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Abstract: In the application of the brain-computer interface, feature extraction is an important part of
Electroencephalography (EEG) signal classification. Using sparse modeling to extract EEG signal features
is a common approach. However, the features extracted by common sparse decomposition methods
are only of analytical meaning, and cannot relate to actual EEG waveforms, especially event-related
potential waveforms. In this article, we propose a feature extraction method based on a self-organizing
map of sparse dictionary atoms, which can aggregate event-related potential waveforms scattered
inside an over-complete sparse dictionary into the code book of neurons in the self-organizing
map network. Then, the cosine similarity between the EEG signal sample and the code vector
is used as the classification feature. Compared with traditional feature extraction methods based
on sparse decomposition, the classification features obtained by this method have more intuitive
electrophysiological meaning. The experiment conducted on a public auditory event-related potential
(ERP) brain-computer interface dataset showed that, after the self-organized mapping of dictionary atoms,
the neurons’ code vectors in the self-organized mapping network were remarkably similar to the ERP
waveform obtained after superposition and averaging. The feature extracted by the proposed method
used a smaller amount of data to obtain classification accuracy comparable to the traditional method.

Keywords: self-organizing map; feature extraction; event-related potential; brain-computer interface;
sparse dictionary

1. Introduction

In the field of biomedical signal processing, accurately finding brain activity from
electroencephalography (EEG) signals is the focus of much research. In the brain-computer interface (BCI)
applications based on event-related potentials (ERP), fast and efficient feature extraction and classification
of EEG signals to understand human intention are the current research hotspots in this field [1]. For the
real-world brain-computer interface, it is necessary to extract the ERP waveform from the EEG signal
obtained in a single trial [2]. This is not an easy task, since the ERP is usually submerged in noise.
Although the commonly used superposition and averaging method can remove part of the random noise,
it requires EEG data from multiple trials to be superimposed in order to obtain the results, so the response
speed of the entire BCI system cannot be guaranteed, and it cannot be directly applied to real-world BCI.
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Therefore, it is necessary to use the feature extraction method to extract the classification features from the
EEG signal to identify the ERP waveform [3].

1.1. Common EEG Feature Extraction Methods for ERP Classification

At present, one common category of methods is to use temporal characteristics to extract ERP
features from EEG. In the year of 1988, Farwell and Donchin proposed stepwise discriminant analysis
(SWDA) [4] to extract P300 ERP component from EEG. For multi-channel EEG data, the SWDA method
simply combines it to a matrix, without analysis of spatial characteristics. Then, Independent Component
Analysis (ICA) was proposed for ERP feature extraction, to overcome the disadvantages of SWDA. ICA can
extract the distribution of EEG signals on the brain cortex, and then find the classification features related
to ERP. Jung et al. first used ICA to perform spatial analysis on ERP, using the spatial locations to find
independent components that can represent ERP, and using them to obtain a more obvious waveform
from a single trial [5]; Gao Chang et al. used ICA and the Hilbert-Huang Transform (HHT) [6] combined
method to filter artifacts such as the ocular electrogram from the single-channel EEG, and improved
the signal-to-noise ratio of ERP [7]. Lee et al. used one-unit ICA with a reference, a variant of ICA for
single-trial ERP extraction [8]. By analyzing the spatial distribution difference of each ERP waveform,
a more significant difference between the deviation stimulus and the standard stimulus was obtained.
Eilbeiigi et al. used global optimal constrained ICA to search for movement-related cortical potential in
single-trial EEG data, and reached a higher accuracy rate in a motor-imaging classification experiment [9].
The major shortcoming of the ICA-based methods is that ICA requires separating components to be
statistically independent. ICA also needs multi-channel EEG signals for accuracy, which also limits its
application in BCI.

Another widely used category of method is based on the statistical characteristics of ERP waveform
and noise. Among these methods, component estimation methods based on statistical principles,
such as Kalman filtering and Bayesian estimation, can separate ERP waveforms from interference noise,
and therefore are used to extract ERP classification features from EEG. Zhang et al. used ICA and Kalman
in combination to reduce the interference of white noise on ICA [10] and improve the performance of
ICA and ERP extraction; Fukami et al. used Particle Filter to extract P300 waveforms [11], and obtained
more accurate delay estimation and P300 component amplitude estimation; Ting et al. used Kalman
filter to extract ERP, by adding the EM algorithm to Kalman filter to achieve a more accurate amplitude
estimation [12]; Delaney-Busch et al. used Bayesian estimation to study semantic understanding in the
process of learning—the trial by trial change of the N400 component in the ERP waveform cannot be
achieved by the superimposed average method [13]. Zeyl et al. used Bayesian ranks to analyze and
calculate the Event related potential scores of each trial, and use event-related potential scores as the
time domain features to improve the accuracy of the P300-based speller [14]. This kind of method can
handle delay estimation and amplitude estimation on a single-signal frame and improve the classification
accuracy. However, there is a main disadvantage that the non-stationary characteristics of the EEG signals
have a negative impact on the performance, so that ERP waveform estimation error cannot be guaranteed.

