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Abstract: Most of the studies on speech emotion recognition have used single-language corpora,
but little research has been done in cross-language valence speech emotion recognition. Research has
shown that the models developed for single-language speech recognition systems perform poorly
when used in different environments. Cross-language speech recognition is a craving alternative, but it
is highly challenging because the corpora used will have been recorded in different environments and
under varying conditions. The differences in the quality of recording devices, elicitation techniques,
languages, and accents of speakers make the recognition task even more arduous. In this paper,
we propose a stacked ensemble learning algorithm to recognize valence emotion in a cross-language
speech environment. The proposed ensemble algorithm was developed from random decision
forest, AdaBoost, logistic regression, and gradient boosting machine and is therefore called RALOG.
In addition, we propose feature scaling using random forest recursive feature elimination and a
feature selection algorithm to boost the performance of RALOG. The algorithm has been evaluated
against four widely used ensemble algorithms to appraise its performance. The amalgam of five
benchmarked corpora has resulted in a cross-language corpus to validate the performance of RALOG
trained with the selected acoustic features. The comparative analysis results have shown that RALOG
gave better performance than the other ensemble learning algorithms investigated in this study.

Keywords: deep learning; ensemble learning; feature elimination; feature selection; speech emotion;
speech recognition

1. Introduction

The advent of machine learning methods has brought about groundbreaking research and
ubiquitous applications of different algorithms to solve challenging problems facing humans.
Nowadays, we live in a world where the idea of detecting skin melanoma [1] and plant diseases [2] is
made possible because of the innovation of machine learning. The field of communication network has
not been spared in the pervasive adoption of intelligent systems for supporting human decision-making
process. The necessity to develop intelligent robotic systems has triggered innovative research in many
fields such as the healthcare, industry automation [3], human–computer interaction [4], and many
other practical application areas. Embedding emotional intelligence in business units such as customer
call centers is providing a better alternative of measuring customer satisfaction and evaluation of
agents [5]. The development of a model that can recognize customer satisfaction requires a blend
of different languages and accents. Developing systems that are emotionally intelligent requires an
appropriate model to represent emotions [6]. The categorical approach and dimensional approach are
two possible ways of modeling human emotions [7]. Categorical models divide emotions into several
categories such as sadness, surprise, fear, and so on [7]. The dimensional approach presents speech
emotions in different dimensions such as the three dimensions of arousal, dominance, and valence [8].
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Arousal describes how excited or apathetic an individual gets when a particular event triggers [9].
Dominance describes submission, while polarity-based valence speaks to the positivity and negativity
of human emotions [10].

This research focuses on valence emotion, which is one of the most significant scientific concepts
that lies at the core of emotional experience. Emotional valence expresses the pleasantness or hedonic
value of emotional states and classifies them appositely as positive or negative [11]. In fact, valence can
be used to evaluate user experience in human–computer interactivity [12]. Moreover, it can be
used to determine the satisfaction, contentment, and approval of clients in a customer call center
environment [13]. A customer may register a grievance at a call center showing discontent or
disenchantment with regard to the service offered but may end up expressing feelings of joy or
contentment after receiving favorable feedback from the call center agent. A call center agent might be
efficient and soft spoken and thereby fulfilling the basic functional needs of the user. However, if it
creates a bad experience, the users obviously would not like it, which can create emotional acrimony or
a barrier. Therefore, this research work is focused on valence speech emotion recognition (VSER) with
the purpose of extracting discriminative acoustic features from speech signals to improve recognition
performance [14]. The application of such a recognition system will not only enable us to comprehend
the meaning of the messages being conveyed, but to also know how messages are conveyed [15].
Rong et al. [16] have suggested unequivocally that for listeners to get a deeper comprehension of
messages communicated, there is the need to understand the emotional states of the speakers involved
in the communication.

Some researchers have fused facial and speech features to improve the recognition of depression
in an individual [17,18]. However, many of the previous studies done in VSER have been conducted
using monolingual emotion corpus such as Surrey audio-visual expressed emotion (SAVEE) [19] and
the Berlin database of emotional speech (EMO-DB) [20]. Models developed using monolingual corpora
have performed well when tested on such architypes of corpora, but they often perform poorly on
multilingual emotion corpora [21,22]. Moreover, research has shown that speech emotion models
perform better when applied under the conditions that are analogous to the original environment
and circumstance [23,24]. In addition, cross-language communication is beneficial in most customer
call centers in African countries where multiple languages are official languages approved by the
government. For example, in Zimbabwe, there are 16 official languages, and multilingual support in
Shona, Ndebele, English, and Tonga are frequently used at call centers for communication. Such an
environment demands the development of a versatile cross-language VSER model instead of a separate
speech recognition model for each official language. Hence, there is the need to develop speech
emotion models using several corpora with different languages, cultures, and recording environments.
This novel approach is widely referred to as cross-language speech emotion recognition, which is
another focus of this study.

