [6]. However, it is well known
that the application context plays an important role in practical applications of computer vision, as the
conditions for the camera to capture images are not ideal sometimes, especially when the visibility
of the scene is impaired by insufficient lighting or bad weather conditions such as rain, snow, haze
and fog [7], as shown in Figure 1. The efficiency and accuracy of identification in these conditions
are greatly reduced, which is unacceptable for traffic surveillance. To solve this problem, we propose
a neural network to process color and thermal images collected by surveillance equipment and to
obtain information about the images. We know that the thermal image represents the difference in
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thermal radiation between the objects and the background, in other words, it describes the difference
in temperature between the objects and the background, which is effective in all weather conditions.
In contrast, the color image represents the visible light that is reflected or emitted from the object and
background, it has high spatial resolution and sharp texture details [8]. Therefore, the fusion of these
two complementary types of information can effectively improve the robustness of recognition, which is
very helpful for object detection and tracking in some limitations caused by weather conditions [1].
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Figure 1. Some examples of poor imaging conditions, the top images are the RGB images, and the
bottom images are the images after edge detect. There is a lot of interference information in the edge
information under the influence of light and reflection, in these cases the object detector may miss an
object or detect a wrong object.

This paper mainly introduces a dual input faster region-based convolutional neural network
(RCNN) approach based on infrared and visible images for object detection inspired by thermal and
visible properties. Two convolutional neural networks are used to extract the visible and infrared
image features of two images, respectively, to obtain the information contained in the two images,
and then we connect the feature maps obtained by the two convolution neural networks on the channel
dimension. In order to solve the problem of the large change in size of the target when identifying the
surveillance images, we adjusted the anchor size of the region proposal network (RPN) to identify
targets of various sizes.

The remainder of this paper consists of the following parts. Section 2 discusses the related works.
Section 3 introduces the model of our work. The dataset and experiment are shown in Section 4.
We give the conclusion in Section 5.

2. Related Works

2.1. Object Detection

The first object detector was called the Viola Jones object detector [9], proposed by Paul Viola
and Michael Jones, which was technically classified as an object detector and mainly used in face
detection. It provided a real-time solution and was used in many types of computer vision software.
With the combination of deep learning and computer vision, the field of object detection is developing
rapidly. The first object detector model based on deep learning was the OverFeat network [10] which
used convolutional neural networks (CNNs) along with a sliding window approach. It classifies the
various parts of the image one by one and then combines the results to produce the final prediction set.
The application of CNNs to solve detection problems led to the trend seen in recent years.

Object detector models have undergone various changes since 2012. The RCNN [11] made a
landmark contribution to target detection. It uses a selective search to find around 2000 regions where
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objects are most likely to be present in them. These regions are cropped from the input image and
resized to 7 by 7 pixels, then fed into the object detector model. The RCNN was the first two-step
approach detector. However, due to its time and space inefficiency, a better model was needed. Hence,
the fast RCNN [12] was proposed soon after, which further improved upon the RCNN. The fast
RCNN reduces the overhead of running a region proposal by cropping the regions from a feature
map instead of an input image. Additionally, it introduces a simpler single step training pipeline
and a new loss function, and this loss function is easier to train and does not suffer from the gradient
explosion problem.

Based on the RCNN and fast RCNN, Ren et al. proposed the faster RCNN in [13], which is a
detector that learns end to end. The faster RCNN introduced the region proposal network (RPN),
which used feature maps to generate object proposals instead of the selective search. The RPN has
the capability of predicting regions of multiple scales and aspect ratios across the image by using a
novel concept of anchors, in which the scale invariance is an important property of computer vision
systems. One of the basic tasks of object detection is to recognize multi-scale objects. A feature pyramid
is the most commonly used method but it is computationally and memory intensive. The feature
pyramid network [14] (FPN) provides a top-down architecture with horizontal connectivity to construct
high-level semantic feature maps at various scales, and the new state-of-the-art results were obtained
in object detection, segmentation and classification by integrating FPNs into the pre-existing models.