The third category is feature extraction methods based on sparse modeling. Sparse modeling is an
efficient representation method for high-dimensional data, especially for the EEG data [15]. The purpose
is to approximate the input data with a linear combination of sparse dictionary atoms. On the other hand,
atoms must have data adaptability—that is, atoms can describe certain essential characteristics of the
data. At the same time, the linear combination coefficient, also called the sparse representation vector,
can also be used as a classification feature. Dai et al. developed a personal identification system using
a sparse-modeling-based EEG signal compression-sensing method [16]. Because of the application of
sparse modeling and compressed sensing, the amount of data transmission during the operation of the
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system can be reduced, so that the system can use low-cost wearable EEG acquisition equipment and
run on the World Wide Web, which is convenient for application. Wu et al. used Regularized Group
Sparse Discriminant Analysis to identify the EEG signal in the brain-computer interface paradigm and
identify the P300 waveform in the EEG [17]. Mo et al. directly used sparse representation coefficients as
classification features to perform classification in Motor Imagery BCI [18]. Shin et al. added the incoherence
measure to the sparse dictionary update process and used this dictionary to sparsely decompose the EEG
signal to obtain better classification features [19]. Yuan et al. used kernel sparse representation to sparsely
reconstruct EEG data and used sparse reconstruction coefficients as classification features to identify EEG
data holding epileptic components [20]. Yu et al. use sparse representation to decompose EEG data for
Visual Evoked Potential (VEP) extraction [21]. Shin et al. applied sparse representation to the BCI system of
motion imagination and used the Gabor base to construct a dictionary to extract recognizable waveforms
from EEG [22]. However, because the definite basis is used, the waveform components are difficult to
make accurate and it is impossible to express the nature of the signal.

However, due to the over-completeness of the sparse dictionary, the ERP waveforms in the EEG
signal will be distributed among multiple sparse dictionary atoms, which makes it difficult for the
sparse reconstruction coefficients to become stable classification features. From the perspective of sparse
decomposition theory, since these dictionary atoms are used to perform sparse reconstruction of EEG
signals with low errors, these atoms must hold the information needed to identify ERP. Therefore, an extra
approach is required to fully utilize ERP waveform information contained in the sparse dictionary atoms
for classification features from EEG signals for ERP recognition.

Self-organizing mapping (SOM) is an appropriate approach to solving the problem of scattered ERP
in atoms. SOM is a method to produce a typically two-dimensional representation of the input space
of the training samples. When the training samples are sparse dictionary atoms, SOM can combine the
scattered ERP information into code vectors of the SOM network. SOM was first proposed by Professor
T. Kohonen of the University of Helsinki in Finland in 1981 [23,24]. Kohonen believes that when a
neural network accepts external input patterns, it will be divided into different corresponding areas,
with each area having different response characteristics to the input mode, and this process is completed
automatically. SOM is already a common method in the field of biomedical signal analysis and is widely
used in the analysis of neural activity data. Ngan et al. used SOM to analyze the time-domain activity
waveform of each voxel in Functional magnetic resonance imaging (fMRI) and aggregated the neuron
nodes in SOM according to the correlation to find a pattern of voxel activity [25]. Wei et al. used SOM
to perform hierarchical cluster analysis of spatio-temporal features on fMRI image data to find fMRI
classification features that can represent cognitive activities [26]. Kurth et al. used SOM to perform cluster
analysis on EEG signals collected in the clinical scenarios and classify EEG fragments containing epileptic
electrical activity and normal EEG fragments [27]. Hemanth et al. first extracted features from EEG signals,
and then analyzed the features using SOM to recognize human emotions from EEG [28]. Diaz-Sotelo et al.
used SOM to extract features from EEG for a BCI system that can recognize human cognitive states [29].
These studies showed that SOM can be effectively used in the analysis of biological signals, especially
brain electrical signals.

1.2. The Proposed Method and Article Structure

In this paper, we propose a feature extraction method based on the self-organizing mapping (SOM)
of dictionary atoms. In this method, we first use K-SVD dictionary learning algorithm to construct a
sparse dictionary. Then, self-organizing mapping is performed on the dictionary atoms, and the code
vector of the neuron is compared with the target ERP waveform as a time-domain waveform. The code
vectors with the largest cosine similarity value to the target ERP waveform are found. For the EEG
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signal frame to be recognized, the cosine similarity between the to-be-recognized frame and the selected
code vectors are calculated. These similarity values are the extracted classification features. Finally,
the classifier is trained using these features to find the ERP waveform. In the testing phase, the SOM,
sparse dictionary, and classifier of the training phase are reused, and the feature extraction operation is
repeated for the EEG samples to be recognized. Compared to the three categories of methods mentioned
previously, the proposed method has the following advantages: (1) It does not rely on multichannel data.
(2) It can deal with non-stationary ERP waveforms. (3) It can make the most use of ERP fragments in
sparse dictionary.

