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Abstract

:

The Traveling Salesman Problem (TSP) aims at finding the shortest trip for a salesman, who has to visit each of the locations from a given set exactly once, starting and ending at the same location. Here, we consider the Euclidean version of the problem, in which the locations are points in the two-dimensional Euclidean space and the distances are correspondingly Euclidean distances. We propose simple, fast, and easily implementable heuristics that work well, in practice, for large real-life problem instances. The algorithm works on three phases, the constructive, the insertion, and the improvement phases. The first two phases run in time   O (  n 2  )   and the number of repetitions in the improvement phase, in practice, is bounded by a small constant. We have tested the practical behavior of our heuristics on the available benchmark problem instances. The approximation provided by our algorithm for the tested benchmark problem instances did not beat best known results. At the same time, comparing the CPU time used by our algorithm with that of the earlier known ones, in about 92% of the cases our algorithm has required less computational time. Our algorithm is also memory efficient: for the largest tested problem instance with 744,710 cities, it has used about 50 MiB, whereas the average memory usage for the remained 217 instances was 1.6 MiB.
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1. Introduction


The Traveling Salesman Problem (TSP) is one of the most studied strongly NP-hard combinatorial optimization problems. Given an   n × n   matrix of distances between n objects, call them cities, one looks for a shortest possible feasible tour which can be seen as a permutation of the given n objects: a feasible tour visits each of the n cities exactly once except the first visited city with which the tour ends. The cost of a tour is the sum of the distances between each pair of the neighboring cities in that tour. This problem can also be described in graph terms. We have an undirected weighted complete graph   G = ( V , E )  , where V is the set of   n = | V |   vertices (cities) and E is the set of the    n 2  − n   edges   ( i , j ) = ( j , i )  ,   i ≠ j  . A non-negative weight of an edge   ( i , j )  ,   w ( i , j )   is the distance between vertices i and j. There are two basic sets of restrictions that define feasible solution (a tour that has to start and complete at the same vertex and has to contain all the vertices from set V exactly once). A feasible tour T can be represented as:


  T =  (  i 1  ,  i 2  , ⋯ ,  i  n − 1   ,  i n  ,  i 1  )  ;   i k  ∈ V ,  



(1)




and its cost is


  C  ( T )  =  ∑  k = 1   n − 1   w  (  i k  ,  i  k + 1   )  + w  (  i n  ,  i 1  )  .  



(2)




The objective is to find an optimal tour, a feasible one with the minimum cost    min T   C  ( T )   .



Some special cases of the problem have been commonly considered. For instance, in the symmetric version, the distance matrix is symmetric (i.e., for each edge   ( i , j )  ,   w ( i , j ) = w ( j , i )  ); in another setting, the distances between the cities are Euclidean distances (i.e., set V can be represented as points in the two-dimensional Euclidean space). Clearly, the Euclidean TSP is also a symmetric TSP but not vice versa. The Euclidean TSP has a straightforward immediate application in the real-life scenario when a salesman wishes to visit the cities using the shortest possible tour. Because in the Euclidean version the cities are points in plane, for each pair of points, the triangle inequality holds, which makes the problem a bit more accessible in the sense that simple geometric rules can be used for calculating the cost of a tour or the cost of the inclusion of a new point in a partial tour, unlike the general setting. Nevertheless, the Euclidean TSP remains strongly NP-hard; see Papadimitriou [1] and Garey et al. [2].



The exact solution methods for TSP can only solve problem instances with a moderate number of cities; hence, approximation algorithms are of a primary interest. There exist a vast amount of approximation heuristic algorithms for TSP. The literature on TSP is very wide-ranging, and it is not our goal to overview all the important relevant work here (we refer the reader, e.g., to a book by Lawler et al. [3] and an overview chapter by Jünger [4]).



The literature distinguishes two basic types of approximation algorithms for TSP: tour construction and loop improvement algorithms. The construction heuristics create a feasible tour in one pass so that the taken decisions are not reconsidered later. A feasible solution delivered by a construction heuristic can be used in a loop improvement heuristic as an initial feasible solution (though such initial solution can be constructed randomly). Given the current feasible tour, iteratively, an improvement algorithm, based on some local optimality criteria, makes some changes in that tour resulting in a new feasible solution with less cost. Well-known examples of tour improvement algorithms are 2-Opt Croes 2-Opt, its generalizations 3-Opt and k-Opt, and the algorithm by Lin and Kernighan [5], to mention a few.



The most successful algorithms we have found in the literature for large-scale TSP instances are Ant Colony Optimization (ACO) meta heuristics, with which we compare our results. On one hand, these algorithms give a good approximation. On the other hand, the traditional ACO-based algorithms tend to require a considerable computer memory, which is necessary to keep an   n × n   pheromone matrix. Typically, the time complexity of the selection of each next move using ACO is also costly. These drawbacks are addressed in some recent ACO-based algorithms in which, at each iteration of the calculation of the pheromone levels, the intermediate data are reduced storing only a limited number of the most promising tours in computer memory. With Partial ACO (PACO), only some part of a known good tour is altered. A PACO-based heuristic was proposed in Chitty [6] and the experimental results for four problem instances from library Art Gallery were reported. Effective Strategies + ACO (ESACO) uses pheromone values directly in the 2-opt local search for the solution improvement and reduces the pheromone matrix, yielding linear space complexity (see, for example, Ismkman [7]). Parallel Cooperative Hybrid Algorithm ACO (PACO-3Opt) uses a multi-colony of ants to prevent a possible stagnation (see, for example, Gülcü et al. [8]). In a very recent Restricted Pheromone Matrix Method (RPMM) [9], the pheromone matrix is reduced with a linear memory complexity, resulting in an essentially lower memory consumption. Another recent successful ACO-based Dynamic Flying ACO (DFACO) heuristic was proposed by Dahan et al. [10]. Besides these ACO-based heuristics, we have compared our heuristics with other two meta-heuristics. One of them is a parallel algorithm based on the nearest neighborhood search suggested by Al-Adwan et al. [11], and the other one, proposed by Zhong et al. [12], is a Discrete Pigeon-Inspired Optimization (DPIO) metaheuristic. We have also implemented directly the Nearest Neighborhood (NN) algorithm for the comparison purposes (see Section 4 and Appendix A).



In Table A1 in Appendix A, we give a summary of the above heuristics including the information on the type and the number of the instances for which these algorithms were tested and the number of the runs of each of these algorithms. Unlike these heuristics, the heuristic that we propose here is deterministic, in the sense that, for any input, it delivers the same solution each time it is invoked; hence, there is no need in the repeated runs of our algorithm. We have tested the performance of our algorithm on 218 benchmark problem instances (the number of the reported instances for the algorithms from Table A1 vary from 6 to 36). The relative error of our algorithm for the tested instances did not beat the earlier known best results; however, for some instances, our error was better than that of the above-mentioned algorithms (see Table 9 at the end of Section 3). The error percentage provided by our algorithm has varied from 0% to 17%, with an average relative error of 7.16%. The standard error deviation over all the tested instances was 0.03.



In terms of the CPU time, our algorithm was faster than ones from Table A1 except for six instances from Art Gallery RPMM [9] and Partial-ACO [6], and for two instances from TSPLIB DPIO [12] were faster (see Table 10). Among all the comparisons we made, in about 92% of the cases, our algorithm has required less computational time. We have halted the execution of our algorithm for the two of the above-mentioned largest problem instances in 15 days, and for the next largest instance ara238025 with 238,025 cities our algorithm has halted in about 36 h. The average CPU time for the remained instances were 19.2 min. The standard CPU time deviation for these instances was 89.3 min (for all the instances, including the above-mentioned three largest ones, it was 2068.4 min).



Our algorithm consumes very little computer memory. For the largest problem instance with 744,710 cities, it has used only about 50 MiB (mebibytes). The average memory usage for the remained 217 instances was 1.6 MiB (the average for all the instances including the above largest one was 1.88 MiB). The standard deviation of the usage of the memory is 4.6 MiB. Equation (3) below (see also Figure 15 in Section 3) shows the dependence of the memory required by our algorithm on the total number of cities n. As we can observe, this dependence is linear:


  R A M = 0.0000685 n + 0.563   M i B .  



(3)







Our algorithm consists of the constructive, the insertion and the improvement phases, we call it the Constructive, Insertion, and Improvement algorithm, the CII-algorithm, for short. The constructive heuristics of Phase 1 deliver a partial tour that includes solely the points of the girding polygon. The insertion heuristic of Phase 2 completes the partial tour of Phase 1 to a complete feasible tour using the cheapest insertion strategy: iteratively, the current partial tour is augmented with a new point, one yielding the minimal increase in the cost in an auxiliary, specially formed tour. We use simple geometry in the decision-making process at Phases 2 and 3. The tour improvement heuristic of Phase 3 improves iteratively the tour of Phase 2 based on the local optimality conditions: it uses two heuristic algorithms which carry out some local rearrangement of the current tour. At Phase 1, the girding polygon for the points of set V and an initial, yet infeasible (partial) tour including the vertices of that polygon is constructed in time   O (  n 2  )  . The initial tour of Phase 1 is iteratively extended with the new points from the internal area of the polygon at Phase 2. Phase 2 also runs in time   O (  n 2  )   and basically uses the triangle inequality for the selection of each newly added point. Phase 3 uses two heuristic algorithms. The first one, called 2-Opt, is a local search algorithm proposed by Croes [13]. The second one is based on the procedure of Phase 2. The two heuristics are repeatedly applied in the iterative improvement cycle until a special approximation condition is satisfied. The number of repetitions in the improvement cycle, in practice, is bounded by a small constant. In particular, the average number of the repetitions for all the tested instances was about 9 (the maximum of 49 repetitions was attained for one of the moderate sized instances lra498378, and for the largest instance lrb744710 with 744,710 points, Phase 3 was repeated 18 times).



The rest of the paper is organized as follows. In Section 2, we describe the CII-algorithm and show its time complexity. In Section 3, we give the implementation details and the results of our computational experiments, and, in Section 4, we give some concluding remarks and possible directions for the future work. The tables presented in Appendix A contain the complete data of our computational results.




2. Methods


We start this section with a brief aggregated description of our algorithm and in the following subsections we describe its three phases (Figure 1).



2.1. Phase 1


2.1.1. Procedure to Locate the Extreme Points


At Phase 1, we construct the girding polygon for the points of set V and construct an initial yet infeasible (partial) tour that includes the points of that polygon. The construction of this polygon employs four extreme points   v 1  ,   v 2  ,   v 3   and   v 4  ; the uppermost, leftmost, lowermost, and rightmost, respectively [14], with ones from set V defined as follows. First, we define the sets of points    T ′  ,  L ′  ,  B ′    and   R ′   with    T ′  =  { i  |   y i   i s  m a x i m u m ,  i ∈ V }   ,    L ′  =  { i  |   x i   i s  m i n i m u m , i ∈ V }   ,    B ′  =  { i  |   y i   i s  m i n i m u m ,  i ∈ V }   , and    R ′  =  { i  |   x i    i s  m a x i m u m ,  i ∈ V }   . Then,


   v 1   = j  |    x j   i s  m a x i m u m ;  j ∈  T ′  ,  



(4)






   v 2   = j  |    y j   i s  m a x i m u m ;  j ∈  L ′  ,  



(5)






   v 3   = j  |    x j   i s  m i n i m u m ;  j ∈  B ′  ,  



(6)




and


   v 4   = j  |    y j   i s  m i n i m u m ;  j ∈  R ′  .  



(7)







See the next procedure for the extreme points in Table 1.



Lemma 1.

The time complexity of Procedure extreme_points is   O ( n )   .





Proof of Lemma 1.

In this and in the following proofs, we only consider those lines in the formal descriptions in which the number of elementary operations, denote it by   f ( n )  , depends on n (ignoring the lines yielding a constant number of operations). In lines 5–9, there is a loop with   n − 1   cycles, hence   { f ( n ) = n − 1 }  . In lines 11–15, there is a loop with n cycles, hence   { f ( n ) = n }   In lines 20–21, 22–23, 24–25 and 26–27; there are four loops, each one with at most has n cycles, so   { f ( n ) = 4 n }  . Hence, the total cost is   O ( n )  . □






2.1.2. Procedure for the Construction of the Girding Polygon


Before we describe the procedure, let us define function   θ ( i , j )  , returning the angle formed between the edge   ( i , j )   and the positive direction of the x-axis (Equation (8) and Figure 2):


  θ  ( i , j )  =      arccos    x j  −  x i    w ( i , j )          i f  arcsin    y j  −  y i    w ( i , j )   ≥ 0 ,       − arccos    x j  −  x i    w ( i , j )          i f  arcsin    y j  −  y i    w ( i , j )   < 0 .       



