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Abstract: This paper contributes towards the development of motion tracking algorithms for
time-critical applications, proposing an infrastructure for dynamically solving the inverse kinematics
of highly articulate systems such as humans. The method presented is model-based, it makes
use of velocity correction and differential kinematics integration in order to compute the system
configuration. The convergence of the model towards the measurements is proved using Lyapunov
analysis. An experimental scenario, where the motion of a human subject is tracked in static
and dynamic configurations, is used to validate the inverse kinematics method performance on
human and humanoid models. Moreover, the method is tested on a human-humanoid retargeting
scenario, verifying the usability of the computed solution in real-time robotics applications.
Our approach is evaluated both in terms of accuracy and computational load, and compared to
iterative optimization algorithms.

Keywords: motion tracking; kinematic estimation; inverse kinematics; motion retargeting

1. Introduction

Nowadays, real-time motion tracking has many established applications in different fields such
as medicine, virtual reality, and computer gaming. Moreover, in the field of robotics there is a
growing interest in human motion retargeting and imitation [1,2]. Different tracking technologies and
algorithms are currently available. Among these, optical tracking techniques are more spread and have
been available since the 1980s [3]. Inertial/magnetic tracking technologies have been available only
with the advent of micromachined sensors, and ensure higher frequency of data and lower latency,
that makes them suited for demanding real-time motion tracking applications [4,5]. The objective of
motion tracking algorithms is to find the human configuration given a set of inertial measurements.
Tracking algorithms can use human body representations with different levels of complexity, spacing
from contours [6,7], stick figure [8,9], and volumes [10,11]. For some techniques it is not required to
know a priori the shape of the model, and model identification is part of the algorithm [6,8]. When the
human is modeled as a kinematic chain, the solution of the model inverse kinematics has a major role
in the algorithm [12–15], hence, strategies to solve it efficiently are required.

In the field of robotics, a common inverse kinematics problem consists in finding the
mapping between the end-effector of a manipulator (task space) and the corresponding joint angles
(configuration space). Compared to industrial manipulators, solving the inverse kinematics for a
human kinematic model can be demanding as humans can be modelled as highly articulate kinematic
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chains. Human kinematics is redundant, it generally has a high number of degrees of freedom (DoF),
and it should also take into account musculoskeletal constraints in order to ensure realistic motion.
Moreover, a human moving in the space is a floating base system, which means that the configuration
space lies on a differentiable manifold [16].

Since finding an analytical closed-form solution for the inverse kinematics of a human model
is not always either possible or efficient, a numerical solution is often preferred. One of the most
common approaches for solving inverse kinematics consists in formulating the problem as a non-linear
optimization problem, that can be solved via iterative algorithms [17,18]. This class of algorithms
can be referred to as instantaneous optimization since they aim to converge to a stable solution
instantaneously at each time step. Although instantaneous optimization algorithms can converge fast
to a solution in common robotics applications, the capability of finding an accurate solution for a human
model, at a sufficient rate, can still be the bottleneck for some time-critical applications. However,
there are many examples in which optimization is used for offline processing [19,20]. In some cases,
better performances are achieved using heuristic iterative algorithms [21], learning algorithms [22],
or combining analytical and numerical methods [23]. An alternative approach consists of embedding
the static non-linear inverse kinematics problem into a dynamical one [24–26]. In order to underline
the fact that, with this approach, a dynamic solution to the problem is found, we will refer to it as
dynamical inverse-kinematics optimization. Note that this approach has been presented in literature also
with other names such as motion rate control [27] and closed-loop inverse kinematics [28]. In practice,
with this approach, the inverse kinematics problem is rephrased as a control problem, aiming to control
the model configuration in order to converge to the sensors measurements. From a computational
point of view, the main advantage of this approach is the fact that the solution can be computed directly
at each time-step with a single iteration. The absence of iterations makes the dynamical optimization
approach faster, therefore suitable for solving whole-body inverse kinematics of complex models
in time-critical motion tracking applications. In literature, dynamical inverse kinematics has been
successfully applied in real-time applications involving human or humanoid models [29,30].