This article unfolds as follows: Section 2 provides a brief introduction to EEG sparse decomposition
and the procedures of proposed method. In Section 3, the experiment material is explained, and we
present the results produced by proposed method. In Sections 4 and 5, we discussed the advantages of the
proposed method and potential further improvements.

2. Methods

2.1. Brief Introduction of EEG Sparse Modeling

The sparse modeling of the signal is the process of representing the signal Y = [y1, y2 . . . , yN ] ∈ RM×N
by linearly combining the atoms dk in the dictionary D = [d1, d2 . . . , dK] ∈ RM×K, as shown in Equation (1).

Y = DA + e (1)

In Equation (1), e is the model approximation error, A = [a1, a2 . . . , aN ] ∈ RK×N is the sparse
coefficient vector. The sparse modeling of the signal can be seen as solving the following optimization
problem in Equation (2). (

P(0,ε)

)
min

ai
‖ai‖0 s.t. ‖yi − Dai‖2 ≤ ε (2)

In Equation (2), ‖A‖0 represents the l0 norm of the sparse coefficient vector A. ‖A‖0 is much smaller
than the dictionary dimension K. The process of dictionary learning is to train a dictionary D for a training
set Y = yi | i = 1, 2, 3 . . . , P, and solve the optimization problem in (2) through this dictionary, and to get
the sparse reconstruction coefficients A = [a1, a2 . . . , aN ] corresponding to each yi. Ai makes the linear
reconstruction yi = DAi + ei have the smallest error ei. This is an optimization problem, and the objective
function with the l0 norm as a constraint condition can be expressed as Equation (3).

D = arg min
D

N

∑
i=1

min
αi

{
||Dai − yi||2 + λ||ai||1

}
(3)

D represents the sparse dictionary, and ai, yi represent the reconstruction coefficient vector and the
original ith training sample, respectively. λ is the penalty function correction coefficient.

When performing sparse modeling of EEG signals containing ERP waveforms, due to the
over-completeness of the dictionary, the ERP waveforms will be distributed in multiple atoms.
The commonly used sparse decomposition methods with better effects have no additional constraints
in this regard. Therefore, it is difficult for the coefficients corresponding to atoms to establish a stable
and reliable relationship with ERP waveforms, which affects the accuracy of recognition, and it is also
difficult to derive electrophysiological meanings from dictionary atoms. The proposed classification
feature extraction method uses the following steps to solve this problem. First, the EEG signal is divided
into frames, and the EEG signal after the frame is sparsely modeled using the K-SVD method to train the
sparse dictionary. Then, perform self-organizing mapping analysis on the dictionary atoms to aggregate
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the ERP waveforms scattered in the atoms, calculate the cosine similarity between all EEG samples and
the code vector of the SOM network neurons as the classification feature, and train the classification to
identify whether there is a target ERP waveform in the sample to be recognized. Using SOM for feature
extraction has two advantages. First, the architecture of the SOM network can be easily accelerated by
parallel computing [30]. Second, the waveforms of each type of atoms can be well-preserved for analysis.
Third, in the process of self-organizing mapping, by mapping dictionary atoms to a two-dimensional plane,
the positional relationship on this plane can indicate the degree of similarity between atoms, which is
helpful for subsequent analysis.

2.2. Preprocessing of EEG Signal

1. Framing: When the sparse decomposition algorithm processes continuous data, the data should be
framed first. For the research needs of the state of cognitive tasks, the cognitive task is generally
carried out to the moment when the state transition may occur, which is used as the framing point.
The length of time should match the brain-computer interface paradigm.

2. Energy normalization: High-energy artifact signals will overwhelm low-energy EEG signals during
training, and the energy difference between frames will cause dictionary training distortion. In order
to avoid the influence of these factors on the results, before sparse decomposition modeling,
we normalize the energy of each frame. For a discrete data frame x of length N, the energy is
E = ∑N

1 |x(t)|
2, the normalized frame data are s (t) = x(t)

E . The energy can be compensated for in the
coefficients after the training.

2.3. K-SVD Dictionary Learning Algorithm for EEG Feature Extraction

After preprocessing, the next step in proposed method is to use the K-SVD dictionary-learning
algorithm to construct a sparse dictionary of the preprocessed EEG signals during the training phase.