(8)







The girding Polygon   P = P ( V )   is a convex geometric figure in a two-dimensional plane, such that any point in V either belongs to that polygon or to the area of that polygon Vakhania et al. [14].



The input of our procedure for the construction of polygon P (see Table 2), consists of (i) the set of vertices V and (ii) the distinguished extreme points   v 1  ,   v 2  ,   v 3   and   v 4  . Abusing slightly the notation, in the description below, we use: (i) P, for the array of the points that form the girding polygon, and (ii) k for the last vertex included so far into the array P. Initially,   P : = (  v 1  )   and   k : =  v 1   .



Lemma 2.

The time complexity of Procedure polygon is   O (  n 2  )   .





Proof of Lemma 2.

There are four independent while statements with similar structure, each of which can be repeated at most n times. In the first line of each of these while statements, in lines 4, 11, 18, and 25, the set of points   V *   is formed that yields   { f ( n ) = 2 n }   operations. In lines 5, 12, 19, and 26, the set of   n − 1   edges   E *   is formed in time   { f ( n ) = n − 1 }  . In lines 6, 13, 20, and 27, the set of angles   Θ *   consisting of at most   n − 1   elements is formed in time   { f ( n ) = n − 1 }  . In lines 7, 14, 21, and 28 to find the minimum angle in set   Θ *   at most   n − 1   comparisons are needed and the lemma follows. □





In Figure 3, we illustrate an example with   V = { 1 , 2 , ⋯ , 6 }   with coordinates   X = {  x 1  ,  x 2  , ⋯ ,  x 6  }   and   Y = {  y 1  ,  y 2  , ⋯ ,  y 6  }  . The extreme points are:    v 1  = 4  ,    v 2  = 2  ,    v 3  = 5   and    v 4  = 5   and   P = ( 4 , 2 , 5 , 4 )  . Initially,   P = ( 4 )  . Then, vertex 2 is added to polygon in Step 1, vertex 5 is added in Step 2; Step 3 is not carried out because    v 3  =  v 4   ; vertex 4 is added at Step 4.



Using polygon   P ( V )   constructed by the Procedure Polygon, we obtain our initial, yet infeasible (partial) tour    T 0  =  (  t 1  ,  t 2  , ⋯ ,  t m  ,  t 1  )    that is merely formed by all the points    t 1  ,  t 2  , ⋯ ,  t m    of that polygon, where    t 1  =  v 1    and m is the number of the points.



In the example of Figure 3, P is the initial infeasible tour    T 0  =  ( 4 , 2 , 5 , 4 )   .   V \  T 0  =  { 1 , 3 , 6 }    is the set of points that will be inserted into the final tour.





2.2. Phase 2


The initial tour of Phase 1 is iteratively extended with new points from the internal area of polygon   P ( V )   using the cheapest insertion strategy at Phase 2 [15].



Let   l ∉  T  h − 1     be a candidate point to be included in tour   T  h − 1   , resulting in an extended tour   T h   of iteration   h > 0  , and let    t i  ∈  T  h − 1    . Due to the triangle inequality,   w  (  t i  , l )  + w  ( l ,  t  i + 1   )  ≥ w  (  t i  ,  t  i + 1   )   ; i.e., the insertion of point l between points   t i   and   t  i + 1   , will increase the current total cost   C (  T  h − 1   )   by   w  (  t i  , l )  + w  ( l ,  t  i + 1   )  − w  (  t i  ,  t  i + 1   )  ≥ 0   (see Figure 4). Once point l is included between points   t i   and   t  i + 1   , for the convenience of the presentation, we let    t m  : =  t  m − 1    ,    t  m − 1   : =  t  m − 2    , ⋯,    t  i + 3   : =  t  i + 2    ,    t  i + 2   : =  t  i + 1     and    t  i + 1   : = l   (due to the way in which we represent our tours, this re-indexing yields no extra cost in our algorithm).



In Table 3, we give a formal description of our procedure that inserts point l between points   t i   and   t  i + 1    in tour T.



Procedure Construc_tour


At each iteration h, the current tour   T  h − 1    is extended by point    l h  ∈ V \  T  h − 1     yielding the minimum cost   c  l  h   (defined below), which represents the increase in the the current total cost   C (  T  h − 1   )   if that point is included into the current tour   T  h − 1   . The cost for point   l ∈ V \  T  h − 1     is defined as follows:


   c  l  h  =  min   t i  ∈  T  h − 1      { w  (  t i  , l )  + w  ( l ,  t  i + 1   )  − w  (  t i  ,  t  i + 1   )  }  .  



(9)







For further references, we denote by   i ( l )   the index of point   t i   for which the above minimum for point l is reached, i.e.,   w  (  t  i ( l )   , l )  + w  ( l ,  t  i ( l ) + 1   )  − w  (  t  i ( l )   ,  t  i ( l ) + 1   )  =  min   t i  ∈  T  h − 1      { w  (  t i  , l )  + w  ( l ,  t  i + 1   )  − w  (  t i  ,  t  i + 1   )  }   .



Thus,   l h   is a point that attains the minimum


  min {  c  l  h  | l ∈ V \  T  h − 1   } ,  



(10)




whereas the ties can be broken arbitrarily.



To speed up the procedure, we initially calculate the minimum cost for each point   l ∈ V \  T  h − 1    . After the insertion of point   l h  , the minimum cost   c  l  h   is updated as follows:


   c  l  h  : = min  {  c  l   h − 1   , w  (  t i  , l )  + w  ( l ,  t  i + 1   )  − w  (  t i  ,  t  i + 1   )  ,  w  (  t  i + 1   , l )  + w  ( l ,  t  i + 2   )  − w  (  t  i + 1   ,  t  i + 2   )  }  .  



(11)







We can describe now Procedure construct_tour as shown in Table 4.



Lemma 3.

The time complexity of the Procedure construct_tour is   O (  n 2  )   .





Proof of Lemma 3.

In lines 2–3, there is a for statement with   n − ( m + h − 1 )   repetitions. To calculate   c l h   in line 3, the same number of repetitions is needed and the total cost of the for statement is    [ n −  ( m + h − 1 )  ]   [ n −  ( m + h − 1 )  ]  =  [  n 2  − 2  ( m + h − 1 )  n +   ( m + h − 1 )  2  ]   . The while statement in lines 4–9 is repeated at most   n − ( m + h − 1 )   times. In line 5, to calculate   c   l h   h   (Equation (10))   n − ( m + h − 1 )   comparisons are required. In lines 7–8, there is a for statement nested in the above while statement with   n − ( m + h )   repetitions. Hence, the total cost is    [  n 2  − 2  ( m + h − 1 )  n +   ( m + h − 1 )  2  ]  +  [ n −  ( m + h − 1 )  ]   {  [ n −  ( m + h − 1 )  ]  +  [ n −  ( m + h )  ]  }  =  [  n 2  − 2  ( m + h − 1 )  n +  (  m 2  − 2 m − 2 h +  h 2  + 1 )  ]  +  [ n −  ( m + h − 1 )  ]   [ 2 n −  ( 2 m + 2 h − 1 )  ]  =  [  n 2  −  ( 2 m + 2 h − 2 )  n +  (  m 2  − 2 m − 2 h +  h 2  + 1 )  ]  +  [ 2  n 2  −  ( 4 m + 4 h − 3 )  n +  ( 2  m 2  + 4 m h − 3 m − 3 h + 2  h 2  + 1 )  ]  = 3  n 2  −  ( 6 m + 6 h − 5 )  n +  ( 3  m 2  + 4 m h − 5 m − 5 h + 3  h 2  + 2 )  = O  (  n 2  )   . □





In the example of Figure 5,    T 0  =  ( 4 , 2 , 5 )   . The costs   c l 1  ,   l ∈ V \  T 0   , are calculated as follows:        c  1  1     = min  { w  ( 4 , 1 )  + w  ( 1 , 2 )  − w  ( 4 , 2 )  ,  w  ( 2 , 1 )  + w  ( 1 , 5 )  − w  ( 2 , 5 )  ,  w  ( 5 , 1 )  + w  ( 1 , 4 )  − w  ( 5 , 4 )  }        = w ( 5 , 1 ) + w ( 1 , 4 ) − w ( 5 , 4 ) ,        c  3  1     = min  { w  ( 4 , 3 )  + w  ( 3 , 2 )  − w  ( 4 , 2 )  ,  w  ( 2 , 3 )  + w  ( 3 , 5 )  − w  ( 2 , 5 )  ,  w  ( 5 , 3 )  + w  ( 3 , 4 )  − w  ( 5 , 4 )  }        = w ( 4 , 3 ) + w ( 3 , 2 ) − w ( 4 , 2 ) ,        c  6  1     = min  { w  ( 4 , 6 )  + w  ( 6 , 2 )  − w  ( 4 , 2 )  ,  w  ( 2 , 6 )  + w  ( 6 , 5 )  − w  ( 2 , 5 )  ,  w  ( 5 , 6 )  + w  ( 6 , 4 )  − w  ( 5 , 4 )  }        = w ( 4 , 6 ) + w ( 6 , 2 ) − w ( 4 , 2 )      .



Hence,   min  {  c  1  1  ,  c  3  1  ,  c  6  1  }  =  c  6  1  = w  ( 4 , 6 )  + w  ( 6 , 2 )  − w  ( 4 , 2 )   ;    l 1  = 6   and   i ( 6 ) = 4  . Therefore, point 6 will be included in tour   T 1   between points 4 and 2 (Figure 6).



Now,    T 1  =  ( 4 , 6 , 2 , 5 , 4 )    and the minimum costs   c  l  2   for each point   l ∈ V \  T 1    are:        c  1  2     =  {  c  1  1  , w  ( 4 , 1 )  + w  ( 1 , 6 )  − w  ( 4 , 6 )  , w  ( 6 , 1 )  + w  ( 1 , 2 )  − w  ( 6 , 2 )  }        = w ( 4 , 1 ) + w ( 1 , 6 ) − w ( 4 , 6 ) .        c  3  2     =  {  c  3  1  , w  ( 4 , 3 )  + w  ( 3 , 6 )  − w  ( 4 , 6 )  , w  ( 6 , 3 )  + w  ( 3 , 2 )  − w  ( 6 , 2 )  }        = w ( 6 , 3 ) + w ( 3 , 2 ) − w ( 6 , 2 )      .



Hence,   min  {  c  1  2  ,  c  3  2  }  =  c  3  2  = w  ( 6 , 3 )  + w  ( 3 , 2 )  − w  ( 6 , 2 )   ;    l 2  = 3   and   i ( 3 ) = 6  . Therefore, point 3 will be included in tour   T 2   between points 6 and 2 (Figure 7).



Now,    T 2  =  ( 4 , 6 , 3 , 2 , 5 , 4 )    and the minimum costs   c  l  3  ,   l ∈ V \  T 2    are



   c 1 3   = {   c 1 2  , w  ( 6 , 1 )  + w  ( 1 , 3 )  − w  ( 6 , 3 )  , w  ( 3 , 1 )  + w  ( 1 , 2 )  − w  ( 3 , 2 )  =  c 1 2   .



Hence,   min  {  c 1 3  }  =  c 1 2  = w  ( 4 , 1 )  + w  ( 1 , 6 )  − w  ( 4 , 6 )   ;    l 3  = 1   and   = i ( 1 ) = 4  . Therefore, point 1 will be included in tour   T 3   between points 4 and 6 (Figure 8).



The resultant tour   T =  T 3  =  ( 4 , 1 , 6 , 3 , 2 , 5 , 4 )    includes all points from set V and Procedure construct_tour halts.





2.3. Phase 3


At Phase 3, we iteratively improve the feasible tour T delivered by Phase 2. We use two heuristic algorithms. The first one is called 2-Opt, which is a local search algorithm proposed by Croes [13]. The second one is based on our construct_tour procedure, named improve_tour. The current solution (initially, it is the tour delivered by Phase 2) is repeatedly improved first by 2-Opt-heuristics and then by Procedure improve_tour, until there is an improvement. Phase 3 halts if either the output of one of the heuristics has the same objective value as the input (by the construction, the output cannot be worse than the input) or the following condition is satisfied:


  C  (  T  i n   )  − C  (  T  o u t   )  ≤ d i  f  m i n   ,  



(12)




where   d i  f  m i n     is a constant (for instance, we let   d i  f  m i n   = 0.0001  ). Thus, initially, 2-Opt-heuristics runs with input T. Repeatedly, Condition (12) is verified for the the output of every call of each of the heuristics. If it is satisfied, Phase 3 halts; otherwise, for the output of the last called heuristics, the other one is invoked and the whole procedure is repeated; see Figure 9.