Cross-language speech emotion recognition is a difficult task because of the sparseness and
intrinsic dissimilarities among speech emotion corpora [25]. Most of the existing corpora consist of
different languages, accents, and speakers from different culture and heritage [26]. Speech emotions
are generally recorded under varying conditions and environments that can be noisy or proliferated
with undesirable artifacts [24]. The quality of equipment used for recording the vocal utterances may
be different, which can inhibit speech recognition performance [27]. Differential in the gender bigotry
and age chauvinism of speakers can also impede speech recognition performance [28]. There are three
standard types of emotion corpora that are frequently exploited for speech recognition experiments,
which are acted, elicited, and natural [29]. The techniques used in creating speech emotion recognition
corpora can significantly affect the output of the recognition systems [23]. These are the critical factors
that can affect the performance of a speech recognition system when tested on different corpora.
Consequently, there is a necessity to investigate the most discriminative speech features and effective
recognition methods that can help recognize speech emotions in multilingual settings.
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The RALOG ensemble learning algorithm proposed in this paper—a combination of random
decision forest, AdaBoost, logistic regression, and gradient boosting machine—can effectively recognize
multilingual positive and negative emotional valences. The choice of an ensemble algorithm in this
study was inspired by the success story of various practical applications of ensembles such as
lung cancer prediction [30], gender voice identification [31], hyperspectral image classification [32],
and product image classification [33]. Therefore, this research work makes the following distinctive
contributions to the scientific body of knowledge.

• The selection of highly discriminating features from an existing set of acoustic features using a
random forest recursive feature elimination (RF-RFE) algorithm to seamlessly recognize positive
and negative valence emotions in a cross-language environment is a unique contribution of
this study. Most of the existing methods reported in the literature hardly use feature selection
for cross-language speech recognition, yet it is essential to identify the features that can easily
distinguish valence emotions across different languages and accents.

• The development of a RALOG-staked ensemble learning algorithm that can effectively
recognize positive and negative valence emotions in human spoken utterances with high
precision, recall, F1 score, and accuracy values is an important contribution of this study.
Moreover, the training time of the algorithm was greatly reduced through feature scaling to
improve the efficiency of the algorithm.

• The experimental comparison of various benchmarked ensemble learning algorithms to test the
effectiveness of the proposed RALOG algorithm based on the selected acoustic features is an
essential contribution of this research work.

The remainder of this paper is concisely summarized as follows. The related literature is discussed
in Section 2. The study materials and methods are presented in Section 3. Section 4 converses the
results of the study, and the paper is succinctly concluded in Section 5.

2. Related Literature

Developing cross-language speech emotion recognition systems has been a hot research agenda
in the field of human–machine interaction over the past few years. Researchers in the speech
recognition area have proposed different methods, including feature normalization [34] and decision
fusion [35] to improve the performance of speech emotion recognition systems. However, many of the
research studies done in speech emotion recognition have been mainly focused on single-language
speech recognition systems. Relatively very few studies have been done in cross-language speech
emotion recognition systems that can be useful in a language immersion environment with the goal of
constructing an intelligent machine that can understand and speak multiple human languages.

The authors in [36] used a methodology based on the Geneva minimalistic acoustic parameter
set (eGeMAPS), deep belief network (DBN)-based transfer learning, and leave-one-out (LOO) to
improve the performance of a speech recognition system for the case of a cross-language application.
They trained their model using the LOO technique with interactive emotional dyadic motion capture
(IEMOCAP), EMO-DB, Italian emotional speech database (EMOVO), and SAVEE. They used the
Friedrich Alexander Universität artificial intelligence bot (FAU-Aibo) emotion corpus to test their
model that achieved an overall accuracy of 80% [22]. Latif et al. [25] used the EMOVO, Urdu speech
dataset, SAVEE, and EMO-DB corpora of utterances spoken in Italian, Urdu, English, and German
languages, respectively to develop a cross-language speech emotion recognition model. They used
eGeMAPS with support vector machine (SVM) to classify the resulting emotions into positive and
negative valences according to the emotion mapping shown in Table 1. Their cross-language valence
speech classification model achieved an overall accuracy of 70.98%.
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Table 1. Comparative analysis of our method with related methods.

Reference Corpora Languages Emotion Mapping Recognition
Method Result

Latif et al. [25]

FAU-AIBO,
IEMOCAP,
EMO-DB,

EMOVO, SAVEE

German, English,
Italian

Positive valence: Surprise,
motherese, joyful/happy,

neutral, rest, excited,
Negative valence: Angry,
touchy, sadness, emphatic,
reprimanding, boredom

disgust, fear

eGeMAPS + DBN +
Leave-One-Out

80.00%
(Accuracy)

Latif et al. [36] EMOVO, URDU,
SAVEE, EMO-DB

British English,
Italian, German,

Urdu

Positive valence: Anger,
sadness, fear, boredom,

disgust, Negative valence:
Neutral, happiness, surprise

eGeMAPS + SVM 70.98%
(Accuracy)

Ocquaye et al. [37]

FAU-Aibo,
IEMOCAP,
EMO-DB,

EMOVO, SAVEE

German, English,
Italian

Positive valence: Surprise,
motherese, joyful/happy,

neutral, rest, excited,
Negative valence: Angry,
touchy, sadness, emphatic,
reprimanding, boredom

disgust, fear

triple attentive
asymmetric CNN

model

73.11%
(Accuracy)

Mustaqeem et al. [38] RAVDESS,
IEMOCAP

North American
English, Anger, happy, neutral, sad Clean spectrograms

+ DSCNN
56.50%

(Accuracy)