K-SVD is a sparse dictionary-learning method for sparse representation developed by
Aharon et al. [31]. K-SVD is a generalization of the k-means clustering method. It alternates between
sparsely coded input data based on the current dictionary and updating the atoms in the dictionary to
better fit the data. The solution model of the K-SVD algorithm is based on the l1 norm, and the sparse
solution is achieved by restricting the sum of the absolute value of the reconstruction coefficient vector.
In the context of EEG feature extraction, the constraint and objective function of the K-SVD algorithm
are shown in (4), where Y is the EEG signal frames, D is the sparse dictionary, X is the sparse coefficients
matrix and T0 is the desired sparsity.

minD,X
{
‖Y−DX‖2

F
}

s. t.∀i, ‖xi‖0 ≤ T0
(4)

In the field of EEG signal analysis, the sparse dictionary obtained by the K-SVD method performs
better than the traditional Gabor-based sparse dictionary in terms of reduction error and computational
complexity. The process of using the K-SVD method to obtain a sparse dictionary representing EEG signals
is shown in Algorithm 1.
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Algorithm 1 K-SVD Dictionary-Learning Algorithm.

Input: Single-Channel EEG Singal Frames Y
Output: Sparse Dictionary D

1: D(0) ∈ Rn×k as l2 normalized.
2: Sparse Coding Stage
3: Use Orthogonal Matching Pursuit(OMP) to obtain the Sparse Representation Vector of EEG samples,

as in the following equation. T0 is the count of non zero elements in xi, also the desired sparsity.
4: i = 1, 2, . . . , N, minxi

{
|yi −Dxi |22

}
subject to |xi |0 ≤ T0

5: Dictionary Update Stage
6: for k = 1, 2, . . . , K do
7: dk is the kth atom of D(J)

8: define ωk =
{

i | 1 ≤ i ≤ N, xk
T(i) 6= 0

}
9: Calculate Sparse Coding Error matrix Ek = Y−∑j 6=k djx

j
T

10: Select ER
K according to ωk

11: perform SVD decomposition on ER
K, and get ER

K = U4VT

12: update dictionary atom dk : first column of U
13: update xR

k : first column of V multiplied by4 (1, 1)
14: J = J + 1
15: end for

Figure 1 illustrates the dictionary atom examples in the K-SVD algorithm. Those atoms have the
highest cosine similarity (in abstract value) to the target ERP waveform. It can be seen that the top cosine
similarity increased after iterations. This means that K-SVD algorithm extracted the ERP information into
dictionary atoms.

Figure 1. Dictionary atom learning example in K-SVD algorithm after several iterations. The cosine
similarity shows the similarity between the atom and the target ERP waveform.

2.4. Feature Extraction Based on Sparse Dictionary Atoms

After obtaining the sparse dictionary, the next step of the proposed method is to perform
self-organizing mapping analysis on dictionary atoms, then extract features based on the SOM results.
The purpose of using self-organizing mapping analysis is to find the relationship between dictionary
atoms and group similar atoms together, so that the waveforms with electrophysiological or cognitive
meaning scattered in the over-complete dictionary will be recombined into the network in the code vector
of the neuron. Finally, we calculate the cosine similarity between the sample to be recognized and code
vectors as classification features.

The feature extraction method can be summarized into three procedures, listed as follows:
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1. Self-organizing mapping of dictionary atoms;
2. Calculating the cosine similarity between the weight vector of each neuron and the target ERP

waveform, and selecting the most relevant neurons;
3. Calculating the cosine similarity between each sample and the selected neuron code vectors as a

classification feature.

This method is illustrated in Figure 2.

Figure 2. Flowchart of Feature Extraction Method.

2.4.1. Dictionary Atom Self Organizing Mapping

In this step, we used the dictionary atoms as the SOM network input. When the waveform of a
dictionary atom is sent to the network as input, a node in the output layer gets the maximum stimulation
and wins, and the nodes around the winning node are also stimulated due to lateral effects. At this
time, the network performs a learning operation, and the connection weight vector of the winning node
and surrounding nodes is corrected in the direction of the waveform of the input atom. When the input
changes, the winning node on the two-dimensional plane is also transferred from the original node to
other nodes. In this way, the network uses the entire sparse dictionary to adjust its connection weights in a
self-organizing manner and finally enables the network output layer to reflect the distribution of dictionary
atoms. The connection weights, that is, the codebook of the entire network, will be a summarization of the
entire dictionary. A typical SOM network structure is shown in Figure 3.

Figure 3. Self-organizing mapping network.
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Network structure design: The SOM network has two layers, the input layer and the output layer.
The length of the input layer is consistent with the length of the dictionary atom. In the output layer,
the neurons are distributed in a 2D plane. We chose a square grid topology to arrange the neurons in the
output layer. The number of neurons was selected according to the length of the dictionary. Here we chose
the number 5

√
N, where N is the number of dictionary atoms.

Network initialization: This method uses random data to initialize the the weight of the output layer.
Although the use of linear initialization and other methods can achieve faster learning speed, in the scope
of the proposed method, speed is not a major concern element. Since there may be a potential linear
relationship between the dictionary atoms obtained by K-SVD, if linear initialization is used, the training
result of the network will be affected. Random initialization can prevent the linear relationship between
dictionary atoms from affecting the learning results of the network.