2.3.1. Procedure 2-Opt


Procedure 2-Opt is a local search algorithm improving feasible solution   T = (  t 1  ,  t 2  , ⋯ ,  t n  ,  t 1  )   (  n = | V |  ). It is well-known that the time complexity of this procedure is   O (  n 2  )  . For the completeness of our presentation, we give a formal description of this procedure in Table 5.



The result of a local replacement carried out by the procedure is represented schematically in the Figure 10).




2.3.2. Procedure improve_tour


We also use our algorithm construct_tour to improve a feasible solution   T = (  t 1  ,  t 2  , ⋯ ,  t n  ,  t 1  )  ,   n = | V |  . Iteratively, point   t  i + 1   ,   1 ≤ i < n  , is removed from the tour T and is reinserted by a call of procedure construct_tour   ( V , T \  {  t  i + 1   }  )  . If a removed point gets reinserted in the same position, then   i : = i + 1   and the procedure continues until   i ≤ n   (see Table 6).



Figure 11 illustrates the iterative improvement in the cost of the solutions obtained at Phase 3 for a sample problem instance usa115475. The initial solution   T 0   of Phase 2 is iteratively improved as shown in the diagram.



Lemma 4.

The time complexity of the Procedure improve_tour is   O (  n 2  )   .





Proof of Lemma 4.

In lines 2–7, there is a while statement with   n − 1   repetitions. The call of Procedure construct_tour in line 5 yields the cost   O ( n )   since with   m = n − 1  ,   h = 1  ; see the proof of Lemma 3 (m is the number of points in the current partial tour). The lemma follows. □








3. Implementation and Results


CII-algorithm was coded in C++ and compiled in g++ on a server with processor 2x Intel Xeon E5-2650 0 @ 2.8 GHz (Cuernavaca, Mor., Mexico), 32 GB in RAM and Ubuntu 18.04 (bionic) operating system (we have used only one CPU in our experiments). We did not keep the cost matrix in computer memory, but we have rather calculated the costs using the coordinates of the points. This does not increase the computation time too much and saves considerably the required computer memory.



We have tested the performance of CII-algorithm for 85 benchmark instances from TSPLIB [16] library and for 135 benchmark instances from TSP Test Data [17] library. The detailed results are presented in the Appendix. In our tables, parameter “Error” specifies the approximation factor of algorithm H compared to cost of the best known solution (C(BKS)):


  E r r o  r H  =    C  ( B K S )  − C  (  T H  )    C ( B K S )    100 % .  



(13)







In Table 7 below, we give the data on the average performance of our heuristics. The average error percentage of our heuristics is calculated using Formula (13). It shows, for each group of instances, the average error of the solutions delivered by Phase 2 and, at Phase 3, the number of cycles at Phase 3 and the average decrease in the cost of the solution decreased at Phase 3 compared to that Phase 3.



In the diagrams below (on the left hand-side), we illustrate the dependence of the approximation given by our algorithm on the size of the tested instances, and the dependence of the execution time of our algorithm on the size of the instances (right hand-side diagrams). We classify the tested instance into three groups: the small ones (from 1 to 199 points in Figure 12), the middle-sized ones (from 200 to 9999 points in Figure 13), and large instances (from 10,000 to 250,000 in Figure 14). We do not include the data for the largest two problem instances lra498378 and lrb744710 because of the visualization being technically complicated. The error for these instances is 12.5% and 15.9%, respectively, and the CPU time was limited to two weeks for both instances. As we can see, at Phase 3, there is an improvement in the quality of the solutions delivered by Phase 2.



Table 8 shows the summary of the comparison statistics of the solutions delivered by our algorithm CII with the solutions obtained by the heuristics that we have mentioned in the introduction (namely, DFACO [10], ACO-3Opt [10], ESACO [7], PACO-3Opt [8], DPIO [12], ACO-RPMM [9], Partial ACO [6], and PRNN [11]). We may observe in Table 9 that algorithm CII has attained an improved approximation for 17 instances. At the same time, in terms of the execution time, our heuristic dominates the other heuristics.



In the Table 9, we specify the problem instances for which our algorithm provided a better relative error than some of the earlier cited algorithms.



In terms of the CPU time comparison, see Table 10.



In the diagram below (Figure 15), we illustrate the dependence of the memory used by our algorithm of all tested instances.




4. Conclusions and Future Work


We have presented a simple, easily implementable and fast heuristic algorithm for the Euclidean traveling salesman problem that solves both small and large scale instances with an acceptable approximation and consumes a little computer memory. Since the algorithm uses simple geometric calculations, it is easily implementable. The algorithm is fast, the first two phases run in time   O (  n 2  )  , whereas the number of the improvement repetitions in the third phase, in practice, is not large. The first two phases might be used independently from the third phase, for instance, for the generation of an initial tour in more complex loop improvement heuristics. The quality of the solution delivered already by Phase 2 is acceptable and is expected to greatly outperform that of a random solution used normally to initiate meta-heuristic algorithms. We have implemented NN (Nearest Neighborhood) heuristics and run the code for the benchmark instances (the initial vertex for NN heuristic was selected randomly). Phase 2 gave essentially better results. In average, for the tested 135 instances (6 large, 32 Medium and 97 small ones), the difference between the approximation factor obtained by the procedure of Phase 2 and that of Nearest Neighbor heuristic was   9.65 %   (the average error of Phase 2 was 16.89% and that of NN was 26.55%, whereas the standard deviations were similar, 0.05% and 0.04%, respectively). As for the overall algorithm, it uses a negligible computer memory. Although for most of the tested benchmark instances it did not improve the best known results, the execution time of our heuristic, on average, was better than the earlier reported best known times. For future work, we intend to create a more powerful, yet more complex, CII-algorithm by augmenting each of the three phases of our algorithm with alternative ways for the creation of the initial tour and alternative insertion and improvement procedures.







Author Contributions


Conceptualization, N.V. and J.M.S.; Methodology, V.P.-V.; Validation, N.V.; Formal Analysis, N.V. and J.M.S.; Investigation, V.P.-V.; Resources, UAEMor administrated by J.A.H.; Writing—original draft preparation, V.P.-V.; Writing—review and editing, N.V.; Visualization, V.P.-V. and N.V.; Supervision, N.V.; Project administration, N.V.; All authors have read and agreed to the published version of the manuscript.




Funding


This research received no external funding.




Conflicts of Interest


The authors declare no conflict of interest.





Appendix A


In the table below (Table A1), we give some details on the earlier mentioned heuristics with which we compare our results (the entries in the column “Runs” specify the number of the reported runs of the corresponding heuristic).
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Table A1. Heuristics used to compare the CII-algorithm.






Table A1. Heuristics used to compare the CII-algorithm.





	Heuristic Id
	Heuristic Name
	Number of Reported Instances
	Runs





	ACO-RPMM [9]
	ACO - Restricted Pheromone Matrix Method
	6 Large
	10



	Partial ACO [6]
	Partial ACO
	4 Large and 5 Small
	100



	DFACO [10]
	Dynamic Flying ACO
	30 Small
	100



	ACO-3Opt [10]
	ACO-3Opt
	30 Small
	100



	DPIO [12]
	Discrete Pigeon-inspired optimization with Metropolis acceptance
	1 Large, 6 Medium and 28 Small
	25



	PACO-3Opt [8]
	Parallel Cooperative Hybrid Algorithm ACO
	21 Small
	20



	ESACO [7]
	Effective Strategies + ACO
	5 Medium and 17 Small
	20



	PRNN [11]
	Parallel Repetitive Nearest Neighbor
	3 Medium and 9 Small
	   n = | V |   



	NN
	Nearest Neighbor Algorithm
	4 Large, 25 Medium and 61 Small
	1








The next table (Table A2) discloses the headings of our tables.
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Table A2. Description of the headings of Table A3–Table A6.






Table A2. Description of the headings of Table A3–Table A6.





	Header
	Header Description





	   | V |   
	the number of vertices in the instance



	Opt?
	“yes” if Best Known Solution (BKS) is optimal, “no” otherwise



	   C ( B K S )   
	the cost of BKS



	   C ( T )   
	Cost of the solution constructed by CII heuristic



	RAM
	RAM used by CII heuristics



	#
	the number of cycles at Phase 3 of CII heuristic



	Error
	as defined in Formula (13)



	    C  a v g    (  T H  )    
	the average cost of the solution obtained by heuristic H



	Heuristic Id
	nomenclature used in Table A1



	Time
	the processing time of a heuristic



	ms, s, m, h, d
	time units for milliseconds, seconds, minutes, hours and days respectively.








In the tables below, each line corresponds to a particular benchmark instance. For each of these instances, we indicate the performance of Phase 2 and Phase 3, separately, and that of the other heuristics reporting the results for that instance. In addition, 85 benchmark instances were taken from TSPLIB [16] and 135 instances are from TSP Test Data [17] libraries. Table A3, Table A4, and Table A6 include the earlier known results.



In some lines of our tables (e.g., line 1, Table A5), a slight difference in the approximation errors of our algorithm and those of the algorithms from the “Results for National TSP Benchmarks" table can be seen due to the way the distances in the obtained solutions are represented in our algorithm (we do not round the distances represented as decimal numbers, whereas the distances in the best known solutions are rounded).
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Table A3. Results for TSPLIB benchmarks.






Table A3. Results for TSPLIB benchmarks.





	
Instance

	
CII Heuristic (Phase 2)

	
CII Heuristic (Phase 3)

	
Other Heuristics




	

	
V

	
Opt?

	
    C ( BKS )    

	
    C ( T )    

	
    Error CII    

	
Time

	
    C ( T )    

	
    Error CII    

	
Time

	
RAM

	
#

	
     C min   (  T H  )     

	
    Error H    

	
Time

	
Heuristic Id






	
eil51

	
51

	
yes

	
426

	
454

	
6.6%

	
0.4 ms

	
454

	
6.6%

	
1.0 ms

	
0.5 MiB

	
1

	
426

	
0.0%

	
1.0 s

	
DFACO




	

	

	

	

	

	

	

	

	

	

	

	

	
426

	
0.0%

	
1.0 s

	
ACO-3Opt




	

	

	

	

	

	

	

	

	

	

	

	

	
426

	
0.0%

	
1.1 s

	
ESACO




	
berlin52

	
52

	
yes

	
7542

	
8058

	
6.8%

	
1.1 ms

	
8058

	
6.8%

	
4.5 ms

	
0.6 MiB

	
3

	
7542

	
0.0%

	
1.0 s

	
DFACO




	

	

	

	

	

	

	

	

	

	

	

	

	
7542

	
0.0%

	
1.0 s

	
ACO-3Opt




	
st70

	
70

	
yes

	
675

	
710

	
5.2%

	
0.6 ms

	
701

	
3.8%

	
11.1 ms

	
0.6 MiB

	
3

	
826

	
22.3%

	
0.4 ms

	
NN




	
eil76

	
76

	
yes

	
538

	
576

	
7.0%

	
0.7 ms

	
556

	
3.4%

	
2.2 ms

	
0.6 MiB

	
3

	
538

	
0.0%

	
3.0 s

	
DFACO




	

	

	

	

	

	

	

	

	

	

	

	

	
538

	
0.0%

	
3.0 s

	
ACO-3Opt




	

	

	

	

	

	

	

	

	

	

	

	

	
538

	
0.0%

	
1.4 s

	
ESACO




	
pr76

	
76

	
yes

	
108,159

	
114,808

	
6.1%

	
0.7 ms

	
112,911

	
4.4%

	
3.0 ms

	
0.6 MiB

	
4

	
148,348

	
37.2%

	
0.5 ms

	
NN




	
rat99

	
99

	
yes

	
1211

	
1294

	
6.9%

	
1.0 ms

	
1230

	
1.5%

	
9.4 ms

	
0.6 MiB

	
3

	
1442

	
19.1%

	
0.8 ms

	
NN




	
kroA100

	
100

	
yes

	
21,282

	
23,050

	
8.3%

	
1.1 ms

	
21,443

	
0.8%

	
3.5 ms

	
0.6 MiB

	
3

	
21,282

	
0.0%

	
2.0 s

	
DFACO




	