This article presents a scheme for real-time motion tracking of highly articulate human,
or humanoid, models. The tracking is achieved at a high frequency through a dynamic inverse
kinematics optimization approach. The main contributions of this work are the application of a
dynamical inverse kinematics strategy using rotation matrix parametrization for the rotation targets
of the floating base human model, proving the convergence of the method using Lyapunov theory,
and presenting a constrained inverse differential kinematic strategy to enforce model kinematic
constraints. The implementation of the proposed scheme is tested for both human and humanoid
models. The tests are preformed during different tasks involving both static posture and dynamic
motions such as shown in Figure 1. The performances obtained using the dynamical inverse kinematics
scheme are compared to the results obtained using instantaneous optimization methods. Further
tests are performed using a real humanoid robot, controlling it in real-time using input sensors
measurements and output of the humanoid model inverse kinematics. The paper is organized as
follows: Section 2 introduces the notation, human modeling, formulation of motion tracking as
an inverse kinematics problem, and the dynamical optimization scheme. Section 3 presents the
proposed implementation of the dynamical inverse kinematics with rotation matrix parametrization
and constrained inverse differential kinematics. In Section 4 the experimental details lay, and in
Section 5 the performances are discussed and compared to instantaneous optimization. Conclusions
follow in Section 6.
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Figure 1. Motion tracking of a human running on a treadmill using an human model, on the center,
and a humanoid model, on the right.

2. Background

2.1. Notation

• I denotes an inertial frame of reference.
• In×n ∈ Rn×n denotes the identity matrix of size n.
• ApB ∈ R3 is the position of the origin of the frame B with respect to the frame A.
• ARB ∈ SO(3) represents the rotation matrix of the frames B with respect to A.
• AωB ∈ R3 is the angular velocity of the frame B with respect to A, expressed in A.
• The operator tr(·) : R3×3 → R denotes the trace of a matrix, such that given A ∈ R3×3, it is

defined as tr(A) := A1,1 + A2,2 + A3,3.
• The operator sk(·) : R3×3 → so(3) denotes skew-symmetric operation of a matrix, such that given

A ∈ R3×3, it is defined as sk(A) := (A− A>)/2.
• The operator S(·) : R3 → so(3) denotes skew-symmetric vector operation, such that given two

vectors v, u ∈ R3, it is defined as v× u = S(v)u.
• The vee operator ·∨ : so(3) → R3 denotes the inverse of the skew-symmetric vector operator,

such that given a matrix A ∈ so(3) and a vector u ∈ R3, it is defined as Au = A∨ × u.
• The operator ‖·‖2 indicates the L2-norm of a vector, such that given a vector v ∈ R3, it is defined

as ‖v‖2 =
√

v2
1 + v2

2 + v2
3.

2.2. Modeling

The human is modeled as a multi-body mechanical system composed of n + 1 rigid bodies,
called links, that are connected by n joints with one degree of freedom (DoF) each [31]. Additionally,
the system is assumed to be floating base, i.e., none of the links has an a priori constant pose with
respect to the inertial frame I . Hence, a specific frame, attached to a link of the system, is referred to as
the base frame, denoted by B.

The model configuration is characterized by the position and the orientation of the base frame along
with the joint positions. Accordingly, the configuration space lies on the Lie group Q = R3× SO(3)×Rn.
An element of the configuration space q ∈ Q is defined as the triplet q = (I pB , IRB , s) where I pB ∈ R3

and IRB ∈ SO(3) denote the position and the orientation of the base frame, and s ∈ Rn denotes the
joints configuration representing the topology, i.e. shape, of the mechanical system. The position
and the orientation of a frame A attached to the model can be obtained via geometrical forward
kinematic map hA(·) : Q→ (SO(3)×R3) from the model configuration. The forward kinematics can be
decomposed into position, i.e., I pA = hp

A(q), and orientation, i.e., IRA = ho
A(q), maps.
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The model velocity is characterized by the linear and the angular velocity of the base frame along with
the joint velocities. Accordingly, the configuration velocity space lies on the group V = R3 ×R3 ×Rn.
An element of the configuration velocity space ν ∈ V is defined as ν = (IvB , ṡ) where IvB =

(I ṗB , IωB) ∈ R3 ×R3 denotes the linear and angular velocity of the base frame, and ṡ denotes the joint
velocities. The velocity of a frame A attached to the model is represented as IvA = (I ṗA, IωA) where
the two terms represent the linear and the angular velocity components respectively. The mapping
between frame velocity IvA and configuration velocity ν is achieved through the Jacobian JA = JA(q) ∈
R6×(n+6), i.e., IvA = JA(q)ν. The Jacobian is composed of a linear part J`A(q) and an angular part Ja

A(q)
mapping the linear and the angular velocities respectively, i.e., I ṗA = J`A(q)ν and IωA = Ja

A(q)ν.