SOM learning method: We chose the online sequential-learning method for SOM learning,
rather than the batch-learning algorithm. Although the number of dictionary atoms is determined,
batch-learning seems to be a better choice. However, batch-learning has the following shortcomings [32]:
1. The arrangement of neurons is not as good as sequential learning algorithms. In the application of this
article, we hope that the network can bring similar neurons closer in spatial distribution. 2. It is more
sensitive to the selection of the initial value, and as mentioned above, we choose a random value as the
initial value, and the uncertainty of the result of the combined learning increases. Therefore, in the scope
of this article, the sequential-learning method that imitates online training is a better choice.

The process of dictionary atoms SOM analysis is as follows:

1. Set the weight of each neuron to a random initial value; set a larger initial neighborhood, and set the
number of cycles of the network t, set the number of neurons in the network to M;

2. Input a dictionary atom Dk into the network Dk: Dk = {D1k, D2k, ..., Dnk}, input into the network;
n is the length of the dictionary atom;

3. Calculate the weight of Dk and all output neurons, which is the Euclidean distance djk
between the code vector, and select the neuron c with the smallest distance from Dk, that is,
xk −Wc = arg min (j)

(
dij
)
, then c is the Winning neuron;

4. Update the connection weight of node c and its domain nodewij (t + 1) = wij (t) + η (t)
(
xi − wij (t)

)
Among them, 0 < η(t) < 1 is the learning rate, which gradually decreases with time;

5. Select another dictionary atom to provide the input layer of the network, and return to step 3 until all
the dictionary atoms are provided to the network;

6. Let t = t + l, return to step (2), until t = T. In the learning of self-organizing mapping model,
usually 500 ≤ T ≤ 10,000. Nc is the neighbor function, which gradually decreases with the increase
in the number of learning. η(t) is the learning rate of the network. Since the learning rate η(t)
gradually tends towards zero with the increase in time, it is guaranteed that the learning process
must be convergent.

2.4.2. Neuron Selection and Feature Extraction

In this step, we need to find the neuron corresponding to the atom with electrophysiological meaning.
Here, we use the cosine similarity between the code vector of the neuron and the target ERP waveform to
represent the electrophysiological meaning.

After the network training is completed, each dictionary atom is mapped to the neuron in the SOM
network. At this time, the code vector of each neuron can represent the average waveform of a class of
dictionary atoms mapped to this neuron. Next, calculate the cosine similarity between the code vector of
each neuron and the target ERP waveform, and find the neurons closest to the target ERP waveform. Here,
the physical meaning of cosine similarity is the similarity between the waveform of the EEG signal sample
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to be recognized and the code vector of the neuron in the network. The higher the similarity, the more
obvious the electrophysiological meaning contained in the code vector, and the more suitable it is for
feature extraction. In this article, the definition of cosine similarity is listed in (5).

cos(θ) =
ERP ·W
|ERP||W| =

∑n
i=1 ERPiWi√

∑n
i=1 ERP2

i

√
∑n

i=1 W2
i

(5)

In (5), ERP is the target ERP waveform vector,n is the vector length, and W is the code vector of the
neuron.

For the EEG sample to be recognized, the cosine similarity between the sample to be recognized
and the code vector of the selected M neurons is calculated, and the classification feature is constructed
according to the cosine similarity. The the feature is calculated by Equation (6)

feature (yi) = [cos1(θ), cos2(θ), · · · cosM(θ)]

cosm(θ) =
∑n

j=1 yijWmj√
∑n

j=1 y2
ij

√
∑n

j=1 W2
mj

(6)

In (6), yi is the i-th EEG sample, n is the sample length, and m is the m-th neuron.

2.5. Application Procedures of Proposed Method in BCI

To apply the proposed method to real-world BCI, the procedures shown in Figure 4 must be followed.

Figure 4. Application Procedures of Proposed Method in BCI.

First, obtain a sparse dictionary based on the training samples, and then use the SOM network to
perform self-organizing mapping analysis on the sparse dictionary, extract the classification features of the
training samples, and train the classifier. For the test samples, follow the same preprocessing method as
the training samples, and then use the Kohonen net and classifier parameters obtained from the training
samples for feature extraction and classification.
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3. Results

3.1. Dataset Description

In this work, we selected a public EEG dataset as the experiment material. This dataset records the
EEG data collected from an auditory-event-related potential based speller. The dataset was published by
the Berlin University of Technology in 2010 [33]. The experiment data were composed of several trials,
each trial included nine sound stimuli, and the interval between each stimulus was 120 ms. The experiment
data contained two kinds of stimuli: target and nontarget stimuli. The ratio of the stimuli was 1:8.

EEG signals were recorded monopolarly from 63 wet Ag/AgCl electrodes placed according to
the International 10–20 system [33]. EEG signals were amplified using two 32-channel amplifiers
(Brain Products) and filtered by an analog bandpass filter between 0.1 and 250 Hz. All channels were
referenced to the nose. The sample rate was 1kHz. Epochs were marked as artifact-contaminated if
their peak-to-peak voltage difference in any channel exceeded 100 µV. Those epochs were rejected for
further analysis.