	

	

	

	

	

	

	

	

	

	

	

	
21,282

	
0.0%

	
2.0 s

	
ACO-3Opt




	

	

	

	

	

	

	

	

	

	

	

	

	
21,282

	
0.0%

	
2.6 s

	
ESACO




	
kroB100

	
100

	
yes

	
22,141

	
23,247

	
5.0%

	
1.1 ms

	
22,716

	
2.6%

	
3.3 ms

	
0.6 MiB

	
3

	
22,141

	
0.0%

	
2.0 s

	
DFACO




	

	

	

	

	

	

	

	

	

	

	

	

	
22,141

	
0.0%

	
2.0 s

	
ACO-3Opt




	
kroC100

	
100

	
yes

	
20,749

	
21,632

	
4.3%

	
1.1 ms

	
20,922

	
0.8%

	
3.8 ms

	
0.6 MiB

	
3

	
20,749

	
0.0%

	
2.0 s

	
DFACO




	

	

	

	

	

	

	

	

	

	

	

	

	
20,749

	
0.0%

	
2.0 s

	
ACO-3Opt




	
kroD100

	
100

	
yes

	
21,294

	
21,712

	
2.0%

	
1.1 ms

	
21,582

	
1.4%

	
3.4 ms

	
0.6 MiB

	
3

	
21,294

	
0.0%

	
3.0 s

	
DFACO




	

	

	

	

	

	

	

	

	

	

	

	

	
21,294

	
0.0%

	
3.0 s

	
ACO-3Opt




	
kroE100

	
100

	
yes

	
22,068

	
22,870

	
3.6%

	
1.0 ms

	
22,528

	
2.1%

	
8.3 ms

	
0.6 MiB

	
3

	
22,068

	
0.0%

	
2.0 s

	
DFACO




	

	

	

	

	

	

	

	

	

	

	

	

	
22,068

	
0.0%

	
2.0 s

	
ACO-3Opt




	
rd100

	
100

	
yes

	
7910

	
8465

	
7.0%

	
1.2 ms

	
8245

	
4.2%

	
3.8 ms

	
0.6 MiB

	
3

	
7910

	
0.0%

	
2.0 s

	
DFACO




	

	

	

	

	

	

	

	

	

	

	

	

	
7910

	
0.0%

	
2.0 s

	
ACO-3Opt




	
eil101

	
101

	
yes

	
629

	
679

	
7.9%

	
1.1 ms

	
666

	
5.9%

	
19.5 ms

	
0.6 MiB

	
3

	
629

	
0.0%

	
12.0 s

	
DFACO




	

	

	

	

	

	

	

	

	

	

	

	

	
629

	
0.0%

	
10.0 s

	
ACO-3Opt




	
lin105

	
105

	
yes

	
14,379

	
14,913

	
3.7%

	
1.2 ms

	
14,440

	
0.4%

	
3.8 ms

	
0.6 MiB

	
3

	
14,379

	
0.0%

	
2.0 s

	
DFACO




	

	

	

	

	

	

	

	

	

	

	

	

	
14,379

	
0.0%

	
2.0 s

	
ACO-3Opt




	

	

	

	

	

	

	

	

	

	

	

	

	
14,379

	
0.0%

	
2.0 s

	
ESACO




	
pr107

	
107

	
yes

	
44,303

	
45,730

	
3.2%

	
1.1 ms

	
45,262

	
2.2%

	
18.1 ms

	
0.6 MiB

	
5

	
54,121

	
22.2%

	
0.9 ms

	
NN




	
pr124

	
124

	
yes

	
59,030

	
62,193

	
5.4%

	
1.4 ms

	
60,055

	
1.7%

	
5.3 ms

	
0.6 MiB

	
3

	
73,008

	
23.7%

	
1.3 ms

	
NN




	
bier127

	
127

	
yes

	
118,282

	
121,544

	
2.8%

	
5.4 ms

	
121,544

	
2.8%

	
5.6 ms

	
0.6 MiB

	
3

	
118,282

	
0.0%

	
47.0 s

	
DFACO




	

	

	

	

	

	

	

	

	

	

	

	

	
118,282

	
0.0%

	
56.0 s

	
ACO-3Opt




	
ch130

	
130

	
yes

	
6110

	
6676

	
9.3%

	
1.7 ms

	
6190

	
1.3%

	
27.9 ms

	
0.6 MiB

	
9

	
6110

	
0.0%

	
13.0 s

	
DFACO




	

	

	

	

	

	

	

	

	

	

	

	

	
6110

	
0.0%

	
16.0 s

	
ACO-3Opt




	
pr136

	
136

	
yes

	
96,772

	
102,934

	
6.4%

	
1.7 ms

	
98,711

	
2.0%

	
9.9 ms

	
0.6 MiB

	
5

	
125,458

	
29.6%

	
1.2 ms

	
NN




	
pr144

	
144

	
yes

	
58,537

	
60,625

	
3.6%

	
2.1 ms

	
59,902

	
2.3%

	
6.8 ms

	
0.6 MiB

	
3

	
64,886

	
10.8%

	
1.4 ms

	
NN




	
ch150

	
150

	
yes

	
6528

	
7038

	
7.8%

	
2.1 ms

	
6746

	
3.3%

	
11.5 ms

	
0.6 MiB

	
3

	
6,528

	
0.0%

	
24.0 s

	
DFACO




	

	

	

	

	

	

	

	

	

	

	

	

	
6528

	
0.0%

	
17.0 s

	
ACO-3Opt




	
kroA150

	
150

	
yes

	
26,524

	
28,814

	
8.6%

	
2.2 ms

	
27,230

	
2.7%

	
10.2 ms

	
0.6 MiB

	
5

	
26,524

	
0.0%

	
57.0 s

	
DFACO




	

	

	

	

	

	

	

	

	

	

	

	

	
26,524

	
0.0%

	
1.4 m

	
ACO-3Opt




	
kroB150

	
150

	
yes

	
26,130

	
27,476

	
5.2%

	
2.2 ms

	
26,399

	
1.0%

	
26.4 ms

	
0.6 MiB

	
5

	
26,130

	
0.0%

	
7.0 s

	
DFACO




	

	

	

	

	

	

	

	

	

	

	

	

	
26,130

	
0.0%

	
9.0 s

	
ACO-3Opt




	
pr152

	
152

	
yes

	
73,682

	
76,952

	
4.4%

	
2.3 ms

	
74,605

	
1.3%

	
19.0 ms

	
0.6 MiB

	
5

	
86,906

	
17.9%

	
1.4 ms

	




	
u159

	
159

	
yes

	
42,080

	
47,591

	
13.1%

	
2.6 ms

	
46,875

	
11.4%

	
15.7 ms

	
0.6 MiB

	
3

	
53,918

	
28.1%

	
1.6 ms

	
NN




	
rat195

	
195

	
yes

	
2323

	
2569

	
10.6%

	
3.7 ms

	
2485

	
7.0%

	
16.2 ms

	
0.6 MiB

	
4

	
2826

	
21.7%

	
2.0 ms

	
NN




	
d198

	
198

	
yes

	
15,780

	
16,862

	
6.9%

	
3.9 ms

	
16,119

	
2.1%

	
32.6 ms

	
0.6 MiB

	
4

	
15,780

	
0.0%

	
6.5 s

	
ESACO




	
kroA200

	
200

	
yes

	
29,368

	
31,792

	
8.3%

	
3.9 ms

	
30,767

	
4.8%

	
17.5 ms

	
0.6 MiB

	
5

	
29,368

	
0.0%

	
2.8 m

	
DFACO




	

	

	

	

	

	

	

	

	

	

	

	

	
29,379

	
0.04%

	
3.5 m

	
ACO-3Opt




	

	

	

	

	

	

	

	

	

	

	

	

	
29,368

	
0.0%

	
4.7 s

	
ESACO




	
kroB200

	
200

	
yes

	
29,437

	
32,123

	
9.1%

	
3.7 ms

	
30,631

	
4.1%

	
11.8 ms

	
0.6 MiB

	
3

	
29,442

	
0.02%

	
3.1 m

	
DFACO




	

	

	

	

	

	

	

	

	

	

	

	

	
29,443

	
0.02%

	
2.3 m

	
ACO-3Opt




	
ts225

	
225

	
yes

	
126,643

	
157,163

	
24.1%

	
4.5 ms

	
132,803

	
4.9%

	
30.6 ms

	
0.6 MiB

	
7

	
151,685

	
19.8%

	
2.5 ms

	
NN




	
tsp225

	
225

	
yes

	
3916

	
4442

	
13.4%

	
4.9 ms

	
4183

	
6.8%

	
22.9 ms

	
0.6 MiB

	
5

	
4733

	
20.9%

	
2.7 ms

	
NN




	
pr226

	
226

	
yes

	
80,369

	
83,637

	
4.1%

	
4.8 ms

	
82,151

	
2.2%

	
18.2 ms

	
0.6 MiB

	
3

	
94,258

	
17.3%

	
2.5 ms

	




	
gil262

	
262

	
yes

	
2378

	
2681

	
12.8%

	
6.5 ms

	
2539

	
6.8%

	
45.4 ms

	
0.6 MiB

	
6

	
3102

	
30.5%

	
3.4 ms

	
NN




	
pr264

	
264

	
yes

	
49,135

	
53,416

	
8.7%

	
6.4 ms

	
50,402

	
2.6%

	
41.4 ms

	
0.6 MiB

	
5

	
58,615

	
19.3%

	
3.6 ms

	
NN




	
a280

	
280

	
yes

	
2579

	
2686

	
4.1%

	
33.6

	
ms 2686

	
4.1%

	
52.9 ms

	
0.6 MiB

	
5

	
2579

	
0.0%

	
4.5 s

	
ESACO




	
pr299

	
299

	
yes

	
48,191

	
52,912

	
9.8%

	
8.1 ms

	
50,225

	
4.2%

	
43.6 ms

	
0.6 MiB

	
5

	
63,254

	
31.3%

	
4.3 ms

	
NN




	
lin318

	
318

	
yes

	
42,029

	
46,904

	
11.6%

	
9.4 ms

	
45,063

	
7.2%

	
38.8 ms

	
0.6 MiB

	
4

	
42,228

	
0.5%

	
6.4 m

	
DFACO




	

	

	

	

	

	

	

	

	

	

	

	

	
42,244

	
0.5%

	
5.8 m

	
ACO-3Opt




	

	

	

	

	

	

	

	

	

	

	

	

	
42,054

	
0.06%

	
10.2 s

	
ESACO




	
linhp318

	
318

	
yes

	
41,345

	
46,904

	
13.4%

	
9.4 ms

	
45,063

	
9.0%

	
37.3 ms

	
0.6 MiB

	
4

	
50,299

	
21.7%

	
5.1 ms

	
NN




	
rd400

	
400

	
yes

	
15,281

	
17,146

	
12.2%

	
14.7 ms

	
16,158

	
5.7%

	
92.8 ms

	
0.6 MiB

	
6

	
15,384

	
0.7%

	
2.2 m

	
PACO-3Opt




	

	

	

	

	

	

	

	

	

	

	

	

	
15,614

	
2.2%

	
24.9 m

	
DFACO




	
fl417

	
417

	
yes

	
11,861

	
12,680

	
6.9%

	
14.6 ms

	
12,295

	
3.7%

	
119 ms

	
0.6 MiB

	
8

	
11,880

	
0.2%

	
1.6 m

	
PACO-3Opt




	

	

	

	

	

	

	

	

	

	

	

	

	
11,987

	
1.1%

	
34.1 m

	
DFACO




	
pr439

	
439

	
yes

	
107,217

	
120,679

	
12.6%

	
17.8 ms

	
112,531

	
5.0%

	
66.7 ms

	
0.6 MiB

	
3

	
107,516

	
0.3%

	
2.4 m

	
PACO-3Opt




	

	

	

	

	

	

	

	

	

	

	

	

	
108,702

	
1.4%

	
35.5 m

	
DFACO




	
pcb442

	
442

	
yes

	
50,778

	
58,746

	
15.7%

	
17.7 ms

	
53,275

	
4.9%

	
126 ms

	
0.7 MiB

	
7

	
51,047

	
0.5%

	
2.2 m

	
PACO-3Opt




	

	

	

	

	

	

	

	

	

	

	

	

	
52,202

	
2.8%

	
34.8 m

	
DFACO




	

	

	

	

	

	

	

	

	

	

	

	