Liu et al. [39] eNTERFACE,
EmoDB English Angry, disgust, fear, happy,

sad, and surprise DALSR + SVM 52.27% (UAR)

Li et al. [40] FUJITSU,
EMO-DB, CASIA

Japanese,
German, Chinese Neutral, happy, angry, sad IS16 + MSF + LMT

(logistic model trees)
82.63%

(F-Measure)

Parry et al. [41]

RAVDESS,
IEMOCAP,
EMO-DB,

EMOVO, SAVEE,
EPST

English, German,
Italian

Positive valence: Elation,
excitement, happiness, joy,

pleasant surprise, pride,
surprise, Negative valence:
Anger, anxiety, cold anger,
contempt, despair, disgust,
fear, frustration, hot anger,

panic, sadness, shame,
Neutral valence: Boredom,

calm, interest, neutral

CNN
55.11%

(Average
accuracy)

Deng et al. [42] ABC, FAU AEC German

Positive valence: Cheerful,
neutral, rest, medium stress,

Negative valence: Tired,
aggressive, intoxicated,

nervous, screaming, fear,
high stress

INTERSPEECH 2009
Emotion Challenge

baseline feature set +
A-DAE (adaptive

denoising
autoencoders)

64.18% (UAR)

Proposed Model

EMO-DB, SAVEE,
RAVDESS,
EMOVO,

CREMA-D

German, British
English, North

American
English

Positive valence: Anger,
sadness, fear, disgust,

boredom, Negative valence:
Neutral, happiness, surprise

RF-RFE extracted
features + RALOG

96.60%
(Accuracy)

96.00%
(Recall)

Ocquaye et al. [37] proposed a novel triple attentive asymmetric CNN model to recognize
emotion using the cross-language approach. Their model achieved an accuracy score of 73.11%
after training on IEMOCAP and tested on the FAU Aibo corpus. Mustaqeem et al. [38] achieved an
overall accuracy of 56.5% using clean spectrograms with deep stride convolutional neural network
(DSCNN) learning algorithm. They used a Ryerson audio-visual database of emotional speech and
song (RAVDESS) and IEMOCAP speech emotion corpora to train and test their proposed model across
four emotional states of anger, happy, neutral, and sad. The domain-adaptive least squares regression
(DALSR) with SVM learning algorithm was presented and tested on eNTERFACE audio-visual emotion
dataset and EMO-DB [39]. The study was done across six emotional states of angry, disgust, fear,
happy, sad, and surprise to achieve an unweighted average accuracy (UAR) of 52.27%. Li et al. [40]
combined an IS16 set of prosodic features with a speech modulation spectral feature (MSF) to develop
a cross-language speech emotion recognition model [40]. They used the logistic model trees (LMT)
learning algorithm to recognize four emotional states of neutral, happy, angry, and sad. The training
and testing were done using the Fujitsu, EMO-DB and Chinese emotional database (CASIA) speech
emotion corpora to achieve an F-Measure score of 82.63%. Speech emotion corpora of RAVDESS,
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IEMOCAP, EMO-DB, Italian emotional speech database (EMOVO), SAVEE, and emotional prosody
speech and transcript (EPST) were used to train and test a cross-language speech emotion recognition
model. The emotional states in these corpora were divided into three sentiment groups of positive,
negative, and neutral. Deng et al. [42] used an INTERSPEECH 2009 emotion challenge baseline
feature set and adaptive denoising autoencoder (A-DAE) to develop a cross-language speech emotion
recognition model. They trained and tested their proposed model on two German emotion corpora of
airplane behaviors corpus (ABC) and FAU Aibo to achieve an unweighted average recall of 64.18%.

The review of the related literature has indicated in this paper that relatively few studies have
been reported on cross-language speech emotion recognition. Many of these few studies have
focused on the fusion of three languages and have reported performance results that need further
improvement. The authors of the present study have investigated the problem of cross-language
valence speech emotion recognition for different languages documented in the five corporal of EMO-DB,
SAVEE, RAVDESS, EMOVO, and crowd-sourced emotional multimodal acted dataset (CREMA-D).
The application of the RF-RFE algorithm for acoustic feature extraction following an existing study
and validated with the RALOG ensemble learning algorithm gave the state-of-the-art results of 96.60%
accuracy and 96.00% recall. The results have reflected significant improvement over the highest
benchmarked result of 80.00% reported in the literature [25], as shown in Table 1.

3. Materials and Methods

The methodology of this research work follows a 5-phase cross-language valence emotion
recognition process of the fusion of various speech emotion corpora, feature extraction, feature selection,
ensemble creation, and recognition of valence. The first phase involves the fusion of five speech
emotion corpora of EMO-DB, SAVEE, RAVDESS, EMOVO, and CREMA-D that constitute the materials
for this study. These speech emotion corpora were deliberately chosen because they consist of speech
files spoken in different languages and accents of North American English (RAVDESS), British English
(SAVEE), German (EMO-DB), Italian (EMOVO), and a variety of other English accents (CREMA-D).
The phase was subsequently followed by the feature extraction process to extract discriminating
acoustic features that would help to improve the performance of the proposed RALOG ensemble
algorithm. The extracted features include two main categories of prosodic and spectral features because
of their proven effectiveness for the problem of single-language speech emotion recognition. The feature
extraction phase was thereafter followed by a feature selection process to reduce the dimensionality
that can ultimately impact both the training time and accuracy of the proposed algorithm. This phase
was subsequently followed by ensemble creation based on statistical analysis of the correlation of
receiver operating curve (ROC) and area under the curve (AUC) scores. The learning algorithms are
logistic regression (LR), decision tree (DT), random decision forest (RDF), gradient boosting machine
(GBM), multi-layer perceptron (MLP), support vector machine (SVM), K-nearest-neighbor (KNN),
and AdaBoost with random forest (ARF).