3.1.1. Auditory Stimuli in Experiment Dataset

The audio stimuli in this experiment are artificially generated, single-frequency audio with frequencies
of 708 Hz (high), 524 Hz (medium) and 380 Hz (low). Each stimuli is played on the headset in three different
channels: on the left channel only, on the right channel only, and on both channels. This constitutes a 3
by 3 combination. Figure 5 shows the design of audio stimuli. This two-dimensional 3× 3 design is very
similar to the numeric keypad of a classical mobile phone before smartphone era. Each stimulus lasted
100 milliseconds, and the SOA was 225 milliseconds. The stimulus playback sequence is a pseudo-random
stimulus sequence so that the subsequent two stimuli do not have the same audio frequency. In addition,
the same stimulus is repeated only after at least the other three have appeared.

Figure 5. The audio stimuli design.
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3.1.2. Experiment Paradigm Design in Dataset

Each subject took part in three calibration runs. In this paper, we used the calibration-run data to train
and test the ability of proposed method for target and non-target sub-trials classification. Each calibration
runs contained nine trials, and each of the nine types of sound was used as the target stimulus in one
run, as shown in Figure 6. In addition, an exercise run without EEG data recording (run 0) was initially
performed. Before the start of each trial, the current target number was presented to the subject three times,
and the corresponding number on the 3× 3 grid was highlighted on the screen.

Figure 6. The experiment paradigm.

In the calibration phase, each test consists of 13 or 14 pseudo-random sequences of all nine auditory
stimuli. No visual stimulation was given in these tests. When using the last 12 sequences to train the
classifier, ignore the first or two sequences to ensure a balanced distribution of stimuli in the calibration data.
A representation of a tonal stimulus and corresponding EEG data (time interval up to 800 milliseconds
after the stimulus) is called a sub-trial. Therefore, a single experiment provides 9× 12 trial epochs (12 target
trial epochs and 8× 12 non-target trial epochs) for classifier training. The combined training data for all
runs include 108× 27 = 2916 trials per subject.

The subjects listened to a sequence of audio stimuli in different combination of tone and channel.
One of the nine combinations would be the target. When the subject listened to the target stimulus, the EEG
data recorded in this phase would be used to train the BCI classification system to detect the target ERP
waveform. When the BCI system detected target ERP waveform from EEG signal, it would virtually trigger
a press on the keypad in Figure 5, like typing a text message on traditional mobile phones, before the
smartphone era. In the testing phase, the task would change to actually input a sentence. The subject
would imagine the keypad key they want to press. Therefore, when a subject was presented the stimulus
representing the target key, among other eight no-target stimuli, the trained system would detect the target
waveform in EEG data and virtually press the target key. Like a real mobile phone, to type a word would
require multiple presses on a keypad, so the trial would repeat multiple times as well.

3.2. Parameter Selection

We divided the continous EEG into frames according to the experimental design of the dataset.
We took the time of occurrence of each sound-stimulation event as the starting point of the frames,
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and selected the next 800 ms as the frame length. At a sampling rate of 150 Hz, each frame contained
120 datapoints.

In this article, we used only one EEG data channel, Cz. The reason for this selection was that the ERP
of this electrode was the most obvious in the article of the selected dataset. This article selected the training
and testing phase data of the subjectsVPnw in the dataset for the sparse performance experiment, and all
other subjects except VPnv and VPmg for the classification experiment. Figure 7 shows the averaged target
ERP on Cz.

Figure 7. Averaged Target ERP.

For this specific dataset, the parameters of the proposed method are listed in Table 1.

Table 1. Parameters in Feature Extraction.

Parameter Value

K-SVD Sparsity 10
Number of Atoms in Dictionary 512

Atom Length 120
EEGFrame Length 120
EEG Sample Rate 150 Hz

Number of SOM Neurons 100
SOM Topology 10× 10, Square Topology

3.3. Dictionary Atom SOM Results

Figure 8 shows the number of hits each neuron won when the dictionary atom was mapped to the
trained SOM network. Most of the atoms were concentrated on five neurons, and the distribution of
neurons with similar winning times on the network is also closer.

The trained SOM network also placed neurons with similar code vectors nearby, as illustrated in
Figure 9. Thanks to SOM, similar dictionary atoms were gathered into the code vectors of neurons,
and the positions of neurons corresponding to similar code vectors on the network were placed adjacent
to each other.
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Figure 8. Hits of Dictionary Atoms for SOM neurons.

Figure 9. Codebook of SOM network.
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3.4. Neuron Selection and Feature Extraction Results

Figure 10 illustrated the cosine similarity value between the code vector of the neuron and the
target ERP waveform obtained after superimposing and averaging. All values were projected to (0, 1).
The code vectors of some neurons had a high correlation with the target ERP. The result showed that the
electrophysiological meaning of atoms was aggregated into the codebook of the SOM network.