	
50,804

	
0.05%

	
11.5 s

	
ESACO




	
d493

	
493

	
yes

	
35,002

	
39,050

	
11.6%

	
21.8 ms

	
37,045

	
5.8%

	
129 ms

	
0.6 MiB

	
5

	
35,266

	
0.8%

	
2.3 m

	
PACO-3Opt




	

	

	

	

	

	

	

	

	

	

	

	

	
35,841

	
2.4%

	
52.9 m

	
DFACO




	
u574

	
574

	
yes

	
36,905

	
42,435

	
15.0%

	
29.7 ms

	
39,355

	
6.6%

	
247 ms

	
0.6 MiB

	
9

	
37,367

	
1.3%

	
1.9 m

	
PACO-3Opt




	

	

	

	

	

	

	

	

	

	

	

	

	
38,031

	
3.0%

	
1.5 h

	
DFACO




	
rat575

	
575

	
yes

	
6773

	
7692

	
13.6%

	
29.4 ms

	
7215

	
6.5%

	
231 ms

	
0.7 MiB

	
8

	
7012

	
3.5%

	
1.4 h

	
PACO-3Opt




	
p654

	
654

	
yes

	
34,643

	
37,542

	
8.4%

	
37.6 ms

	
36,441

	
5.2%

	
179 ms

	
0.6 MiB

	
5

	
34,741

	
0.3%

	
1.7 m

	
DFACO




	

	

	

	

	

	

	

	

	

	

	

	

	
35,075

	
1.2%

	
2.5 h

	
PACO-3Opt




	
d657

	
657

	
yes

	
48,912

	
56,268

	
15.0%

	
36.7 ms

	
51,553

	
5.4%

	
265 ms

	
0.6 MiB

	
7

	
49,463

	
1.1%

	
2.3 m

	
DFACO




	

	

	

	

	

	

	

	

	

	

	

	

	
50,277

	
2.8%

	
2.4 h

	
PACO-3Opt




	
u724

	
724

	
yes

	
41,910

	
48,198

	
15.0%

	
60.9 ms

	
44,748

	
6.8%

	
264 ms

	
0.7 MiB

	
6

	
42,438

	
1.3%

	
2.3 m

	
DFACO




	

	

	

	

	

	

	

	

	

	

	

	

	
43,122

	
2.9%

	
3.2 h

	
PACO-3Opt




	
rat783

	
783

	
yes

	
8806

	
10,218

	
16.0%

	
54.1 ms

	
9454

	
7.4%

	
332 ms

	
0.7 MiB

	
6

	
10,492

	
19.1%

	
2.5 m

	
DFACO




	

	

	

	

	

	

	

	

	

	

	

	

	
10,525

	
19.5%

	
15.4 m

	
ACO-3Opt




	

	

	

	

	

	

	

	

	

	

	

	

	
9127

	
3.6%

	
4.0 h

	
PACO-3Opt




	

	

	

	

	

	

	

	

	

	

	

	

	
8810

	
0.04%

	
22.6 s

	
ESACO




	
dsj1000

	
1000

	
yes

	
18,659,688

	
21,836,514

	
17.0%

	
83.6 ms

	
20,225,584

	
8.4%

	
460 ms

	
0.7 MiB

	
5

	
18,732,088

	
0.4%

	
16.6 s

	
DPIO




	
dsj1000ceil

	
1000

	
yes

	
18,660,188

	
21,836,514

	
17.0%

	
83.5 ms

	
20,225,584

	
8.4%

	
452 ms

	
0.6 MiB

	
5

	
23,813,050

	
27.6%

	
39 ms

	
NN




	
pr1002

	
1002

	
yes

	
259,045

	
295,879

	
14.2%

	
87.7 ms

	
276,122

	
6.6%

	
744 ms

	
0.7 MiB

	
5

	
260,426

	
0.5%

	
14.3 s

	
DPIO




	

	

	

	

	

	

	

	

	

	

	

	

	
259,509

	
0.2%

	
35.8 s

	
ESACO




	

	

	

	

	

	

	

	

	

	

	

	

	
260,366

	
0.5%

	
14.1 s

	
DPIO




	
u1060

	
1060

	
yes

	
224,094

	
261,093

	
16.5%

	
99.5 ms

	
239,705

	
7.0%

	
1.0 s

	
0.7 MiB

	
11

	
224,932

	
0.4%

	
15.3 s

	
DPIO




	
vm1084

	
1084

	
yes

	
239,297

	
275,989

	
15.3%

	
104 ms

	
257,399

	
7.6%

	
901 ms

	
0.6 MiB

	
9

	
240,079

	
0.3%

	
17.4 s

	
DPIO




	
pcb1173

	
1173

	
yes

	
56,892

	
67,497

	
18.6%

	
124 ms

	
60,792

	
6.9%

	
775 ms

	
0.7 MiB

	
7

	
57,243

	
0.6%

	
17.8 s

	
DPIO




	
d1291

	
1291

	
yes

	
50,801

	
58,230

	
14.6%

	
136 ms

	
54,285

	
6.9%

	
927 ms

	
0.7 MiB

	
7

	
51,459

	
1.3%

	
19.4 s

	
DPIO




	
rl1304

	
1304

	
yes

	
252,948

	
302,661

	
19.7%

	
148 ms

	
277,193

	
9.6%

	
1.2 s

	
0.7 MiB

	
9

	
253,740

	
0.3%

	
21.5 s

	
DPIO




	
rl1323

	
1323

	
yes

	
270,199

	
322,964

	
19.5%

	
157 ms

	
288,501

	
6.8%

	
1.3 s

	
0.7 MiB

	
9

	
273,368

	
1.2%

	
38.1 m

	
DFACO




	

	

	

	

	

	

	

	

	

	

	

	

	
273,970

	
1.4%

	
37.8 m

	
ACO-3Opt




	

	

	

	

	

	

	

	

	

	

	

	

	
271,245

	
0.4%

	
22.2 s

	
ACO-3Opt




	

	

	

	

	

	

	

	

	

	

	

	

	
271,301

	
0.4%

	
22.0 s

	
DPIO




	
nrw1379

	
1379

	
yes

	
56,638

	
64,925

	
14.6%

	
168 ms

	
59,905

	
5.8%

	
1.2 s

	
0.7 MiB

	
8

	
56,932

	
0.5%

	
23.2 s

	
DPIO




	
fl1400

	
1400

	
yes

	
20,127

	
21,800

	
8.3%

	
162 ms

	
21,071

	
4.7%

	
1.8 s

	
0.7 MiB

	
10

	
20,301

	
0.9%

	
40.9 m

	
DFACO




	

	

	

	

	

	

	

	

	

	

	

	

	
20,292

	
0.8%

	
41.2 m

	
ACO-3Opt




	

	

	

	

	

	

	

	

	

	

	

	

	
20,342

	
1.1%

	
24.6 s

	
ACO-3Opt




	

	

	

	

	

	

	

	

	

	

	

	

	
20,211

	
0.4%

	
24.5 s

	
DPIO




	
u1432

	
1432

	
yes

	
152,970

	
171,179

	
11.9%

	
181 ms

	
160,260

	
4.8%

	
1.1 s

	
0.7 MiB

	
7

	
153,564

	
0.4%

	
23.9 s

	
DPIO




	
fl1577

	
1577

	
yes

	
22,249

	
25,513

	
14.7%

	
210 ms

	
24,518

	
10.2%

	
1.4 s

	
0.7 MiB

	
7

	
22,289

	
0.2%

	
25.3 s

	
DPIO




	

	

	

	

	

	

	

	

	

	

	

	

	
22,293

	
0.2%

	
46.4 s

	
ESACO




	
d1655

	
1655

	
yes

	
62,128

	
70,779

	
13.9%

	
225 ms

	
65,520

	
5.5%

	
1.5 s

	
0.7 MiB

	
7

	
63,708

	
2.5%

	
25.4 m

	
DFACO




	

	

	

	

	

	

	

	

	

	

	

	

	
63,722

	
2.6%

	
29.2 m

	
ACO-3Opt




	

	

	

	

	

	

	

	

	

	

	

	

	
62,769

	
1.0%

	
27.5 s

	
ACO-3Opt




	

	

	

	

	

	

	

	

	

	

	

	

	
62,357

	
0.4%

	
27.2 s

	
DPIO




	
vm1748

	
1748

	
yes

	
336,556

	
394,389

	
17.2%

	
267 ms

	
365,608

	
8.6%

	
2.0 s

	
0.7 MiB

	
7

	
338,118

	
0.5%

	
34.3 s

	
DPIO




	
u1817

	
1817

	
yes

	
57,201

	
65,783

	
15.0%

	
395 ms

	
61,453

	
7.4%

	
1.8 s

	
0.7 MiB

	
7

	
57,522

	
0.6%

	
30.3 s

	
DPIO




	
rl1889

	
1889

	
yes

	
316,536

	
376,715

	
19.0%

	
319 ms

	
344,514

	
8.8%

	
2.1 s

	
0.8 MiB

	
7

	
318,714

	
0.7%

	
36.6 s

	
DPIO




	
d2103

	
2103

	
yes

	
80,450

	
86,286

	
7.3%

	
373 ms

	
82,856

	
3.0%

	
2.5 s

	
0.7 MiB

	
7

	
80,567

	
0.1%

	
23.8 s

	
DPIO




	
u2152

	
2152

	
yes

	
64,253

	
75,216

	
17.1%

	
516 ms

	
68,766

	
7.0%

	
2.7 s

	
0.7 MiB

	
7

	
64,791

	
0.8%

	
25.9 s

	
DPIO




	
u2319

	
2319

	
yes

	
234,256

	
254,420

	
8.6%

	
501 ms

	
238,785

	
1.9%

	
3.1 s

	
0.7 MiB

	
7

	
236,158

	
0.8%

	
34.2 s

	
DPIO




	
pr2392

	
2392

	
yes

	
378,032

	
443,372

	
17.3%

	
495 ms

	
408,237

	
8.0%

	
3.0 s

	
0.7 MiB

	
6

	
380,346

	
0.6%

	
29.7 s

	
DPIO




	
pcb3038

	
3038

	
yes

	
137,694

	
160,909

	
16.9%

	
807 ms

	
146,378

	
6.3%

	
6.2 s

	
0.8 MiB

	
9

	
138,684

	
0.7%

	
43.5 s

	
DPIO




	
fl3795

	
3795

	
yes

	
28,772

	
33,002

	
14.7%

	
1.2 s

	
29,882

	
3.9%

	
35.6 s

	
0.9 MiB

	
34

	
29,209

	
1.5%

	
1.1 m

	
DPIO




	

	

	

	

	

	

	

	

	

	

	

	

	
28,883

	
0.4%

	
2.0 m

	
ESACO




	
fnl4461

	
4461

	
yes

	
182,566

	
211,064

	
15.6%

	
1.9 s

	
195,786

	
7.2%

	
11.1 s

	
0.9 MiB

	
7

	
184,560

	
1.1%

	
44.2 s

	
DPIO




	

	

	

	

	

	

	

	

	

	

	

	

	
183,446

	
0.5%

	
3.2 m

	
ESACO




	
rl5915

	
5915

	
yes

	
565,530

	
664,788

	
17.6%

	
3.1 s

	
605,687

	
7.1%

	
31.2 s

	
1.0 MiB

	
11

	
571,214

	
1.0%

	
1.1 m

	
DPIO




	

	

	

	

	

	

	

	

	

	

	

	

	
568,935

	
0.6%

	
3.6 m

	
ESACO




	
rl5934

	
5934

	
yes

	
556,045

	
666,295

	
19.8%

	
3.2 s

	
599,066

	
7.7%

	
25.8 s

	
1.0 MiB

	
9

	
561,878

	
1.0%

	
48.7 s

	
DPIO




	
pla7397

	
7397

	
yes

	
23,260,728

	
27,709,175

	
19.1%

	
4.4 s

	
25,075,678

	
7.8%

	
45.3 s

	
1.1 MiB

	
11

	
23,605,219

	
1.5%

	
1.8 m

	
DPIO




	

	

	

	

	

	

	

	

	

	

	

	

	
23,389,341

	
0.6%

	
3.6 m

	
ESACO




	
rl11849

	
11,849

	
yes

	
923,288

	
1,103,854

	
19.6%

	
12.4 s

	
994,606

	
7.7%

	
2.3 m

	
1.4 MiB

	
11

	
933,093

	
1.1%

	
5.0 m

	
DPIO




	

	

	

	

	

	

	

	

	

	

	

	