The last phase of the study methodology concerns the actual recognition of valence emotion with
a comparative evaluation of the proposed RALOG algorithm against four other existing ensemble
algorithms. All experiments were implemented on a computer with an i7 2.3 GHz processor and 8 GB
of RAM to test the effectiveness of the ensemble algorithms investigated in this study.

3.1. Speech Emotion Corpora

The speech emotion corpora of the present study are EMO-DB, SAVEE, RAVDESS, EMOVO,
and CREMA-D. The EMO-DB was developed using ten professional German language speaking actors
who were five males and five females. Their German spoken utterances were recorded to express
seven emotional states of happiness, boredom, disgust, sadness, anger, neutral, and fear. The SAVEE
corpus consists of 480 utterances spoken in the British English accent [19]. The corpus was developed
using 4 male professional actors expressing seven emotional states of angry, disgust, fear, happy,
neutral, sad, and surprise. The RAVDESS is a gender-balanced emotion corpus that consists of 1440
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vocal utterances that were recorded from professional actors involving twelve males and twelve
females [43]. The corpus was developed with the North American English accent, which is different
from the one used in SAVEE. Moreover, RAVDESS is a multiclass emotion corpus that consists of eight
emotional states of angry, calm, disgust, fear, happy, neutral, sad, and surprise. The EMOVO corpus is
an Italian emotional speech database that consists of utterances spoken in the Italian language [44].
The corpus was developed using six professional actors involving 3 males and 3 females who simulated
seven emotional states of disgust, fear, anger, joy, surprise, sadness, and neutral. The CREMA-D
corpus constitutes 6786 audio-visual clips recorded from 91 professional actors involving 48 males and
43 females from diverse races and ethnic backgrounds, including African, American, Asian, Caucasian,
Hispanic, and Unspecified [45].

In this study, only the audio files of five speech emotion databases were fused to create a
cross-language experimentation corpus as inspired by the previous studies [25,40]. The databases
were specifically chosen because they consist of vocal utterances spoken in different languages and
varying accents. The cross-language corpus was designed using eight speech emotional states of angry,
happy, neutral, calm, sad, surprised, fear, and disgust. These emotions were mapped to positive and
negative valences, as illustrated in Table 2 [22,25,41]. The mapping of speech emotions to emotional
valences has provided a seamless mechanism to unify different corpora with varying emotional states
for cross-language emotion recognition experimentation. The distribution of utterances across the
five corporal indicates a total of 10,094 adult utterances for the experimental dataset of this study.
The distribution by gender categorization is imbalanced because about 54% of the total utterances
constituted male utterances, while about 46% are female utterances. The SAVEE corpus contains male
utterances, and the CREMA-D contains more male utterances than female utterances, which have
made the experimental dataset imbalanced. The training and testing datasets of utterances respectively
constituted 80% and 20% of the total utterances.

Table 2. Mappings of adult speech emotions into positive and negative valence emotions.

Corpus Language Total
Utterances

Training
Utterances

Testing
Utterances

Negative
Valence

Positive
Valence

Male Female Male Female Male Female

EMO-DB German 400 400 320 320 80 80
Anger, Sadness,

Fear, Disgust,
Boredom

Neutral,
Happiness

SAVEE British English 480 0 384 0 96 0 Anger, Sadness,
Fear, Disgust

Neutral,
Happiness,

Surprise

RAVDESS North American
English 720 720 576 576 144 144 Anger, Sadness,

Fear, Disgust

Neutral,
Happiness,

Surprise,
Calm

EMOVO Italian 294 294 235 235 59 59 Anger, Sadness,
Fear, Disgust

Neutral,
Happiness,

Surprise

CREMA-D

African,
American, Asian,

Caucasian,
Hispanic, and
Unspecified

3579 3207 2863 2566 716 641 Anger, Sadness,
Fear, Disgust

Neutral,
Happiness

The resulting cross-language corpus has produced 6641 sample files of negative valences,
and 453 sample files present positive valences. It is important to observe that the dominance of
negative valence emotions over positive valence emotions did not bias the prediction results toward
the negative valence emotions. Figure 1 shows the distribution of both the negative valence instances
(unsatisfied class) and positive valence instances (satisfied class) that are presented in the cross-language
corpus of this study.
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Figure 1. Combined speech emotion dataset.