2.3. Problem Statement

Motion tracking algorithms aim to find the model joint configuration given a set of targets
describing the kinematics of the model links. The targets are the measurements of the link pose and
velocity expressed in a world reference frame, and can be retrieved from various sensors measurements,
e.g., processing of IMUs data [32]. The process of estimating the configuration of a mechanical system
from task space measurements is generally referred to as inverse kinematics, and can be formulated
as follows:

Problem 1. Given a set of np frames P = {P1,P2, ....Pnp} with the associated target position I pPi (t) ∈ R3

and target linear velocity measurements I ṗPi (t) ∈ R3, and given a set of no framesO = {O1,O2, ....Ono} with
the associated target orientation IROj(t) ∈ SO(3) and target angular velocity measurements IωOj(t) ∈ R3,
and given the kinematic description of the model, find the state configuration (q(t),ν(t)) such that:

I pPi (t) = hp
Pi
(q(t)), ∀i = 1, . . . , np

IROj(t) = ho
Oj
(q(t)), ∀j = 1, . . . , no

I ṗPi (t) = J`Pi
(q(t))ν(t), ∀i = 1, . . . , np

IωOj(t) = Ja
Oj
(q(t))ν(t), ∀j = 1, . . . , no

Aqs(t) ≤ bq,

Aν ṡ(t) ≤ bν,

(1)

where Aq and bq are two constant parameters that represent the limits for model joints configuration, and Aν

and bν are two constant parameters that represent the limits for joint velocity.

The following quantities are defined in order to have a compact representation of Problem (1).
The targets are collected in a pose target vector x(t) and velocity target vector v(t):

x(t) :=



I pP1(t)
...

I pPnp
(t)

IRO1(t)
...

IROno
(t)


, v(t) :=



I ṗP1(t)
...

I ṗPnp
(t)

IωO1(t)
...

IωOno
(t)


, (2)
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while, forward geometrical kinematics and Jacobians are expressed respectively as a single vector
h(q(t)) and a single matrix J(q(t)), such as:

h(q(t)) :=



hp
P1
(q(t))
...

hp
Pnp

(q(t))

ho
O1

(q(t))
...

ho
Ono

(q(t))


, J(q(t)) :=



J`P1
(q(t))
...

J`Pnp
(q(t))

Ja
O1

(q(t))
...

Ja
Ono

(q(t))


, (3)

the set of equations in (1) can then be written compactly, using the definitions of (2) and (3), as the
following two equations that describe the forward kinematics and differential kinematics respectively for
all the target frames:

x(t) = h(q(t)), (4a)

v(t) = J(q(t))ν(t). (4b)

As mentioned in Section 1, in the case of highly articulate systems, like humans, finding an
analytical solution for the state configuration (q(t),ν(t)), satisfying the measurement Equations (4a)
and (4b), is often not possible or too demanding. Hence, a numerical solution, such as non-linear
optimization, is usually preferred (a general formulation of the non-linear optimization problem can
be found in Section 5.1).

2.4. Dynamical Inverse Kinematics Optimization

Differently from instantaneous optimization methods, the dynamical optimization approach does
not aim to satisfy the measurement Equations (4a) and (4b) at each time-step. Instead, the idea is to
drive the state configuration (q(t), ν(t)) to match the target measurements. In the language of control
theory, the configuration velocity ν(t) is the control input, and the objective is to converge to the
given target measurements. The block diagram for dynamical inverse kinematics implementation is
presented in Figure 2. The scheme is designed in order to achieve the following three main tasks:

1. correction of the measured velocity according to the current error,
2. inversion of the model differential kinematics to compute the state velocity ν(t),
3. integration of state velocity to compute the configuration q(t).

Figure 2. Dynamical optimization scheme for real-time inverse kinematics solution.