	
930,338

	
0.8%

	
9.6 m

	
ESACO




	
usa13509

	
13,509

	
yes

	
19,982,859

	
24,125,443

	
20.7%

	
16.2 s

	
21,907,190

	
9.6%

	
2.8 m

	
1.5 MiB

	
10

	
20,217,458

	
1.2%

	
4.5 m

	
DPIO




	

	

	

	

	

	

	

	

	

	

	

	

	
20,195,089

	
1.1%

	
15.2 m

	
ESACO




	
brd14051

	
14,051

	
yes

	
469,385

	
552,658

	
17.7%

	
15.9 s

	
506,668

	
7.9%

	
3.1 m

	
1.5 MiB

	
11

	
474,788

	
1.1%

	
5.1 m

	
DPIO




	

	

	

	

	

	

	

	

	

	

	

	

	
474,087

	
1.0%

	
11.4 m

	
ESACO




	
d15112

	
15,112

	
yes

	
1,573,084

	
1,847,377

	
17.4%

	
19.2 s

	
1,705,664

	
8.4%

	
3.6 m

	
1.6 MiB

	
11

	
1,588,563

	
1.0%

	
8.7 m

	
DPIO




	

	

	

	

	

	

	

	

	

	

	

	

	
1,589,288

	
1.0%

	
12.9 m

	
ESACO




	
d18512

	
18,512

	
yes

	
645,238

	
756,668

	
17.3%

	
28.1 s

	
696,542

	
8.0%

	
5.8 m

	
1.9 MiB

	
12

	
652,613

	
1.1%

	
8.3 m

	
DPIO




	

	

	

	

	

	

	

	

	

	

	

	

	
653,154

	
1.2%

	
11.4 m

	
ESACO




	
pla33810

	
33,810

	
yes

	
66,048,945

	
76,625,752

	
16.0%

	
1.6 m

	
69,626,380

	
5.4%

	
25.7 m

	
2.9 MiB

	
17

	
67,185,647

	
1.7%

	
21.0 m

	
DPIO




	
pla85900

	
85,900

	
yes

	
142,382,641

	
167,355,049

	
17.5%

	
10.5 m

	
149,546,776

	
5.0%

	
4.1 h

	
6.5 MiB

	
27

	
144,334,707

	
1.4%

	
1.4 h

	
DPIO
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Table A4. Results for Art TSP benchmarks.






Table A4. Results for Art TSP benchmarks.





	
Instance

	
CII Heuristic (Phase 2)

	
CII Heuristic (Phase 3)

	
Other Heuristics




	

	
V

	
Opt?

	
    C ( BKS )    

	
    C ( T )    

	
    Error CII    

	
Time

	
    C ( T )    

	
    Error CII    

	
Time

	
RAM

	
#

	
     C min   (  T H  )     

	
    Error H    

	
Time

	
Heuristic Id






	
mona-lisa

	
100,000

	
no

	
5,757,191

	
6,123,262

	
6.4%

	
14.4 m

	
5,951,462

	
3.4%

	
2.3 h

	
7.5 MiB

	
9

	
5,855,063

	
1.7%

	
1.4 h

	
ACO-RPMM




	
100K

	

	

	

	

	

	

	

	

	

	

	

	
6,070,958

	
5.5%

	
1.1 h

	
Partial ACO




	
vangogh

	
120,000

	
no

	
6,543,610

	
6,971,470

	
6.5%

	
20.8 m

	
6,773,421

	
3.5%

	
4.6 h

	
8.8 MiB

	
12

	
6,661,395

	
1.8%

	
1.9 h

	
ACO-RPMM




	
120K

	

	

	

	

	

	

	

	

	

	

	

	
6,924,448

	
5.8%

	
1.5 h

	
Partial ACO




	
venus

	
140,000

	
no

	
6,810,665

	
7,245,012

	
6.4%

	
28.0 m

	
7,043,702

	
3.4%

	
4.8 h

	
10.2 MiB

	
9

	
6,933,257

	
1.8%

	
2.6 h

	
ACO-RPMM




	
140K

	

	

	

	

	

	

	

	

	

	

	

	
7,206,365

	
5.8%

	
2.1 h

	
Partial ACO




	
pareja 160K

	
160,000

	
no

	
7,619,953

	
8,113,501

	
6.5%

	
37.3 m

	
7,888,641

	
3.5%

	
7.7 h

	
11.6 MiB

	
11

	
7,760,922

	
1.9%

	
3.5 h

	
ACO-RPMM




	
courbet 180K

	
180,000

	
no

	
7,888,733

	
8,439,701

	
7.0%

	
48.2 m

	
8,179,440

	
3.7%

	
10.1 h

	
13.0 MiB

	
11

	
8,038,619

	
1.9%

	
4.5 h

	
ACO-RPMM




	
earring

	
200,000

	
no

	
8,171,677

	
8,781,766

	
7.5%

	
58.7 m

	
8,493,724

	
3.9%

	
15.1 h

	
14.3 MiB

	
12

	
8,335,111

	
2.0%

	
6.0 h

	
ACO-RPMM




	
200K

	

	

	

	

	

	

	

	

	

	

	

	
8,760,038

	
7.2%

	
5.1 h

	
Partial ACO
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Table A5. Results for National TSP benchmarks.






Table A5. Results for National TSP benchmarks.





	
Instance

	
CII Heuristic (Phase 2)

	
CII Heuristic (Phase 3)

	
Other Heuristics




	

	
V

	
Opt?

	
    C ( BKS )    

	
    C ( T )    

	
    Error CII    

	
Time

	
    C ( T )    

	
    Error CII    

	
Time

	
RAM

	
#

	
     C min   (  T H  )     

	
    Error H    

	
Time

	
Heuristic Id






	
wi29

	
29

	
yes

	
27,603

	
27,739

	
0.5%

	
0.3 ms

	
27,601

	
0.0%

	
28.0 ms

	
0.6 MiB

	
3

	
35,474

	
28.5%

	
0.2 ms

	
NN




	
dj38

	
38

	
yes

	
6656

	
6863

	
3.1%

	
0.3 ms

	
6659

	
0.1%

	
11.2 ms

	
0.6 MiB

	
5

	
8165

	
22.7%

	
0.3 ms

	
NN




	
qa194

	
194

	
yes

	
9352

	
10,505

	
12.3%

	
3.8 ms

	
9886

	
5.7%

	
37.1 ms

	
0.6 MiB

	
7

	
12,481

	
33.5%

	
2.6 ms

	
NN




	
zi929

	
929

	
yes

	
95,345

	
110,187

	
15.6%

	
73.5 ms

	
100,842

	
5.8%

	
630 ms

	
0.7 MiB

	
8

	
119,685

	
25.5%

	
36.7 ms

	
NN




	
lu980

	
980

	
yes

	
11,340

	
12,834

	
13.2%

	
86.4 ms

	
12,077

	
6.5%

	
404 ms

	
0.6 MiB

	
5

	
14,284

	
26.0%

	
29.4 ms

	
NN




	
rw1621

	
1621

	
yes

	
26,051

	
30,315

	
16.4%

	
233 ms

	
28,771

	
10.4%

	
1.6 s

	
0.7 MiB

	
8

	
33,493

	
28.6%

	
71.5 ms

	
NN




	
mu1979

	
1979

	
yes

	
86,891

	
99,356

	
14.3%

	
350 ms

	
91,684

	
5.5%

	
3.8 s

	
0.8 MiB

	
10

	
113,362

	
30.5%

	
112 ms

	
NN




	
nu3496

	
3496

	
yes

	
96,132

	
111,981

	
16.5%

	
1.1 s

	
103,717

	
7.9%

	
9.2 s

	
0.8 MiB

	
10

	
121,713

	
26.6%

	
327 ms

	
NN




	
ca4663

	
4663

	
yes

	
1290319

	
1,557,923

	
20.7%

	
1.9 s

	
1,407,891

	
9.1%

	
18.2 s

	
0.9 MiB

	
10

	
1,637,468

	
26.9%

	
564 ms

	
NN




	
tz6117

	
6117

	
no

	
394,718

	
477,869

	
21.1%

	
3.5 s

	
433,784

	
9.9%

	
40.0 s

	
1 MiB

	
14

	
494,624

	
25.3%

	
843 ms

	
NN




	
eg7146

	
7146

	
no

	
172,386

	
198,566

	
15.2%

	
4.5 s

	
182,979

	
6.1%

	
57.9 s

	
1.1 MiB

	
14

	
219,365

	
27.3%

	
1.1 s

	
NN




	
ym7663

	
7663

	
yes

	
238,314

	
285,881

	
20.0%

	
5.0 s

	
259,780

	
9.0%

	
1.4 m

	
1.1 MiB

	
18

	
308,219

	
29.3%

	
1.1 s

	
NN




	
pm8079

	
8079

	
no

	
114,855

	
137,182

	
19.4%

	
5.7 s

	
126,746

	
10.4%

	
55.6 s

	
1.2 MiB

	
10

	
148,936

	
29.7%

	
1.2 s

	
NN




	
ei8246

	
8246

	
yes

	
206,171

	
248,695

	
20.6%

	
6.0 s

	
225,178

	
9.2%

	
1.0 m

	
1.1 MiB

	
11

	
254,553

	
23.5%

	
1.2 s

	
NN




	
ar9152

	
9152

	
no

	
837,479

	
1,014,041

	
21.1%

	
8.4 s

	
927,348

	
10.7%

	
1.2 m

	
1.2 MiB

	
10

	
1,063,376

	
27.0%

	
1.5 s

	
NN




	
ja9847

	
9847

	
yes

	
491,924

	
611,959

	
24.4%

	
8.7 s

	
544,411

	
10.7%

	
2.0 m

	
1.2 MiB

	
16

	
630,169

	
28.1%

	
1.9 s

	
NN




	
gr9882

	
9882

	
yes

	
300,899

	
356,753

	
18.6%

	
8.5 s

	
325,599

	
8.2%

	
1.8 m

	
1.3 MiB

	
14

	
395,267

	
31.4%

	
2.3 s

	
NN




	
kz9976

	
9976

	
no

	
1,061,881

	
1,298,405

	
22.3%

	
8.9 s

	
1,168,843

	
10.1%

	
1.6 m

	
1.3 MiB

	
12

	
1,344,845

	
26.6%

	
1.8 s

	
NN




	
fi10639

	
10639

	
yes

	
520,527

	
633,623

	
21.7%

	
9.8 s

	
574,001

	
10.3%

	
2.1 m

	
1.3 MiB

	
14

	
659,800

	
26.8%

	
2.0 s

	
NN




	
mo14185

	
14185

	
no

	
427,377

	
516,028

	
20.7%

	
17.3 s

	
465,202

	
8.9%

	
3.8 m

	
1.6 MiB

	
14

	
529,396

	
23.9%

	
4.6 s

	
NN




	
ho14473

	
14473

	
no

	
177,092

	
207,322

	
17.1%

	
18.5 s

	
193,672

	
9.4%

	
3.0 m

	
1.6 MiB

	
10

	
216,776

	
22.4%

	
4.0 s

	
NN




	
it16862

	
16862

	
yes

	
557315

	
670,706

	
20.3%

	
24.8 s

	
613,132

	
10.0%

	
4.8 m

	
1.7 MiB

	
12

	
706,420

	
26.8%

	
6.2 s

	
NN




	
vm22775

	
22775

	
yes

	
569,288

	
688,981

	
21.0%

	
44.3 s

	
617,703

	
8.5%

	
11.0 m

	
2.1 MiB

	
16

	
720,288

	
26.5%

	
9.9 s

	
NN




	
sw24978

	
24978

	
yes

	
855,597

	
1,042,499

	
21.8%

	
53.5 s

	
944,536

	
10.4%

	
10.2 m

	
2.3 MiB

	
12

	
1,073,993

	
25.5%

	
12.2 s

	
NN




	
bm33708

	
33708

	
no

	
959,289

	
1,151,420

	
20.0%

	
1.6 m

	
1,046,776

	
9.1%

	
22.1 m

	
2.9 MiB

	
14

	
1,209,682

	
26.1%

	
21.5 s

	
NN




	
ch71009

	
71009

	
no

	
4,566,506

	
5,475,575

	
19.9%

	
7.4 m

	
4,986,973

	
9.2%

	
1.7 h

	
5.5 MiB

	
14

	
5,629,331

	
23.3%

	
1.6 m

	
NN




	
usa115475

	
115475

	
no

	
6,204,999

	
7,492,272

	
20.7%

	
19.0 m

	
6,779,417

	
9.3%

	
4.3 h

	
8.5 MiB

	
13

	
7,691,402

	
24.0%

	
4.1 m

	
NN
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Table A6. Results for the VLSI TSP benchmark.