Figure 10. Cosine similarity between averaged Target ERP and code vectors.

For different types of EEG sample, the cosine similarity between the samples and the code vectors
differs. Figure 11 showed the averaged abstract values of cosine similarity between the EEG data samples
and the neuron code vectors. The data are projected to the range [0, 1] for display. It can be seen that
for two types of EEG sample, the distribution of the cosine similarity values was significantly different,
which proves that the cosine similarity value between the sample and the code vector can be used as a
classification feature.

Figure 11. Cosine similarity between code vectors and two types of EEG sample.
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3.5. Classification Stage and Result Analysis

3.5.1. Classification Stage Design

We selected the training phase data of the subjects in the dataset for experiments. There are two
classification classes: EEG data frame from target subtrials and EEG data frame from non-target sub-trials.
Subject VPnw and subject Vpmg are excluded, which is consistent with the analysis of the original data set.
In this paper, we only used one EEG data channel from Cz. The reason for this selection is that the ERP
waveform is most obvious [33] in Cz. In this article, we used SVM to construct a classifier. The classification
feature is the cosine similarity between the sample to be recognized and the code vector of the selected
six neurons. Select the EEG samples of the subjects in the training phase and divide them into five parts
for cross-validation: one is used for testing and four parts are used for training the sparse dictionary,
SOM network and classifier. To balance the classes, we used classwise balanced accuracy, which is the
average decision accuracy across classes (target vs. non-target).

3.5.2. Classification Result

Using the method described in this article, we obtained an average class-wise balanced accuracy of
76.4% for all nine subjects, as shown in Table 2. Compared with the 75.8% accuracy reported in original
paper, proposed method used only one channel of data and still obtained a similar result to the benchmark
method using 64 channels of data for classification. We ran the whole classification experiment on a
persoanl computer with Intel i5-4690 CPU and 16 GB RAM. The mean classification computation time for
each subject was 20.2 s, including feature extraction and classification for 2915 samples.

Table 2. Binary Classification Accuracy Comparision.

Method Subjects

VPnv VPny VPnz VPoa VPob VPoc VPod VPja VPoe Avg

Proposed 78.00% 75.90% 75.10% 73.60% 79% 79.50% 71.20% 81.00% 74.50% 76.42%
Original 77.0% 75.0% 74.4% 72.2% 78.6% 79.6% 70.0% 82.0% 73.2% 75.78%

3.5.3. Review and Comparison of Classification Result

Compared with studies based on other similar BCI experiments, the classification accuracy obtained
by proposed method matches state-of-art methods, with advantages in the data amount used for training
and required preprocessing procedures, as shown in Table 3.

In the BCI Competition IIb dataset published in 2003, Bostanov used Continous Wavelet
Transformation (CWT) for feature extraction and obtained 77% accuracy of binary classification [34].
In a similar brain-computer interface study of visual P300 ERP waveforms, Saavedra et al. proposed
Wavelet-Based Semblance Methods to Enhance the Single-Trial ERP detection, and reported 75%
classification accuracy [35]. Kabbara1 et al. proposed brain network connection as a classification feature;
the accuracy rate obtained was about 80% [36]. Compared with these methods, the accuracy obtained by
the proposed method is close to these methods, while they generally used ten or more channels. In these
experimental paradigms of the visual P300 brain-computer interface, due to the long interval between
visual stimuli, there is no overlap of ERP waveforms in the dataset used in this study, which had a negative
impact on performance.
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Table 3. State-of-art Study Comparision.

Category Study Accuracy Data Amount Used Preprocessing Procedures
and Computation Required

Visual ERP

Saavedra et al. [35] 75%
Moderate

(Multiple Channels) Moderate for ERP research

Bostanov [34] 77%
Moderate

(Multiple Channels) Moderate for ERP research

Kabbara1 et al. [36] 80%
Moderate

(Multiple Channels) Moderate for ERP research

Auditory ERP

Ogino et al. [37] 79%
Moderate

(Multiple Channels) Moderate for ERP research

Proposed Method 76.2%
Minimum

(Single Channel)
Only simple procedures
minimum computation

Höhne et al. [33] 75.6%
Moderate

(Multiple Channels) Moderate for ERP research

Deep Learning

Kundu et al. [38] 90.5%
Large

(Multi Channel)
(Large Group of Subjects)

Only simple procedures.
Huge computation effort.

Lee et al. [39] 93%
Large

(Multi Channel)
(Large Group of Subjects)

Only simple procedures.
Huge computation effort.