Algorithms 2020, 13, 266 6 of 19

The implementation of these three parts and the definition of the error are not unique, and depends
on user design choices. In literature, Euler angles or unit quaternion parametrization are used for
modeling floating base systems and for defining the rotational displacements. The implementation
presented in the next section exploits rotation matrix parametrization both for target orientations and
modeling of floating base systems. Moreover, a joint limit avoidance strategy is introduced in the
inverse differential kinematics computation in order to comply with the model constraints. To the best
of authors’ knowledge, the proposed scheme has not been used in literature before, with the presented
implementation, for motion tracking applications.

3. Method

3.1. Velocity Correction Using Rotation Matrix

As a first instance, it is necessary to define some displacement measurements to be minimized.
The displacements from the pose target vector x(t), given the current state q(t), are collected in a
residual vector r(q(t), x(t)) defined as follows:

r(q(t), x(t)) =



I pP1(t)− hp
P1
(q(t))

...

I pPnp
(t)− hp

Pnp
(q(t))

sk(ho
O1

(q(t))T IRO1(t))
∨

...
sk(ho

Ono
(q(t))T IROno

(t))∨


. (5)

Note that the position displacement is measured as Euclidean distance, while, the displacement
between two orientation measurements is computed on SO(3) using rotation matrices with the sk(.)∨

operator. The displacements from the target velocities v(t) are collected in the velocity residual vector
u(q(t), ν(t), v(t)). In this case all the vectors lie in a space over R, and the residual vector is defined as:

u(q(t), ν(t), v(t)) = v(t)− J(q(t))ν(t). (6)

At this stage, we assume the state velocity ν(t) being the control input of a dynamical system
described by the differential Equations (5) and (6), where we want to control the output residual vectors
r(t) and u(t) to be driven to zero. As a consequence of the orientation error properties presented
in [33], the following result holds.

Corollary 1. Assume r(q(t), x(t)) defined as in (5), u(q(t), ν(t), v(t)) defined as in (6), and the system

u(q(t), ν(t), v(t)) + Kr(q(t), x(t)) = 0, (7)

where K ∈ R(3np+3no) ×R(3np+3no) is a positive definite diagonal matrix. Then, (r, u) = (0, 0) denotes an
(almost) globally asymptotically stable equilibrium point for the system.
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The proof is provided in Appendix A. Corollary 1 shows that we can control the system so that
r(t) and u(t) converge to zero for (almost) any initialization q(t0). The rate of convergence depends
on the magnitude of the elements of matrix K, higher values of K imply faster convergence of the
system (7) towards zero. Replacing the expression of u(q(t), ν(t)) presented in (6), into the system (7),
we can derive an expression that is linear in the control input, i.e., state velocity ν(t):

J(q(t))ν(t) = v(t) + Kr(q(t), x(t)). (8)

The control input ν(t) can be obtained from Equation (8), the strategy to compute it will be the
topic of the following Section 3.2.

Remark 1. The existence of a solution for Equation (8) depends on the rank of the Jacobian matrix J(q(t)),
and of the augmented matrix [J(q(t))|(v(t) + Kr(q(t), x(t)))], there are many cases in which the solution can
be found only numerically as a least-squares optimization. The presence of the optimization residual error ε,
such that J(q(t))ν(t) = v(t) + Kr(q(t), x(t)) + ε, prevents the direct application of Corollary 1. However,
the system convergence is ensured within a neighbourhood of the origin that depends on ‖ε‖2 (which is minimized
within the optimization problem). The proof of it is beyond the scope of this paper.

Remark 2. The Lyapunov analysis leading to Equation (8) has been done considering continuous-time.
Some further considerations have to be done for discrete-time implementation. The discrete control input
ν(tk) is obtained by replacing Equation (8) with the following discrete-time equation:

J(q(tk−1))ν(tk) = v(tk) + Kr(q(tk−1), x(tk)). (9)

Moreover, discrete time solution bounds the values of K depending on the sampling time [34]. In case the
sampling time is not constant, it might be opportune to use a variable gain K = K(tk).

According to the scheme in Figure 2, we will define a corrected velocity the term v∗(tk) = v(tk) +

Kr(q(tk−1), x(tk)) that is used in inverse differential kinematics. The name underline the fact that the
measured velocity v(tk) is not used directly, but it is corrected proportionally to a residual error vector
r(q(tk−1), x(tk)).