Table A6. Results for the VLSI TSP benchmark.





	
Instance

	
CII Heuristic (Phase 2)

	
CII Heuristic (Phase 3)

	
Other Heuristics




	

	
V

	
Opt?

	
    C ( BKS )    

	
    C ( T )    

	
    Error CII    

	
Time

	
    C ( T )    

	
    Error CII    

	
Time

	
RAM

	
#

	
     C min   (  T H  )     

	
    Error H    

	
Time

	
Heuristic Id






	
xqf131

	
131

	
yes

	
564

	
624

	
10.6%

	
1.8 ms

	
600

	
6.3%

	
16.4 ms

	
0.6 MiB

	
3

	
712

	
26.3%

	
1.0 ms

	
NN




	
xqg237

	
237

	
yes

	
1019

	
1166

	
14.4%

	
5.0 ms

	
1064

	
4.4%

	
31.9 ms

	
0.6 MiB

	
7

	
1325

	
30.0%

	
3.0 ms

	
NN




	
pma343

	
343

	
yes

	
1368

	
1490

	
8.9%

	
10.0 ms

	
1425

	
4.2%

	
58.9 ms

	
0.6 MiB

	
5

	
1846

	
35.5%

	
7.4 ms

	
NN




	
pka379

	
379

	
yes

	
1332

	
1422

	
6.8%

	
12.1 ms

	
1391

	
4.4%

	
66.4 ms

	
0.6 MiB

	
4

	
1606

	
20.6%

	
7.5 ms

	
NN




	
bcl380

	
380

	
yes

	
1621

	
1894

	
16.9%

	
12.4 ms

	
1781

	
9.9%

	
97.0 ms

	
0.6 MiB

	
6

	
2055

	
26.8%

	
6.6 ms

	
NN




	
pbl395

	
395

	
yes

	
1281

	
1432

	
11.8%

	
13.6 ms

	
1349

	
5.3%

	
95.9 ms

	
0.6 MiB

	
7

	
1581

	
23.5%

	
7.9 ms

	
NN




	
pbk411

	
411

	
yes

	
1343

	
1505

	
12.1%

	
14.4 ms

	
1431

	
6.6%

	
111 ms

	
0.6 MiB

	
7

	
1789

	
33.2%

	
7.7 ms

	
NN




	
pbn423

	
423

	
yes

	
1365

	
1573

	
15.2%

	
15.1 ms

	
1460

	
7.0%

	
77.1 ms

	
0.6 MiB

	
5

	
1811

	
32.6%

	
9.2 ms

	
NN




	
pbm436

	
436

	
yes

	
1443

	
1638

	
13.5%

	
16.4 ms

	
1565

	
8.4%

	
93.5 ms

	
0.6 MiB

	
5

	
1783

	
23.6%

	
9.0 ms

	
NN




	
xql662

	
662

	
yes

	
2513

	
2995

	
19.2%

	
36.4 ms

	
2742

	
9.1%

	
269 ms

	
0.6 MiB

	
8

	
3147

	
25.2%

	
19 ms

	
NN




	
rbx711

	
711

	
yes

	
3115

	
3612

	
16.0%

	
42.8 ms

	
3348

	
7.5%

	
312 ms

	
0.6 MiB

	
8

	
3748

	
20.3%

	
22 ms

	
NN




	
rbu737

	
737

	
yes

	
3314

	
3899

	
17.6%

	
45.0 ms

	
3557

	
7.3%

	
230 ms

	
0.6 MiB

	
5

	
4090

	
23.4%

	
24 ms

	
NN




	
dkg813

	
813

	
yes

	
3199

	
3763

	
17.6%

	
53.7 ms

	
3470

	
8.5%

	
369 ms

	
0.6 MiB

	
5

	
4126

	
29.0%

	
26 ms

	
NN




	
lim963

	
963

	
yes

	
2789

	
3199

	
14.7%

	
78.8 ms

	
2974

	
6.6%

	
929 ms

	
0.6 MiB

	
10

	
3583

	
28.5%

	
37 ms

	
NN




	
pbd984

	
984

	
yes

	
2797

	
3189

	
14.0%

	
80.8 ms

	
2950

	
5.5%

	
641 ms

	
0.6 MiB

	
9

	
3521

	
25.9%

	
36 ms

	
NN




	
xit1083

	
1083

	
yes

	
3558

	
4082

	
14.7%

	
98.8 ms

	
3800

	
6.8%

	
763 ms

	
0.7 MiB

	
8

	
4781

	
34.4%

	
42 ms

	
NN




	
dka1376

	
1376

	
yes

	
4666

	
5546

	
18.8%

	
167 ms

	
5082

	
8.9%

	
1.0 s

	
0.7 MiB

	
7

	
5924

	
27.0%

	
65 ms

	
NN




	
dca1389

	
1389

	
yes

	
5085

	
6045

	
18.9%

	
156 ms

	
5471

	
7.6%

	
1.0 s

	
0.7 MiB

	
7

	
6080

	
19.6%

	
‘NR’

	
PRNN




	
dja1436

	
1436

	
yes

	
5257

	
6236

	
18.6%

	
168 ms

	
5628

	
7.1%

	
1.3 s

	
0.7 MiB

	
8

	
6656

	
26.6%

	
72 ms

	
NN




	
icw1483

	
1483

	
yes

	
4416

	
5124

	
16.0%

	
180 ms

	
4761

	
7.8%

	
1.1 s

	
0.7 MiB

	
5

	
5572

	
26.2%

	
75 ms

	
NN




	
fra1488

	
1488

	
yes

	
4264

	
4728

	
10.9%

	
179 ms

	
4479

	
5.1%

	
1.6 s

	
0.6 MiB

	
8

	
5578

	
30.8%

	
76 ms

	
NN




	
rbv1583

	
1583

	
yes

	
5387

	
6207

	
15.2%

	
205 ms

	
5777

	
7.2%

	
2.2 s

	
0.7 MiB

	
11

	
6876

	
27.6%

	
80 ms

	
NN




	
rby1599

	
1599

	
yes

	
5533

	
6345

	
14.7%

	
215 ms

	
5999

	
8.4%

	
1.9 s

	
0.7 MiB

	
10

	
6809

	
23.1%

	
83 ms

	
NN




	
fnb1615

	
1615

	
yes

	
4956

	
5675

	
14.5%

	
213 ms

	
5259

	
6.1%

	
1.6 s

	
0.7 MiB

	
8

	
6377

	
28.7%

	
83 ms

	
NN




	
djc1785

	
1785

	
yes

	
6115

	
7225

	
18.2%

	
261 ms

	
6656

	
8.9%

	
2.1 s

	
0.7 MiB

	
9

	
7719

	
26.2%

	
103 ms

	
NN




	
dcc1911

	
1911

	
yes

	
6396

	
7484

	
17.0%

	
296 ms

	
6872

	
7.4%

	
2.0 s

	
0.7 MiB

	
7

	
8045

	
25.8%

	
116 ms

	
NN




	
dkd1973

	
1973

	
yes

	
6421

	
7280

	
13.4%

	
302 ms

	
6892

	
7.3%

	
2.1 s

	
0.7 MiB

	
7

	
8502

	
32.4%

	
119 ms

	
NN




	
djb2036

	
2036

	
yes

	
6197

	
7495

	
20.9%

	
337 ms

	
6819

	
10.0%

	
2.2 s

	
0.7 MiB

	
7

	
7645

	
23.4%

	
‘NR’

	
PRNN




	
dcb2086

	
2086

	
yes

	
6600

	
8066

	
22.2%

	
354 ms

	
7307

	
10.7%

	
2.9 s

	
0.7 MiB

	
9

	
8335

	
26.3%

	
124 ms

	
NN




	
bva2144

	
2144

	
yes

	
6304

	
7494

	
18.9%

	
362 ms

	
6870

	
9.0%

	
2.6 s

	
0.7 MiB

	
7

	
8264

	
31.1%

	
129 ms

	
NN




	
xqc2175

	
2175

	
yes

	
6830

	
8167

	
19.6%

	
386 ms

	
7453

	
9.1%

	
5.2 s

	
0.7 MiB

	
13

	
8291

	
21.4%

	
‘NR’

	
PRNN




	
bck2217

	
2217

	
yes

	
6764

	
8153

	
20.5%

	
398 ms

	
7408

	
9.5%

	
3.3 s

	
0.7 MiB

	
9

	
8515

	
25.9%

	
141 ms

	
NN




	
xpr2308

	
2308

	
yes

	
7219

	
8663

	
20.0%

	
434 ms

	
7837

	
8.6%

	
3.3 s

	
0.7 MiB

	
8

	
9130

	
26.5%

	
155 ms

	
NN




	
ley2323

	
2323

	
yes

	
8352

	
10,146

	
21.5%

	
439 ms

	
9014

	
7.9%

	
4.9 s

	
0.7 MiB

	
11

	
10,330

	
23.7%

	
148 ms

	
NN




	
dea2382

	
2382

	
yes

	
8017

	
9782

	
22.0%

	
455 ms

	
8726

	
8.8%

	
4.4 s

	
0.7 MiB

	
9

	
9962

	
24.3%

	
157 ms

	
NN




	
rbw2481

	
2481

	
yes

	
7724

	
9548

	
23.6%

	
495 ms

	
8511

	
10.2%

	
4.1 s

	
0.7 MiB

	
9

	
9867

	
27.7%

	
169 ms

	
NN




	
pds2566

	
2566

	
yes

	
7643

	
9100

	
19.1%

	
523 ms

	
8310

	
8.7%

	
4.2 s

	
0.8 MiB

	
8

	
9867

	
29.1%

	
190 ms

	
NN




	
mlt2597

	
2597

	
yes

	
8071

	
9850

	
22.0%

	
547 ms

	
8889

	
10.1%

	
5.0 s

	
0.8 MiB

	
10

	
10,295

	
27.6%

	
183 ms

	
NN




	
bch2762

	
2762

	
yes

	
8234

	
10,020

	
21.7%

	
614 ms

	
8934

	
8.5%

	
5.0 s

	
0.7 MiB

	
9

	
10,394

	
26.2%

	
205 ms

	
NN




	
irw2802

	
2802

	
yes

	
8423

	
10,044

	
19.2%

	
625 ms

	
9131

	
8.4%

	
5.9 s

	
0.7 MiB

	
9

	
11,087

	
31.6%

	
210 ms

	
NN




	
lsm2854

	
2854

	
yes

	
8014

	
9445

	
17.9%

	
658 ms

	
8753

	
9.2%

	
5.6 s

	
0.7 MiB

	
9

	
10,105

	
26.1%

	
218 ms

	
NN




	
dbj2924

	
2924

	
yes

	
10,128

	
12,069

	
19.2%

	
676 ms

	
10,922

	
7.8%

	
4.6 s

	
0.7 MiB

	
7

	
12,935

	
27.7%

	
229 ms

	
NN




	
xva2993

	
2993

	
yes

	
8492

	
9936

	
17.0%

	
719 ms

	
9226

	
8.6%

	
5.9 s

	
0.8 MiB

	
9

	
10,821

	
27.4%

	
237 ms

	
NN




	
pia3056

	
3056

	
yes

	
8258

	
9749

	
18.1%

	
757 ms

	
8918

	
8.0%

	
8.2 s

	
0.8 MiB

	
11

	
10,585

	
28.2%

	
245 ms

	
NN




	
dke3097

	
3097

	
yes

	
10,539

	
12,767

	
21.1%

	
766 ms

	
11,481

	
8.9%

	
5.1 s

	
0.8 MiB

	
7

	
3249

	
25.7%

	
247 ms

	
NN




	
lsn3119

	
3119

	
yes

	
9114

	
10,784

	
18.3%

	
803 ms

	
9895

	
8.6%

	
8.0 s

	
0.8 MiB

	
11

	
11,467

	
25.8%

	
260 ms

	
NN




	
lta3140

	
3140

	
yes

	
9517

	
11,160

	
17.3%

	
805 ms

	
10,330

	
8.5%

	
7.5 s

	
0.8 MiB

	
10

	
12,455

	
30.9%

	
260 ms

	
NN




	
fdp3256

	
3256

	
yes

	
10,008

	
11,661

	
16.5%

	
908 ms

	
10,749

	
7.4%

	
7.1 s

	
0.8 MiB

	
8

	
12,677

	
26.7%

	
276 ms

	
NN




	
beg3293

	
3293

	
yes

	
9772

	
11,693

	
19.7%

	
877 ms

	
10,598

	
8.5%

	
10.2 s

	
0.7 MiB

	
13

	
12,636

	
29.3%

	
283 ms

	
NN




	
dhb3386

	
3386

	
yes

	
11,137

	
13,349

	
19.9%

	
932 ms

	
12,082

	
8.5%

	
8.0 s

	
0.7 MiB

	
9

	
13,894

	
24.8%

	
302 ms

	
NN




	
fjs3649

	
3649

	
yes

	
9272

	
10,345

	
11.6%

	
1.1 s

	
9812

	
5.8%

	
7.3 s

	
0.7 MiB

	
7

	
12,786

	
37.9%

	
326 ms

	
NN




	
fjr3672

	
3672

	
yes

	
9601

	
10,854

	
13.1%

	
1.1 s

	
10,181

	
6.0%

	
8.7 s

	
0.7 MiB

	
8

	
12,840

	
33.7%

	
331 ms

	
NN




	
dlb3694

	
3694

	
yes

	
10,959

	
12,818

	
17.0%

	
1.2 s

	
11,763

	
7.3%

	
10.4 s

	
0.7 MiB

	
10

	
13,986

	
27.6%

	
344 ms

	
NN




	
ltb3729

	
3729

	
yes

	
11,821

	
13,874

	
17.4%

	
1.1 s

	
12,948

	
9.5%

	
10.3 s

	
0.7 MiB

	
9

	
15,259

	
29.1%

	
361 ms

	
NN




	
xqe3891

	
3891

	
yes

	
11,995

	
14,672

	
22.3%

	
1.3 s

	
13,153

	
9.7%

	
10.0 s

	
0.8 MiB

	
9

	
14,592

	
21.7%

	
‘NR’