The single shot multibox detector (SSD) [15,16] was published in 2015, the major difference
between the SSD and previous architectures is that it was the first one to propose training on a feature
pyramid, and high accuracy and recognition speed can be obtained by the SSD. You only look once
(YOLO) [17], proposed by Redmon et al. in 2016, has similar architecture to the SSD. As a new target
detection method, YOLO is characterized by rapid detection and high accuracy. The authors consider
the target detection task as a regression problem of the target region and category prediction, so they
used a single neural network to directly predict the object boundary and category probability, and to
realize the end-to-end object detection.

2.2. Computer Vision for Traffic Surveillance Systems

With the development of automatic driving and intelligent transportation technology, traffic
surveillance has become increasingly important, with the advantages of being unmanned and highly
efficient. At present, traffic target recognition based on RCNNs has become the mainstream, and the
several abovementioned kinds of detector have been applied in the field of traffic identification. As for
the actual application effect [6], the single-stage detectors (YOLO, SSD, etc.) identify quickly but
with low accuracy. Moreover, YOLO has trouble identifying small goals. On the contrary, two-stage
detectors (faster RCNN, etc.) possess higher accuracy but are also slower.

Another application of traffic surveillance is multi-target tracking (MOT), which is used for
tracking multiple moving targets at the same time. The core of detection tracking is to correctly
associate detection boundary boxes between video frames. In most cases, the correlation measures
are based on appearance similarity and action consistency. In terms of association strategy, it can be
divided into offline global optimization and online association. The offline global methods always
use network flows [18] or probabilistic graph models [19] to solve MOT problems. This method has a
strong tracking ability for targets that have been blocked by other objects for a long time. Unlike the
offline global approach, the online approach [20,21] is frame based and focuses on establishing the right
connection between each pair of frames, which makes it less time consuming. At present, a majority
of online tracking methods have a strong anti-interference ability towards false detection signals,
short-term block and lost tracing objects. But these methods do not work well for objects that have
been blocked by other objects for a long time.
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3. Methods

In this part, we introduce the network structure of our proposed dual input faster RCNN (D-F Net).
As stated in Figure 2, the D-F Net model is two-step approach model, the same as faster RCNN.
The first part is the convolutional base for feature extraction based on ResNet and the RPN. It contains
two branches for processing infrared and visible images, respectively. We connect the feature maps of
infrared and visible images processed by the basic network on the channel dimension, and then feed
this into the RPN to find a list of regions that could contain an object. The second part is an object
detector model. The regions from the above step run through the object detector model and generate
the class probabilities and offset coordinates for each region.
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3.1. Convolutional Base and RPN

Different from the traditional faster RCNN network, our base convolutional network consists
of two parts, the infrared image feature extract convolutional network (base network 1), and the
visible image feature extract convolutional network (base network 2). In the base network, we use
Inception ResNet [22] to generate the initial feature map. In detail, we use fine-tuned ResNet-34 and
ResNet-50 as base network 1 and base network 2, respectively. In order to reduce the number of
weights, we adjusted the dimensions of ResNet-34 and ResNet-50, as shown in Table 1. In addition,
base network 2 is pretrained on the ImageNet dataset, and base network 1 uses Xavier for weight
initialization. After the convolution processing of the two images, the corresponding feature maps of
the two images are obtained, and then the two feature maps are connected along the channel axis and
computed with a 1 × 1 convolution to obtain the fusion feature map, as shown in Figure 3a. The region
proposal network is used to generate proposals from the input 512-dimensional fusion feature maps
extracted by convolutional base, as shown in Figure 3b.
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Table 1. Overview of base network.

Layer Name Base Network 1 Base Network 2

Conv_1
7 × 7, 64, Stride 2

3 × 3 max pool, Stride 2

Conv_2
∣∣∣∣∣ 3× 3 32

3× 3 32

∣∣∣∣∣× 3

 1× 1 32
3× 3 32
1× 1 64

× 3

Conv_3
∣∣∣∣∣ 3× 3 64

3× 3 64

∣∣∣∣∣× 4

 1× 1 64
3× 3 64
1× 1 128

× 4

Conv_4
∣∣∣∣∣ 3× 3 128

3× 3 128

∣∣∣∣∣× 6

 1× 1 128
3× 3 128
1× 1 256

× 6

Conv_5
∣∣∣∣∣ 3× 3 256

3× 3 256

∣∣∣∣∣× 3

 1× 1 256
3× 3 256
1× 1 512

× 3
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Figure 3. (a) We concatenate each pooled feature along the channel axis and reduce the dimension with
a 1 × 1 convolution; (b) the region proposal network.