3.2. Feature Extraction

The process of feature extraction is an important component of speech processing architecture
because feature vectors are traditionally fed as input to a speech recognition system. The extraction of
a set of discriminating features is considered essential for improving the performance of a valence
emotion recognition system. The extraction of hybrid acoustic features (HAF) from the raw audio
files in the cross-language corpus has been performed. HAF features were considered for this study
because of their excellent performance in an experimental case of a single-language corpora [46]. A lot
of features have been proposed in the literature, but most of the proposals were silent on the ranking
of those features that are highly discriminating. The general lack of feature ranking in a multilingual
speech corpus presents a huge void to speech processing applications. A total of 404 spectral and
prosodic speech features as shown in Table 3 were extracted using jAudio [47], which is an open source
feature extraction tool developed using the Java programming language.

Table 3. List of 404 hybrid acoustic features (HAF) features [46].

Group Type Number

Prosodic
Energy Logarithm of Energy 10
Pitch Fundamental Frequency 70
Times Zero Crossing Rate 24

Spectral
Cepstral MFCC 133

Shape Spectral Roll-off Point 12
Amplitude Spectral Flux 12

Moment Spectral Centroid 22
Audio Spectral Compactness 10

Frequency Fast Fourier Transform 9
Signature Spectral Variability 21
Envelope LPCC 81

3.3. Feature Selection

Feature selection is one of the most crucial steps in the development of efficient pattern recognition
models [48]. We observed that some models reported in the literature have yielded low accuracy scores
and presented high training times. The consequence is that this may present unwarranted hiccups when
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a proposed model is deployed for the purpose of real-time commercial applications [49]. The inherent
problem would persist severely in multilingual speech recognition systems because of the different
styles of expressing satisfaction or dissatisfaction across various languages, cultures, and accents.
Consequently, we have decided to perform feature selection using the RF-RFE algorithm, which has
been reported to be successful in gender voice recognition [31]. Figure 2 depicts the iterative cycle
involved in the application of the RF-RFE algorithm.
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Table 4 presents the descriptions of the top 20 highly discriminative acoustic features from the
HAF set, as shown in Figure 3. Accordingly, the derivative of standard deviation of area method of
moments of overall standard deviation (F1) is the feature that was ranked highest among the entire
acoustic features.

Table 4. Description of the top 20 acoustic features.

Key Feature Description

F1 Derivative of standard deviation of area method of moments overall standard deviation (6th variant)
F2 Derivative of standard deviation of relative difference function overall standard deviation standard (1st variant)
F3 Area method of moments overall standard deviation (7th variant)
F4 Peak detection overall average (10th variant)
F5 Standard deviation of area method of moments overall standard deviation (8th variant)
F6 Derivative of area method of moments overall standard deviation (8th variant)
F7 Area method of moments of Mel frequency cepstral coefficients overall standard deviation (1st variant)
F8 Derivative of area method of moments overall standard deviation (9th variant)
F9 Derivative of standard deviation of area method of moments overall standard deviation (4th variant)

F10 Standard deviation of method of moments overall average (2nd variant)
F11 Peak detection overall average (10th variant)
F12 Peak detection overall average (9th variant)
F13 Peak detection overall average (7th variant)
F14 Derivative of standard deviation of area method of moments overall standard deviation (6th variant)
F15 Method of moments overall average (3rd variant)

3.4. Ensemble Creation

The literature on machine learning has generally revealed the superiority of ensemble algorithms
for speech recognition. Ensemble learning algorithms are well-known for yielding high recognition
accuracy provided appropriate features are used to train the algorithms [50]. However, we have
observed that most of the ensemble algorithms reported in the literature to date are either
computationally expensive or they produce almost the same recognition accuracies as most of
the base learners are sometimes called inducers [46,51]. Hence, we have decided to develop a new
ensemble algorithm using the statistical analysis of correlation of ROC AUC score to nominate the
learning algorithms that would become part of the proposed RALOG ensemble algorithm. The learning
algorithms used at this phase are decision tree, random decision forest, gradient boosting machine,
logistic regression, multi-layer perceptron, support vector machine, k-nearest-neighbor, and AdaBoost
with random forest. The correlation matrix computed using the ROC AUC scores of these learning
algorithms is illustrated in Figure 4.
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The approach of stacking ensemble was applied to develop the proposed RALOG ensemble
algorithm using the mixtend package [52]. The package is a publicly available library of useful
python tools for developing ensemble learning algorithms. The AdaBoost with random forest was
used as a meta-learner for RALOG because it has yielded a high score in the correlation matrix.
Logistic regression, decision tree, random decision forest, gradient boosting machine, and AdaBoost
with random forest were the experimental learning algorithms for RALOG. They have high total
correlation scores and are chosen based on the correlation matrix shown in Figure 4. The architecture
of the RALOG stacked ensemble algorithm is illustrated in Figure 5.
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Algorithm 1 shows the pseudocode of the RALOG stacked ensemble algorithm where
χ = {xi ∈ RM}, Υ = {yi ∈ N}, and a training set D = {(xi, yi)}. The parameters of the RALOG
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algorithm are that χ represents the data without the labels, xi represents an instance in a dataset,
Υ represents a collection of labels from the dataset, and RM represents a pool of instances in a dataset.
S is the number of algorithms to be used to develop the stacked ensemble, xnew

i represents a new
instance in a newly developed testing dataset. The dataset is a surrogate of D, the original dataset,
as represents the learner-based algorithms, and anew represents the new stacked ensemble algorithms
developed using (a1(x), a2(x), . . . , aS(x)) that define a list of algorithms that are stacked together.