3.2. Constrained Inverse Differential Kinematics

The inverse differential kinematics is the problem of inverting the differential kinematics presented
in Equation (4b) in order to find the configuration state velocity ν(t) for a given set of task space
velocities. In order to compute the control input ν(tk) from (9), it is required to solve the inverse
differential kinematics for the corrected velocity vector v∗(tk). Different strategies to solve the inverse
differential kinematics can be found in literature [17,18,35,36], among the possible solutions, the most
common approach is to use Jacobian generalized inverse [37]. In order to take into account also
the model constraints, however, a Quadratic Progamming (QP) solver is preferred since it allows to
introduce a set of constraints to the problem [38]. Hence, the inverse differential kinematics solution
can be defined as the following QP optimization problem:

minimize
ν(tk)

‖v∗(tk)− J(q(tk−1))ν(tk)‖2 (10a)

subject to Gṡ(tk) ≤ g. (10b)
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While the joint velocities constraints can be used in the Equation (10b), joint position constraints,
of the form

As(tk) ≤ bq, (11)

can not be directly enforced in (10b) since they are independent from joint velocities ṡ(tk). For this
reason, we propose a strategy that aims at converting joint space constraints (11) to velocity constraints
such as (10b).

3.2.1. Joint Limit Avoidance

We start considering the simple case where we want to constraint a 1-DoF joint within its position
limits pmin ≤ p ≤ pmax, and for which we define also a maximum and minimum velocity ṗmin ≤ ṗ ≤
ṗmax. In order to write all the constraints as velocity constraints, the idea is to limit the joint velocity
as the position gets closer to its limits. This behaviour can be modelled using the hyperbolic tangent
function, and defining the velocity limits as:

tanh(kmin
g (p− pmin)) ṗmin ≤ ṗ ≤ tanh(kmax

g (pmax − p)) ṗmax. (12)

where kmin
g and kmax

g are positive gains regulating the slope of the hyperbolic tangent, and tanh(·)
indicates the hyperbolic tangent function. When the joint is far from its limit, the argument of tanh(.)
is positive and far from zero, hence the hyperbolic tangent is ≈ 1 and Equation (12) simply express
the velocity limits. Instead, when the joint approaches the limits, the hyperbolic function goes to zero
bounding the joint velocity to be positive, when approaching the lower joint limit, and negative when
approaching the upper joint limit.

3.2.2. Linear Joint Space Constraints

Considering a set of joint space linear constraints, as defined in Equation (11), and following
the 1-DoF example in Section 3.2.1, we can define dynamically the velocity constraint matrices,
in Equation (10b), as

G = A (13a)

g = tanh(Kg(bq − As)) ◦ bν. (13b)

where Kg is a positive definite diagonal matrix, the operator ◦ indicates the element-wise multiplication,
and tanh(·) indicates the element-wise hyperbolic tangent function for a vector of scalars.

Remark 3. It can happen that there is not a one-to-one mapping between the position constraints (Aq, bq) and
the velocity constraints (Aν, bν). In this case it is required to augment the constraint matrices by adding infinite
constraints bq

i → ∞ and bν
i → ∞, that, in practice, can approximated numerically.

Figure 3 shows the effect of the proposed limit avoidance approach in constraining the joints
configuration-velocity space. It is important to notice that, in general, although the velocity is bounded
to zero when approaching the limits, a violation of the constraints is possible. This would depend
on the value of the gain Kg, the integration method, and the integration step ∆t. However, in case of
constraint violation, the change of sign of the velocity limit forces the configuration to return inside
the bounds.
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Figure 3. Constrained configuration space for the elbow joints of the iCub model. Blue and red lines
represent respectively upper and lower joint velocity limits, depending on joint angle. The yellow area
represents the joint configuration space. According to limit avoidance strategy, the joint velocity is
bounded to be ≥0 when lower angle limit is reached, and ≤0 when upper limit is reached (angle limits
are represented by dashed lines). Yellow lines represent the joint configuration trajectory computed via
inverse kinematics algorithm, while the purple line represents the trajectory tracked by a real robot.