A series of anchor boxes are output by a shared small network that slides over the fusion feature
map of the RPN. The shared small network consists of an intermediate layer and a full connection
layer. The convolution kernel size is 3 × 3 in the RPN. In traffic surveillance, the size and shape of the
objects vary greatly. Thus, the aspect ratios are set as 1:1, 0.4:1 and 2.2:1, while the scales are set as 1282,
2562 and 5122 pixels.

The RPN generates high-quality region proposals, and the fast RCNN learns those features and
performs classification. The loss function for an image is defined as:

L({pi}, {ti}) =
1

Ncls

∑
i
Lcls(pi, p∗i ) + λ

1
Nreg

∑
i
p∗i Lreg(ti, t∗i ) (1)

where i is the anchor’s index in a mini batch, Pi
∗ is the ground truth label (when a proposal is an object,

Pi
∗ = 1, otherwise Pi

∗ = 0) and Pi is the anchor i’s predicted probability of being an object. ti
∗ is the

ground truth box of a positive anchor and ti is a vector indicating four parameterized coordinates of
the predicted bounding box. Ncls and Nreg are two normalization parameters, Lcls is classification loss,
which is log over two classes (object versus not object). Lreg is regression loss, the term p∗i Lreg means
the regression loss that is active only for a positive anchor.

For bounding box regression, the parameterization of the four coordinates can be written as:

tx =
(x− xa)

wa
ty =

(y− ya)

ha
(2)
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tw = log
( w

wa

)
th = log

(
h
ha

)
(3)

t∗x =
(x∗ − xa)

wa
t∗y =

(y∗ − ya)

ha
(4)

t∗w = log
(w∗

wa

)
t∗h = log

(
h∗

ha

)
(5)

where x and y represent the coordinates of the box center, w and h represent the weight and height of
the bounding box, respectively, and x, xa and x∗ are the predicated box, anchor box and ground truth
box, respectively (likewise for y, w, h y, w, h). This can be thought of as bounding box regression from
an anchor box to a nearby ground truth box.

3.2. Object Detector Model

We know that the detection of small targets is challenging for the fast RCNN, because the fast
RCNN is based on the last convolution layer conv5_3 for object detection. The receptive field in the
feature map is quite large, which is insufficient to encode object information. In addition, the deeper
the convolutional layer, the more information each pixel on the feature map contains that is not the
object. In this paper, we adopt the layers of base network 2 conv3_3, conv4_3 and base network 1
conv5_3 to extract features where the high-resolution information of the lower-level layer will not
be lost in terms of small-scale objects. The region proposals and input feature maps can be collected
through an region of interest (ROI) pooling layer. ROI pooling layer is characterized by the non-fixed
size of feature maps. The input of three network connections is the feature map of base network
2 conv3_3, conv4_3 and base network 1 conv5_3. The base network 2 feature map of conv3_3 and
conv4_3 is used to obtain relevant information about small and medium objects, and the base network
1 feature map of conv5_3 is used to obtain relevant information about large objects. In addition, by
connecting the middle-level and low-level layers of base network 2 and the high-level layers of base
network 1, the characteristics of infrared and optical images can be fully utilized.

According to the Inside–Outside NET [23], as more features are connected, we must consider
issues of dimensionality and amplitude. We know that the final feature’s shape must be 512 × 7 × 7
so that it can be processed by the first final fully connected layer. The three ROIs corresponding to
object proposal are fed into three corresponding ROI pooling layers, the number and scale of channels
differ on each layer of convolution base, with a higher scale on a lower layer. To satisfy the shape
constraint, we concatenate three pooled features along the channel axis and reduce the dimension by a
1 × 1 convolution. Besides, the L2 normalization is applied to normalize amplitudes for each tensor
ahead of concatenation [24], and then to scale each tensor independently. For a d-dimensional input
vector x = (x1, x2, · · · , xd), L2 normalization is expressed by the following equation:

||x||2 =

√√√ d∑
i=1

|xi|
2

 (6)

x̂ =
x
||x||2

(7)

where x is the input pixel vector, d is the dimension of each ROI polling tensor and x̂ is the normalized
pixel vector.