Algorithm 1: Stacking Ensemble Algorithm

Input: D = {(xi, yi)| xi ∈ χ, yi ∈ Υ }
Output: An ensemble algorithm A
Step 1: Learn first-level learning algorithms
For s← 1 to S do
Learn a base learning algorithm as based on D
Step 2: Construct a new dataset from D
For i← 1 to m do
Construct a new dataset that contains {xnew

i, yi}, where
xnew

i = {aj(xi) for j = 1 to S}
end
Step 3: Learn a second-level learning algorithm
Learn a new learning algorithm anew based on the newly constructed dataset
Return A(xi) = anew (a1(x), a2(x), . . . , aS(x))

3.5. Recognition of Valence

The prime purpose of valence speech emotion recognition was to obtain the valence state of
an input vector to a learning algorithm. In this study, several experiments were performed to
concomitantly evaluate the effectiveness of the scaled-down version of HAF features as input to
the RALOG algorithm. The RALOG algorithm was tested against other state-of-the-art algorithms,
which are extra gradient boosting machine (XGB), random decision forest (RDF), extra trees (ETC),
and gradient boosting machine (GBM). Ensemble algorithms are normally used to improve the
recognition capability of input features by joining the predictions of several learning algorithms [53].
They boost the predictive accuracy by combining a set of weak learners [54]. In this study, we have
applied stacking, boosting, and bagging ensemble learning algorithms, because they have achieved
excellent results in other works [31].

RALOG is a stacking ensemble used in this study, while XGB and GBM are the boosting ensemble
algorithms [31], and the bagging ensemble algorithms are RDF and ETC [31] because they were
reported as successful in previous studies. The training time, accuracy, precision, recall, and F1-score
are the standard metrics used to evaluate the performance of the proposed RALOG algorithm.
Furthermore, confidence intervals were used because the experimental data were not well balanced.
Figure 6 shows the flowchart for different configurations of varying experiments that were conducted
in this study.
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4. Results and Discussion

In this study, negative and positive valence emotion files were extracted from the speech corpora
of EMO-DB, SAVEE, RAVDESS, EMOVO, and CREMA-D to create the cross-language corpus according
to the mapping in [25]. Thereafter, 250 of the most discriminating HAF features were selected from
the speech files for the assignment of valence speech emotion recognition. The effectiveness of the
proposed RALOG algorithm was compared with other popular ensemble algorithms trained to learn
the extracted HAF features. Cross-language speech data used for experimentation were subjected to
10-fold cross-validation and divided into training and testing groups as the standard norm permits.
Inthe experimentation, 20% of the data (sets of adult utterances) were used for testing, while 80% of
the data were used for training as previously mentioned.

Table 5 shows the central processing unit (CPU) time of training the individual ensemble algorithm
investigated in this study. The GBM algorithm was seen to be the most time-consuming, which was
greatly reduced after performing feature selection. It took 60.495 ms to train the GBM algorithm
before running the RF-RFE algorithm, but it only took 16.228 ms after applying the feature selection
algorithm. This pattern was consistent for all the other learning algorithms, including the proposed
RALOG. In addition, the results show that the RALOG algorithm had a healthy training time of 9.05 ms.
However, the XGB algorithm proved to be the fastest amongst the learning algorithms because it only
took 0.00095 ms to process data. These results imply that RALOG is highly promising for recognizing
valence speech emotion, especially in the situation where reactionary delay is of crucial importance [55].
Reactionary delay is an important factor in the development of real-time systems.

Table 5. Training time (ms) of ensemble algorithms.

RALOG RDF GBM ETC XGB

Before RFE 43.314 5.290 60.495 0.168 0.004
After RFE 9.050 0.459 16.228 0.244 0.001
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The experimental results obtained in this study in terms of precision, recall, F1-score, and accuracy
are illustrated in Table 6. The results show that feature selection with the aid of the RF-RFE algorithm
contributed heavily to a significant increase in the recognition accuracy. The recognition accuracy
of RALOG increased from 82% to 92% while that of XGB algorithm increased from 78% to 87%.
The increase in accuracy was apparent in all results of the learning algorithms. However, the highest
increment was observed when the RF-RFE algorithm was used with the ETC learning algorithm,
which has resulted in a 10% increment. Even though the ETC learning algorithm recorded the highest
increment, it has yielded a lower accuracy score when compared to other learning algorithms. It can
be observed from results in Table 6 that the RDF algorithm has performed well in recognizing valence
speech emotions because it achieved a recognition accuracy score of 85%. In the same vein, the results
show that the ETC algorithm is a good option for recognizing valence speech emotion because it
achieved a recognition accuracy of 83% after applying the RF-RFE algorithm. RALOG achieved the
highest accuracy before and after the application of the RF-RFE feature selection algorithm. It even
performed better when compared to the other algorithms presented in the literature. For instance,
Latif et al. [25] achieved an overall accuracy of 80% using eGeMAPS, DBN, and leave-one-out
testing technique. Hence, it can be inferred that RALOG is highly promising for recognizing
valence speech emotions, especially when it is used in conjunction with the RF-RFE algorithm.
Moreover, the confidence factor shows that the true recognition accuracies of all learning algorithms
lie in the range of 0.005% and 0.009%.