3.3. Numerical Integration

Given the configuration velocity solution ν(tk), it is possible to compute the state configuration
q(tk) by defining an initial configuration q(t0) and integrating over time. Base position I pB and
joints configuration s lie in vector space over R for which most of the numerical integrations methods
proposed in literature can be used [39]. The integration of the base angular velocity IωB(tk) is
not trivial [40], and numerical integration errors can lead to the violation of the orthonormality
condition [41] for the base orientation IRB . There are different schemes that successfully solve discrete
angular velocity integration making use of quaternion representation [40]. Concerning rotation
matrix representation, the orthonormality condition can be directly enforced using the Baumgarte
stabilization [41], and avoiding change of representation. The convergence of IRB(tk) over SO(3),
in fact, is ensured computing the base orientation matrix dynamics I ṘB(tk) ∈ R3×3 as follows:

A(tk−1) =
ρ

2
((IRB(tk−1)

T IRB(tk−1))
−1 − I3×3), (14a)

I ṘB(tk) =
IRB(tk−1)(S(IωB(tk)) + A(tk−1)), (14b)

where ρ ∈ R+ is the gain regulating the convergence towards the orthonormality condition, and ∆tk =

tk − tk−1 is the integration time step. The advantage of obtaining the configuration q(tk) through
integration of velocity ν(tk) is that the two estimated quantities are directly related, and continuity of
the state configuration is ensured.

4. Experiments

4.1. Motion Data Acquisition

The proposed method has been implemented and tested using motion data acquired with the
Xsens Awinda wearable suit [42] providing pose and velocity of a 23 links human model, computed
from a set of distributed Inertial Measurement Units (IMUs). The motion data is streamed through
YARP middleware [43] that facilitates recording and real-time playback of data. The motion data is
acquired for three scenarios with different levels of dynamicity: t-pose where the subject stands on two
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feet with the arms parallel to the ground, walking where the subject walks on a treadmill at a constant
speed of 4 km/h, and running where the subject runs on a treadmill at a constant speed of 10 km/h.

4.2. Models

The motion tracking is performed by using two different human models defined as in Section 2.2.
Both the models are composed by 23 physical links representing segments of the human body.
Each physical link is attached to the next one through a certain number of rotational joint connected
through dummy links, i.e., links with dimension zero, in order to model human joints with multiple
DoFs. In one human model (Human66) all the physical links are connected through spherical joints
(3 rotational joints), i.e., a total of 66 DoFs and 67 links. The second model (Human48) is based on
the modeling of the human musculoskeletal system as described in clinical studies [44–46], it has a
reduced number of joint, i.e., 48DoFs, and takes into account human joint limits.

Additionally, we consider experiments with a model of the iCub humanoid robot [47].
The motivation behind this is to highlight the performance in achieving motion tracking, and motion
retargeting from the human to a humanoid. The iCub model is composed of 15 physical links connected
through 34 rotational joints. Model joint limits are defined according to the real robot mechanical
constraints, including linear system of constraints involving multiple set of joints due to coupled
joints mechanics.

The human https://github.com/robotology/human-gazebo and humanoid https://github.com/
robotology/icub-models models are open-source resources. The definition of link frames for the
human model and the robot model is highlighted in Figure 4. Considering that all the models have
rotational joints only, the inverse kinematics problem is defined using rotational and angular velocity
targets for each physical link, i.e., no = 23 for the human model and no = 15 for the humanoid model.
Additionally, as both the models are floating base, a position and linear velocity target is used for the
base frame, i.e., np = 1.

Figure 4. Model of the human (left) and iCub (right) in T-pose, with the corresponding links
frame definition.

https://github.com/robotology/human-gazebo
https://github.com/robotology/icub-models
https://github.com/robotology/icub-models
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4.3. Robot Experiments

The iCub model inverse kinematics solution has been tested on the real robot in order to verify
the feasibility of the computed configuration. The experimental setup involves an iCub robot fixed
on a pole, as shown in Figure 5, controlled in position through low-level PID running at 1 kHz.
The reference joint position is computed real-time using the dynamical inverse kinematics on the robot
model, and the data are sent to the robot at the frequency of 50 Hz.

Figure 5. Real-time retargeting of the human motion to iCub humanoid robot configuration.