In the last step of the object detector model, the 7× 7 feature vector is input into two fully connected
layers that branch into two sibling layers and, finally, the softmax layers for object classification and
the regression function for bounding box regression results.
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4. Procedure and Results

4.1. Dataset and Data Augmentation

The dataset is traffic surveillance in [7], collected by Chris H. Bahnsen et al. This dataset is focused
on collecting traffic surveillance video in rainfall and snowfall, with 22 videos from seven different
traffic intersections, and each monitor video is five minutes long. The illumination of the scenes
varies from broad daylight to dusk and night. The features of scenes are obscured by the glare of the
headlights of cars and streetlamps, reflected in puddles and blurred by raindrops on the camera lens.

This dataset uses optical and thermal infrared cameras to capture video sequences of road users.
We have selected 600 frames randomly from each five-minute sequence and any road user in these
frames is annotated on an instance level with a corresponding category label. In total, 15,600 frames
are annotated, containing 33,297 objects in six categories (car, truck, bike, motorbike, bus, person).
We divide 15,600 pairs of infrared and visible images into a training set and a testing set according to
the ratio of 8:2. Moreover, all the images in this dataset are normalized to the size of 640 × 480 pixels
and input to the convolutional neural networks. Some examples of the dataset are shown in Figure 4.
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Figure 4. Some examples of images of traffic surveillance, the visible image is on the left and the
infrared image is on the right. In (a–c), there are scenes ranging from sunny to rainy in the daytime; in
(d–f), there are bad lighting conditions and bad visibility of the scenes; (c) snow; (d) rain and reflections;
(f) raindrops on the camera lens.

There are 15,600 pairs of photos in the dataset, but some categories of images are insufficient, such
as pedestrian, motorbike and bicycle, which account for a small proportion. In order to reduce the risk
of overfitting, we use data augmentation to enrich the original dataset. The spatial transformation of
coordinates is used to enlarge our dataset, and the transform of coordinates can be expressed by the
following formula: [

x′

y′

]
= T

[
x
y

]
=

[
t11 t12

t21 t22

][
x
y

]
(8)
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where (x, y) are pixel coordinates in the original image and (x′x′,y′y′) are the corresponding pixel
coordinates of the transformed images. The most common type of coordinate transformation is affine
transformation, the general form is as follows:

x′

y′

1

 = A


x
y
1

 =


a11 a12 a13

a21 a22 a23

0 0 1




x
y
1

 (9)

This transformation can scale, rotate, translate or shear an image by changing the value of the
elements of matrix A. We apply multiple transformations to the image by multiplying different matrices
A. The matrix A that we use for affine transformation is shown in Appendix A.

4.2. Implementation Details

Our experiments are based on the open source framework of Mxnet [25] with a Python
interface, and the model introduced in Section 3. Fast RCNN and RPN modules are fine-tuned
end-to-end with Pascal Voc_2007 and Pascal Voc_2013 [26]. In our experiment, the threshold of the
intersection-over-union is set to 0.7 and the learning rate is set to 0.005 for the first 40 k iterations
and 0.001 for the last 40 k iterations. In addition, the weight decay and momentum are set to 0.0005
and 0.9, respectively. Two pairs of infrared and visible images make up a batch. Other network
hyper-parameters of our approach are the same as those in traditional faster RCNN. The infrared and
visible images in our dataset have the same perspective, and there is no need for image registration.
If two images have different perspectives, they should be registered before training. Our experiments
were performed on a 64 bit Ubuntu 16.04 computer with CPU Intel(R) Core (TM) i7-6700K CPU@
4.00 GHz and NVIDIA GeForce GTX 1050. During the training process, we use the feature map
connection approach, as introduced in Section 3.

4.3. Experimental Results

In this section, we evaluate our approach by comparing it with one multispectral model and two
single-spectral models. In order to evaluate the performance of our proposed multispectral recognition
method, we also trained three other object detectors, including two faster RCNN models trained by
color or thermal images only and a vanilla ConvNet. To facilitate the distinction, we named the faster
RCNN trained by visible images as F-rgb and the faster RCNN trained by thermal images as F-ther.
The intersection-over-union (IOU), non-maximum suppression (nms), weight decay, momentum and
other parameters of reference models are consistent with our model.