Table 6. Percentage average precision, recall, F1-score, and accuracy with confidence intervals of
learning algorithms at each experimental stage of feature scaling with the RF-RFE algorithm.

Algorithm Stage Precision Recall F1-Score Accuracy

RALOG Before RFE 82 (±0.007) 83 (±0.007) 83 (±0.007) 82 (±0.007)
After RFE 90 (±0.006) 90 (±0.006) 91 (±0.006) 92 (±0.005)

RDF Before RFE 72 (±0.009) 82 (±0.007) 77 (±0.008) 80 (±0.008)
After RFE 80 (±0.008) 88 (±0.006) 82 (±0.007) 85 (±0.007)

GBM Before RFE 69 (±0.009) 73 (±0.009) 71 (±0.009) 73 (±0.009)
After RFE 79 (±0.008) 82 (±0.007) 80 (±0.008) 85 (±0.007)

XGB Before RFE 71 (±0.009) 81 (±0.008) 75 (±0.008) 78 (±0.008)
After RFE 78 (±0.008) 85 (±0.007) 81 (±0.006) 87 (±0.007)

The same pattern of performance was observed in the precision, recall, and F1-score of the
ensemble algorithms. The superiority of the proposed RALOG algorithm was also observed when
precision was analyzed in Table 6. The impact of using the RF-RFE algorithm to scale features was
again noticed when the precision was evaluated. The average precision for all the learning algorithms
increased considerably. GBM experienced the highest increment from 69% to 79%, while the average
precision of RALOG increased from 82% to 90%. The RALOG algorithm achieved the highest average
precision of 90% followed by the RDF algorithm (80%). The RDF algorithm was closely followed by
the GBM algorithm that achieved an average precision score of 79%. In this regard, the GBM was
followed by the ETC and XGB algorithms that achieved similar average precision scores of 78% each.
It can be observed from the results in Table 6 that RALOG is a good learning algorithm for recognizing
valence emotion in speech files, and the results are comparable to those of the work presented in [39].

The average recall as illustrated in Table 6 was improved marginally when feature selection was
applied. We observed that RALOG outperformed the other learning algorithms in this regard because
it obtained an average recall score of 90%. RALOG was followed by RDF (88%), XGB (85%), GBM (82%),
and ETC (82%). Although GBM achieved the lowest average recall score, it had the highest percentage
increment of 11% after feature scaling. These results present a further confirmation that strongly
underlines the fact that the application of RALOG with the RF-RFE algorithm for valence emotion
recognition is indeed promising. The average recall of RALOG is relatively high when compared to the
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results in the literature [39]. In addition, RALOG achieved the highest average F1-score of 91% followed
by RDF (82%) and XGB (81%). ETC and GBM both achieved the lowest average F1-score of 80%.
All the learning algorithms increased their F1-scores for each respective class when the RF-RFE
algorithm was applied. Furthermore, ETC and GBM achieved the highest average F1-score increment
of 9%. Moreover, the results confirm that the performance of RALOG is comparable to the proposal
presented in the literature [56].

Table 7 shows the results of percentage precision, recall, F1-score, and accuracy for valence
instances. The results show that ensemble algorithms achieved lower scores in recognizing instances
of valence emotion. This could be ascribed to the unbalanced structure of the cross-language corpus.
There was a significant increase in performance across all performance metrics when the RF-RFE
algorithm was applied. Specifically, RDF achieved the highest precision score of 97% in recognizing
negative valence emotion instances followed by XGB (95%). RALOG and ETC both achieved a precision
score of 93% in recognizing instances of negative valence. However, RALOG achieved the highest
accuracy score of 97% in recognizing instances of negative valence emotion. Furthermore, RALOG had
the highest precision score of 87% in recognizing instances of positive valence.

Table 7. Percentage precision, recall and F1-score and accuracy at each experimental stage of feature
scaling with the RF-RFE algorithm.

Algorithm Stage Precision Recall F1-score Accuracy

Negative Positive Negative Positive Negative Positive Negative Positive

RALOG Before RFE 88 76 86 79 88 77 86 78
After RFE 93 87 94 86 94 87 97 86

RDF Before RFE 83 59 84 78 82 67 82 74
After RFE 97 86 97 62 88 87 92 72

GBM Before RFE 81 56 78 64 80 62 79 71
After RFE 92 66 89 74 90 70 91 79

XGB Before RFE 84 60 85 79 83 71 84 76
After RFE 95 61 88 82 91 70 94 80

The results in Table 8 confirm the effectiveness of applying the RF-RFE algorithm for cross-language
valence speech emotion recognition. These results show a significant improvement in valence emotion
recognition because they are comparable to the work presented in Table 1.

Table 8. Confusion matrix before and after feature scaling with the RF-RFE algorithm.