5. Results

The performance of dynamical optimization inverse kinematics solver is compared to
instantaneous optimization implementations. The evaluation is done in terms of computational
load and accuracy on a 2.3 GHz Intel Core i7 processor with 16 GB of RAM. The accuracy is measured
with two metrics, one for the orientation targets and one for the velocity targets. The mean normalized
trace error (MNTE) is a dimensionless metric measuring the overall accuracy of the orientation targets:

MNTE =
1
no

no

∑
j=1

tr(I3×3 − ho
Oj
(q)T IROj)

2
, (15)

where the 1
2 factor normalize the value of the trace between 0 and 1. For the angular velocities,

the overall error is evaluated as root mean squared error (RMSE):

RMSE =

√√√√√ 1
no

no

∑
j=1

∥∥∥IωOj −
I ω̂Oj(q, ν)

∥∥∥
2

2

3
, (16)

where ω̂Oj(q, ν) is the estimated frame velocity given the configuration (q, ν). The computational load
is evaluated as the time for computing the state (q, ν). The statistics have been collected discarding the
transient of 2 second from the initial time t0.
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5.1. Instantaneous Optimization

As mentioned in Section 1, the instantaneous optimization methods solve the inverse kinematics
at each time-step tk through non-linear optimization. A general formulation of the optimization
problem is defined as follows:

minimize
q(tk)

‖Krr(q(tk), x(tk))‖2 (17a)

subject to As(tk) ≤ b (17b)

where Kr is a weight matrix that matches the unit measurements of target displacements, and eventually
assigns a weight to each of the target. A common approach for solving the non-linear optimization
problem is to consider the linear approximation of the system by recalling the Jacobian matrix definition,
and solve the problem iteratively [48,49]. However, in order to enforce state configuration constraints,
recent approaches make also use of convex optimization [36,50]. As benchmark, we have implemented
instantaneous inverse kinematics optimization using iDynTree [51] multibody kinematics library,
and the IPOPT software library for non-linear optimization [52]. The previous time-step solution
has been used as warm-start for the non-linear optimizer, while the stopping criteria is the pose error
accuracy and it has been tuned in order to find a solution in a time comparable to the dynamical
optimization. Two different implementations have been tested. The former, referred to as whole-body
optimization, solves a single optimization problem instantiated for the whole-system. The latter, instead,
instantiates the optimization process dividing the model into multiple subsystems, each consisting of
exactly a pair of targets, and solves the sub-problems in parallel. We refer to this implementation as
pair-wise optimization. An example of model splitting for pair-wise optimization is shown in Figure 6.

Figure 6. A floating base model with eight links and four orientation targets (IRB , IRC , IRD , IRE ) can
be divided into three subsystems, with a pair of orientation targets each, in order to solve the inverse
kinematics problem as pair-wised instantaneous optimization.

Looking at Figure 7, it can be observed that the performance of instantaneous optimization
approaches decreases as the task gets more dynamic. This is particularly evident for the computational
time. In the whole-body optimization, the average computational time is higher, and it is
characterized by a large variance, reaching peaks above 25 ms during the running task. Concerning the
pair-wised optimization, the increase of time between walking and running is less evident. However,
the pair-wised optimization takes longer for finding a solution for the iCub model because of the local
difference between the human and the robot kinematics.
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Figure 7. Comparison of the performance of inverse kinematics methods (whole-body, pair-wised,
and dynamical) for three models (two humans, and iCub humanoid) in three different scenarios
(T-pose, Walking, and Running). Each line contains the boxplots for a different performance evaluation
metric, on the top the overall error for the orientation targets as base 10 logarithm of mean normalized
trace error, in the middle line the overall error for the angular velocities as base 10 logarithm of root
mean squared error, and at the bottom the computational time. Logarithmic metrics allows to compare
metrics characterized by different order of magnitude in the different scenarios.
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5.2. Dynamical Optimization

The dynamical optimization inverse kinematics has been implemented using iDynTree multibody
kinematics library [51], and the inverse differential kinematics is solved using OSQP [38]. Figure 8
highlights the rate of convergence of the error from a given initial zero configuration (s(0) = 0) towards
a target static pose. When the gain is zero, there is no velocity correction and the error remains constant.
However, increasing the magnitude of K, the error converges to its steady state value in less than one
second. A large value of the gain K leads to system instability as mentioned in Section 3.1.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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0.7

Figure 8. Convergence of the dynamical inverse kinematics optimization for static T-pose using a
66 degrees of freedom (DoF) model, starting from zero configuration. Convergence rate depends on
the magnitude of the gain K.