Figure 5 shows the curve of the miss rate and false positives per image under all-weather conditions
of the four models, where the miss rate is the number of objects not recognized by the detector divided
by the total number of ground truth and the false positives (FPs) are those negative samples identified
by the detector as positive samples. It can be seen from the figure that neither single spectral recognizer
is as effective as the fused recognizer. Their miss rate and FPs per image are high in most cases, and the
comparison of the two fused recognizers shows that our method is an improvement over vanilla
ConvNet. The reason why we use vanilla ConvNet as a comparison here is that it performs better in
the fusion detector, especially for pedestrian recognition [27].

During the testing process, we quantify the performance of our approach by computing the mean
average precision (mAP). In particular, we evaluate the D-F Net on six different weather conditions
(sunny day, clear night, rainy day, rainy night, reflection and blur) to simulate the working environment.
The calculation results are shown in Table 2, it can be seen from the data that the present approach
has improved performance in different environments, the mAP of our approach is 75.05% for good
weather and 65.15% for bad weather, while the mAP of vanilla ConvNet is 67.9% for good weather and
50.95% for bad weather. According to the results, the accuracy of the present method is improved by
7.15% for good weather and 14.2% for bad weather compared with vanilla ConvNet.
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Table 2. Comparison of two multispectral detectors under different weather conditions.

Good Weather Bad Weather

Sunny Day Clear Night Rainy Day Rainy Night Reflection Blur

mAP
Ours 79.8 70.3 69.2 64.9 65.4 61.1

Vanilla ConvNet 75.3 60.5 66.4 54.2 43.3 39.9

Average mAP
Ours 75.05 65.15

Vanilla ConvNet 67.9 50.95

Figure 6a compares the training process of loss function between the vanilla ConvNet and our D
FRCNN. It can be seen that in the training process, the D-F Net model can converge rapidly, and the
loss function is smaller than the vanilla ConvNet after about 30,000 iterations, in which the vanilla
ConvNet shows signs of overfitting. Figure 6b is the comparison of receiver operating characteristic
curve (ROC) between our approach and the vanilla ConvNet. We know that the area enclosed by
the ROC curve and coordinate axis is an index to measure the performance of the model. The larger
the area, the better the recognition performance of the detector. We can see from Figure 6b that our
proposed method has more reliable performance and better robustness than vanilla ConvNet under
the premise of considering complex weather conditions, because it is more accurate under the same
recall rate.

Figure 7 shows the detection results for some bad weather conditions, these images were selected
from the test set, including sunny, rainy, snowy and blurry lens conditions. As we can see from these
test results, our method can still ensure the accuracy of recognition under some special circumstances
by adopting multispectral information fusion. In addition, we adopt the layers of base network 2
conv3_3, conv4_3 and base network 1 conv5_3 to extract features, and the detector is also able to
recognize targets with a large size difference (such as the pedestrian and the bus in the picture on the
top left).
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Figure 6. D-F Net performance compared with the vanilla ConvNet: (a) Loss function curve of 80,000
iterations; (b) precision–recall curve.
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5. Discussion

In this paper, a new approach is proposed for traffic surveillance object detection in bad weather
based on a faster RCNN. We used two convolutional neural networks to obtain high-quality object
proposals from the information of infrared and visible images. With the addition of infrared images,
the performance of regression and classification has been improved to some extent, especially in
severe weather environments. Besides, we adopt the polling from multiple layers method to adapt the
characteristics of large size differences of objects in traffic targets so as to accurately identify targets of
different sizes. Our dual input faster RCNN can also be applied to other object detection tasks with
two information sources.

In the future, we will explore how to improve the time efficiency of D-RCNN and optimize the
regional recommendation network with the homogeneity of thermal radiation images. On the other
hand, we will try to use probability theory and the multispectral fusion recognition method to track
the target along the timeline and establish connections between objects identified in different frames,
so that it can better serve intelligent transportation systems.
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All authors have read and agreed to the published version of the manuscript.
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