Algorithm Valence Before RFE After RFE

Negative Positive Negative Positive

RALOG Negative 88 12 93 7

Positive 24 76 13 87

RDF Negative 83 17 97 3

Positive 41 59 38 62

GBM Negative 81 19 92 8

Positive 41 59 34 66

ETC Negative 80 20 93 7

Positive 43 57 37 63

XGB Negative 84 16 95 5

Positive 40 60 39 61
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The ROC curves of the evaluated learning algorithms before and after applying the RF-RFE
algorithm are shown in Figures 7 and 8, respectively. Figure 7 shows the performance of the ensemble
algorithms before the feature selection was done. It can be noted from the ROC curves that RALOG
outperformed all the other algorithms before and after the RF-RFE algorithm was applied. RALOG had
the highest AUC score of 96.97% when the RF-RFE algorithm was applied. This means that there
is a 96.97% chance that correct unpleasant valence emotion will be recognized using RALOG with
the RF-RFE algorithm. It was closely followed by GBM, which achieved an AUC score of 94.62%.
These results show that the selected features by the RF-RFE algorithm can faithfully recognize valence
speech emotion from different languages, accents, and recording environments because the corpus
used for experimentation in this study was a fusion of five different emotion corpora.
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The final experiment was performed to determine the performance results of the RALOG algorithm
on an individual corpus. Table 9 shows these results, wherein it can be seen that the recognition
results are relatively good across corpora. Specifically, RALOG gave the best recognition performance
results for SAVEE, because an overall accuracy of 98% was recorded. The best performance of
RALOG on SAVEE is because the corpus only consists of male utterances from Britain. A reduction
in the recognition performance results is observed as we investigate the gender-balanced corpora.
However, the lowest recognition performance results were noticed across the four metrics when
RALOG was applied on CREMA-D. This is because CREMA-D consists of utterances from diverse
accents of speakers with multiple cultures, which confirms the difficulties experienced in recognizing
valence emotion in a multilingual environment, as reported in the literature [21,22]. The recognition
results of RALOG on the agglutination of the five corpora are not better than its results on an individual
SAVEE corpus and RAVDESS corpus, but they are better than its results on EMOVO and CREMA-D
corpora. Consequently, male valence emotion recognition performance reaches the best results on the
SAVEE corpus, but the performance on the combined corpora is generally more impressive irrespective
of gender than when an individual corpus is considered.

Table 9. Percentage precision, recall and F1-score and accuracy of RALOG on individual corpus at each
experimental stage of feature scaling with the RF-RFE algorithm.

Corpus Stage Precision Recall F1-Score Accuracy

EMO-DB Before RFE 95 96 95 95
After RFE 97 96 96 96

SAVEE Before RFE 97 96 96 96
After RFE 98 98 98 98

RAVDEES Before RFE 94 94 94 95
After RFE 97 97 97 97

EMOVO Before RFE 92 92 93 92
After RFE 94 94 94 95

CREMA-D Before RFE 88 89 88 89
After RFE 85 95 89 92

Table 10 shows the results of the training time of RALOG on individual corpus. The algorithm is
seen generally to have recorded the lowest training time of 0.47 ms on SAVEE and the highest training
time of 6.05 (ms) on CREMA-D. This result is obviously expected, because the least number of sample
utterances that come from SAVEE for training RALOG is 384, which is less than those from CREMA-D
(1358) and all other corpora.

Table 10. Training time (ms) of RALOG on individual corpus.

EMO-DB SAVEE RAVDEES EMOVO CREMA-D

Before RFE 3.440 2.070 6.190 2.540 29.200
After RFE 0.780 0.470 1.380 0.580 6.050

5. Conclusions

The automatic recognition of valence emotion in speech is still an open research agenda because
of various factors that include differences in the expression of emotions according to different cultures,
accents, and languages. Limited research has been done in cross-language emotion recognition with an
insufficient number of cross-corpora for research, as seen in the literature review section of this paper.
The corpus of this study was developed by scaling down low-discriminating features from the HAF
features that were constructed in the previous study through the agglutination of spectral and prosodic
features. The feature scaling was done through the selection of highly discriminative features with the
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aid of the RF-RFE algorithm. The scaling down of the redundant features has achieved excellent results
in this study. The features were extracted from a cross-language speech emotion corpus that was
developed in this study by fusing five different speech emotion corpora. The development of a RALOG
stacked ensemble algorithm for recognizing cross-language valence emotion is an important highlight
of this study. The algorithm was evaluated against other top performing learning algorithms, and it
outperformed them before and after feature scaling. RALOG performed well because it combines
strong learners to boost its performance. Furthermore, we have observed generally that ensemble
algorithms perform well for the assignment of valence speech emotion recognition.

The results of this study are generally promising when compared to the results presented in the
literature reviewed. The gradient boosting machine achieved good results, but the greatest bottleneck
is that its training time is computationally expensive. However, XGB had the fastest training time,
making it a good alternative for developing real-time valence emotion recognition systems. Even though
the RALOG algorithm was not the fastest, it had a healthy training time and becomes a good candidate
when considering the tradeoff between method efficiency and method accuracy. RALOG was seen to
be the more accurate algorithm when compared to random decision forest algorithm in recognizing
valence emotion through speech using a set of well-scaled HAF features. This superiority was consistent
across all the ensemble algorithms. The results obtained are generally exhilarating; nonetheless, the core
limitation of this study is that the cross-language corpora used did not contain conversations, but rather
consisted of sentences per speaker. We would like to evaluate the performance of RALOG algorithm
in actual conversations to fully scrutinize its robustness in future work. Although the data used
in this study were free of noise, they were also devoid of speakers with physiological deficiencies
such as stammering. As part of our future work, we would like to vigorously pursue this exciting
research agenda.
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