From Figure 7, the dynamical optimization orientation error is mostly comparable with the results
achieved with instantaneous optimization. The only case in which it shows worst orientation accuracy is
with the Human66 model during running task. Concerning the angular velocity error, the performances
are again comparable during dynamic motion, while it is higher for the T-pose with the constrained
models. This angular velocity error may be due to the fact that a corrected angular velocity is
used in place of the measured link angular velocities, and the joint constraints may introduce a
constant constraint error because of an unfeasible configuration. Concerning the computational load,
this method seems to outperform the others not only in terms of a mean computational time, having
an average always below 3 ms, but also for its consistency in different scenario.

Experiments with real-robot show the feasibility of the inverse kinematics solution. The robot is
able to track real-time the motion of the human by following the computed joint configuration with a
delay lower then 300 ms, as shown in Figure 9 (evaluation of the controller is out of the scope of this
work). Moreover, the joint limit avoidance strategy successfully constraints the joint angles within
the robot physical limits that are never exceeded. More in details, Figure 3 shows the trajectory of
some joints concerning both position and velocity, and it can be observed that the joint configuration
remains within the joint constrained configuration space (s, ṡ).
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Figure 9. Joint configuration of the iCub model obtained from human motion data using dynamical
inverse kinematics. The plots show both the desired joint configuration computed by inverse kinematics,
and the joint configuration measured from the robot. Dashed lines represent the joint limits.

6. Conclusions

This paper presents an infrastructure for whole-body inverse kinematics of highly articulated
floating-base models in real-time motion tracking applications. The theory is presented using rotation
matrix parametrization of orientations, together with the proof of convergence through Lyapunov
analysis. The proposed method has been implemented and the performances tested in an experimental
scenario with different conditions. Differently from iterative algorithms, the dynamical optimization
requires a single iteration at each time step keeping the computational time constant, and ensures
fast convergence of the error over time. Furthermore, the integration of velocities ensures obtaining a
continuous and smooth solution. The method has been tested in a human-robot retargeting application
to verify its usability. Its characteristics make it suitable for time-critical motion tracking applications
with highly dynamic motions, where iterative algorithms may not converge in a sufficient time.

As a future work, the evaluation may be extended to a wider number of inverse kinematics
algorithms, models, and experimental scenarios. Another interesting future work would be the
extension of our method by considering the dynamics of the system as well.
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Appendix A. Proof of Lemma 1

The system in (7) can be written as follow:

up
Pi
(t)
...

up
Pnp

(t)

uo
O1

(t)
...

uo
Ono

(t)


+



Kp
1 rp
P1
(t)

...
Kp

np rp
Pnp

(t)

Ko
1ro
O1

(t)
...

Ko
no ro
Ono

(t)


= 0, (A1)

where rp
Pi
(t) = I pPi (t) − hp

Pi
(q(t)), ro

Oj
(t) = sk(ho

Oj
(q(t))T IROj(t))

∨, up
Pi
(t) = I ṗPi (t) −

J`Pi
(q(t))ν(t), uo

Oj
(t) = IωOj(t) − Ja

Oj
(q(t))ν(t), Kp

i and Ko
j are R3 × R3 blocks on the diagonal of

K. This system can be decomposed in to a set of np + no independent systems, one for each target,
depending on the type of target, each subsystem is described by one of the following two equations:

up
Pi
(t) + Kp

i rp
Pi
(t) = 0, (A2a)

uo
Oj
(t) + Ko

j ro
Oj
(t) = 0. (A2b)

The system (A2a) is a linear first order autonomous system, and for Ki positive definite the
equilibrium point (rp

Pi
, up
Pi
) = (0, 0) is globally asymptotically stable. For the system (A2b) it can be proved

that the equilibrium (ro
Oj

, uo
Oj
) = (0, 0) is an almost globally asymptotically stable equilibrium point,

as shown in [33], by defining the following Lyapunov function V = 1
2 tr
(

I − ho
Oj
(q)T IROj

)
. The almost

global asymptotically stability of all the subsystems is indeed proved for the point (r, u) = (0, 0), thus the
almost globally asymptotically stability of the equilibrium (r, u) = (0, 0) for the system (7) is proved.

As presented in [33], there is a particular initial condition for which the convergence of rotation
error is not ensured, hence, almost global stability is ensured. This particular condition is verified when
for any of the link we have that: 1

2 tr
(

I − ho
Oj
(q(0))T IROj(0)

)
= 2, which correspond to the condition

in which the orientation target is rotated by an angle π with respect to the link. In practice, due to
measurement noise and round-off errors, this condition is not affecting the convergence of the method.
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