In the auditory ERP brain-computer interface research, Mikito Oino et al. used single-channel
EEG data and the traditional Step-Wise Linear Discriminant Analysis(SWLDA) method to obtain 79%
accuracy [37]. Fazel-Rezai et al. conducted in-depth analysis and believed that it is difficult to improve the
accuracy of binary classifications in the auditory brain-computer interface [40]. Therefore, the significance
of the proposed method lies in the fact that fewer data are needed for classification, which is very
important in wearable brain-computer interface devices. When comparing with other methods, it should
be noted that, in addition to accuracy, the proposed method does not require common preprocessing
operations such as artifact removal and filtering. It only requires down-sampling and normalization
operations. Compared with other methods, it reduces computation effort, since artifact rejection is often
time-consuming and requires heavy computation. The main reason for this is that the KSVD modeling
process will put the artifact interference into separate dictionary atoms.

In addition to traditional feature extraction and classification methods, deep learning methods,
especially the convolutional neural network (CNN) [41], have already been applied to BCI applications.
Kundu et al. introduced CNN to Visual ERP BCI and achieved higher accuracy [38]. Then, Lee found
that with a large dataset, CNN can provide a comparable performance in P300 ERP-based BCI with zero
training [39]. Compared with the method in this paper, a higher amount of data is still needed for training
in the CNN-based method. Besides, Zhang et al. proposed that the deep-learning method has obvious
vulnerabilities and can be attacked by adversarial examples [42]. This makes deep-learning methods
unstable in practical applications.

To summary, compared to common methods, the proposed method obtained comparable classification
results, with a smaller amount of data and calculation required.

4. Discussion

The current mainstream EEG feature extraction methods for ERP-based BCI usually require
multi-channel data and have difficulties in processing non-stationary waveform. Sparse modelling-based
methods provide certain improvements, but the sparse features are often unstable and challenging to
interpret. Therefore, there is the question of how to extract better features to overcome those drawbacks.
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In order to answer this question, we proposed a novel EEG signal feature extraction method for
event-related potential recognition. In this method, we first performed sparse dictionary-learning on the
EEG signals of the training set to obtain the sparse dictionary, and then performed self-organize mapping
on the dictionary atoms, and used the cosine similarity between the sample to be recognized and the code
vectors of the SOM network as the classification feature .

The results in Figures 9 and 10 showed that the code vectors in the SOM network trained by
sparse dictionary atoms were highly similar to the ERP waveforms obtained by multiple superpositions.
This means that the proposed method successfully processed non-stationary ERP waveform. As shown in
Table 2, the proposed method could provide stable and useful classification features from single-channel
data. The results proved that the proposed method is the answer to the question above. The classification
result was comparable to other studies, as presented in Table 3. Compared with traditional and most
state-of-art ERP extraction methods, this method achieved a similar classification accuracy result with
fewer data required for it to work and less computation effort.

This method has three strengths. First, based on the results in Figures 9 and 10, the features extracted
by the method in this article use sparse dictionary atoms as a bridge to establish a connection between the
EEG frames to be recognized and the target ERP waveform. This gives the extracted features a certain
electrophysiological meaning. Second, proposed method only requires single-channel data, and ERP
can be extracted in a single trial. Third, this method requires fewer preprocessing steps than traditional
methods, especially as the artifact rejection is not required in the proposed method.

Based on the above strengths, the proposed method is most suitable for wearable brain-computer
interface applications. In this application scenario, the energy efficiency of data transmission is low, and the
data analysis and computation capabilities of the device itself are limited, so the data must be transmitted
to the remote server for complex analysis. When using the method in this paper, since the SOM network
has been trained, only a few cosine distances need to be calculated locally to perform classification. On the
other hand, when the remote server and the wearable brain-computer interface device share a sparse
dictionary, only sparse data need to be transmitted to recover the collected EEG waveforms on the remote
server for further and more complex analysis tasks.

The proposed methods have limitations and can be further improved on in the future, mainly in the
following aspects: First, in the proposed method, the Best Matching Unit (BMU) is selected by Euclidean
distance. Other distance measurements may provide better results. Second, the cosine similarity in this
article is used as a classification feature. If we use other calculation methods to determine the time series
relationship, we may get features more adaptive to the nature of the samples.

In summary, in this article, we proposed an EEG feature-extraction method for BCI applications.
The classification results on the public dataset show that this method requires fewer preprocessing steps
and a smaller amount of data than traditional methods and other state-of-art studies. The features obtained
by the proposed method were more readable. The above strengths give this method advantages in
wearable brain-computer interface applications.

5. Conclusions

The sparse dictionary atoms contain the scattered information of samples. Our proposed method
showed that SOM can effectively aggregate the scattered waveforms of ERP in dictionary atoms and be
used to extract classification features. The test results on a public dataset showed that the features obtained
by the proposed method in this article have better electrophysiological meaning, and only one channel of
data is needed to achieve a comparable binary classification accuracy to the baseline method. Therefore,
the proposed method achieved the goal of extracting features with electrophysiological meaning and use
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a smaller amount of data. In future work, we will continue to explore possible variants of SOM to fully
exploit the sparse dictionary for feature extraction.
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