	
PRNN




	
xua3937

	
3937

	
yes

	
11,239

	
13,412

	
19.3%

	
1.2 s

	
12,285

	
9.3%

	
13.3 s

	
0.8 MiB

	
11

	
14,520

	
29.2%

	
373 ms

	
NN




	
dkc3938

	
3938

	
yes

	
12,503

	
14,817

	
18.5%

	
1.3 s

	
13,619

	
8.9%

	
10.5 s

	
0.7 MiB

	
9

	
15,932

	
27.4%

	
396 ms

	
NN




	
dkf3954

	
3954

	
yes

	
12,538

	
14,939

	
19.1%

	
1.3 s

	
13,728

	
9.5%

	
11.6 s

	
0.8 MiB

	
10

	
15,679

	
25.1%

	
412 ms

	
NN




	
bgb4355

	
4355

	
yes

	
12,723

	
14,948

	
17.5%

	
1.5 s

	
13,789

	
8.4%

	
14.0 s

	
0.9 MiB

	
10

	
15,623

	
22.8%

	
‘NR’

	
PRNN




	
bgd4396

	
4396

	
yes

	
13,009

	
16,239

	
24.8%

	
1.6 s

	
14,385

	
10.6%

	
15.7 s

	
0.8 MiB

	
11

	
16,726

	
28.6%

	
472 ms

	
NN




	
frv4410

	
4410

	
yes

	
10,711

	
12,440

	
16.1%

	
1.5 s

	
11,587

	
8.2%

	
10.3 s

	
0.8 MiB

	
7

	
13,756

	
28.4%

	
518 ms

	
NN




	
bgf4475

	
4475

	
yes

	
13,221

	
15,989

	
20.9%

	
1.6 s

	
14,562

	
10.1%

	
22.6 s

	
0.8 MiB

	
15

	
16,439

	
24.3%

	
487 ms

	
NN




	
xqd4966

	
4966

	
yes

	
15,316

	
17,630

	
15.1%

	
2.0 s

	
16,545

	
8.0%

	
19.8 s

	
0.8 MiB

	
10

	
19,807

	
29.3%

	
571 ms

	
NN




	
fqm5087

	
5087

	
yes

	
13,029

	
14,877

	
14.2%

	
2.1 s

	
14,041

	
7.8%

	
18.1 s

	
0.8 MiB

	
9

	
17,554

	
34.7%

	
586 ms

	
NN




	
fea5557

	
5557

	
yes

	
15,445

	
18,171

	
17.6%

	
2.4 s

	
16,629

	
7.7%

	
30.4 s

	
0.9 MiB

	
13

	
19,738

	
27.8%

	
688 ms

	
NN




	
xsc6880

	
6880

	
yes

	
21,535

	
26,404

	
22.6%

	
3.9 s

	
23,704

	
10.1%

	
36.0 s

	
1.1 MiB

	
10

	
26,243

	
21.9%

	
‘NR’

	
PRNN




	
bnd7168

	
7168

	
yes

	
21,834

	
25,963

	
18.9%

	
4.1 s

	
23,848

	
9.2%

	
50.3 s

	
1.1 MiB

	
13

	
26,574

	
21.7%

	
‘NR’

	
PRNN




	
lap7454

	
7454

	
yes

	
19,535

	
23,107

	
18.3%

	
4.5 s

	
21,345

	
9.3%

	
50.7 s

	
1 MiB

	
12

	
24,184

	
23.8%

	
1.1 s

	
NN




	
ida8197

	
8197

	
yes

	
22,338

	
26,152

	
17.1%

	
5.4 s

	
23,954

	
7.2%

	
1.1 m

	
1.2 MiB

	
13

	
27,513

	
23.2%

	
‘NR’

	
PRNN




	
dga9698

	
9698

	
yes

	
27,724

	
33,533

	
21.0%

	
7.9 s

	
30,374

	
9.6%

	
1.4 m

	
1.3 MiB

	
12

	
33,564

	
21.1%

	
‘NR’

	
PRNN




	
xmc10150

	
10,150

	
yes

	
28,387

	
34,071

	
20.0%

	
8.8 s

	
31,124

	
9.6%

	
1.1 m

	
1.3 MiB

	
8

	
34,147

	
20.3%

	
‘NR’

	
PRNN




	
xvb13584

	
13,584

	
yes

	
37,083

	
44,129

	
19.0%

	
15.8 s

	
40,591

	
9.5%

	
2.6 m

	
1.5 MiB

	
11

	
45,835

	
23.6%

	
‘NR’

	
PRNN




	
xrb14233

	
14,233

	
no

	
45,462

	
54,786

	
20.5%

	
17.1 s

	
49,593

	
9.1%

	
3.2 m

	
1.4 MiB

	
12

	
57,034

	
25.5%

	
3.6 s

	
NN




	
xia16928

	
16,928

	
no

	
52,850

	
62,195

	
17.7%

	
24.0 s

	
57,220

	
8.3%

	
3.4 m

	
1.6 MiB

	
9

	
66,398

	
25.6%

	
5.3 s

	
NN




	
pjh17845

	
17,845

	
no

	
48,092

	
56,892

	
18.3%

	
27.5 s

	
51,934

	
8.0%

	
5.3 m

	
1.7 MiB

	
13

	
60,797

	
26.4%

	
5.4 s

	
NN




	
frh19289

	
19,289

	
no

	
55,798

	
67,243

	
20.5%

	
32.3 s

	
61,007

	
9.3%

	
5.3 m

	
1.9 MiB

	
11

	
68,360

	
22.5%

	
‘NR’

	
PRNN




	
fnc19402

	
19,402

	
no

	
59,287

	
69,912

	
17.9%

	
32.0 s

	
64,170

	
8.2%

	
5.3 m

	
1.8 MiB

	
11

	
74,447

	
25.6%

	
6.5 s

	
NN




	
ido21215

	
21,215

	
no

	
63,517

	
75,879

	
19.5%

	
38.4 s

	
69,205

	
9.0%

	
8.0 m

	
1.9 MiB

	
14

	
79,469

	
25.1%

	
7.6 s

	
NN




	
fma21553

	
21,553

	
no

	
66,527

	
77,951

	
17.2%

	
41.0 s

	
71,929

	
8.1%

	
6.6 m

	
2.0 MiB

	
11

	
83,449

	
25.4%

	
8.3 s

	
NN




	
lsb22777

	
22,777

	
no

	
60,977

	
71,997

	
18.1%

	
44.6 s

	
66,298

	
8.7%

	
7.3 m

	
2.0 MiB

	
11

	
76,551

	
25.5%

	
8.8 s

	
NN




	
xrh24104

	
24,104

	
no

	
69,294

	
83,300

	
20.2%

	
49.1 s

	
75,766

	
9.3%

	
6.8 m

	
2.1 MiB

	
9

	
87,747

	
25.2%

	
10.2 s

	
NN




	
bbz25234

	
25,234

	
no

	
69,335

	
82,214

	
18.6%

	
55.6 s

	
75,492

	
8.9%

	
10.5 m

	
2.2 MiB

	
13

	
87,345

	
26.0%

	
11.1 s

	
NN




	
irx28268

	
28,268

	
no

	
72,607

	
85,130

	
17.2%

	
1.2 m

	
78,250

	
7.8%

	
15.2 m

	
2.4 MiB

	
15

	
90,936

	
25.2%

	
13.3 s

	
NN




	
fyg28534

	
28,534

	
no

	
78,562

	
95,525

	
21.6%

	
1.2 m

	
85,843

	
9.3%

	
13.4 m

	
2.4 MiB

	
13

	
97,260

	
23.8%

	
14.0 s

	
NN




	
icx28698

	
28,698

	
no

	
78,087

	
93,828

	
20.2%

	
1.2 m

	
85,562

	
9.6%

	
11.8 m

	
2.4 MiB

	
11

	
96,987

	
24.2%

	
13.6 s

	
NN




	
boa28924

	
28,924

	
no

	
79,622

	
95,729

	
20.2%

	
1.2 m

	
86,834

	
9.1%

	
13.9 m

	
2.5 MiB

	
13

	
99,881

	
25.4%

	
14.4 s

	
NN




	
ird29514

	
29,514

	
no

	
80,353

	
96,206

	
19.7%

	
1.4 m

	
87,565

	
9.0%

	
14.6 m

	
2.5 MiB

	
13

	
100,617

	
25.2%

	
15.4 s

	
NN




	
pbh30440

	
30,440

	
no

	
88,313

	
104,985

	
18.9%

	
1.3 m

	
95,949

	
8.6%

	
13.5 m

	
2.6 MiB

	
11

	
110,335

	
24.9%

	
16.6 s

	
NN




	
xib32892

	
32,892

	
no

	
96,757

	
113,361

	
17.2%

	
1.6 m

	
104,523

	
8.0%

	
15.4 m

	
2.7 MiB

	
11

	
120,736

	
24.8%

	
19.2 s

	
NN




	
fry33203

	
33,203

	
no

	
97,240

	
116,014

	
19.3%

	
1.6 m

	
105,745

	
8.7%

	
20.8 m

	
2.8 MiB

	
15

	
120,664

	
24.1%

	
19.4 s

	
NN




	
bby34656

	
34,656

	
no

	
99,159

	
118,792

	
19.8%

	
1.7 m

	
108,423

	
9.3%

	
17.0 m

	
2.9 MiB

	
11

	
124,834

	
25.9%

	
22.3 s

	
NN




	
pba38478

	
38,478

	
no

	
108,318

	
128,315

	
18.5%

	
2.1 m

	
117,712

	
8.7%

	
24.4 m

	
3.1 MiB

	
13

	
134,770

	
24.4%

	
25.4 s

	
NN




	
ics39603

	
39,603

	
no

	
106,819

	
130,049

	
21.7%

	
2.2 m

	
117,804

	
10.3%

	
26.2 m

	
3.2 MiB

	
13

	
133,660

	
25.1%

	
26.9 s

	
NN




	
rbz43748

	
43,748

	
no

	
125,183

	
152,817

	
22.1%

	
2.6 m

	
138,235

	
10.4%

	
29.4 m

	
3.5 MiB

	
11

	
157,173

	
25.6%

	
33.2 s

	
NN




	
fht47608

	
47,608

	
no

	
125,104

	
148,051

	
18.3%

	
3.2 m

	
135,216

	
8.1%

	
39.4 m

	
3.7 MiB

	
13

	
155,972

	
24.7%

	
39.2 s

	
NN




	
fna52057

	
52,057

	
no

	
147,789

	
174,317

	
18.0%

	
3.8 m

	
160,231

	
8.4%

	
46.9 m

	
4.1 MiB

	
13

	
187,336

	
26.8%

	
51.6 s

	
NN




	
bna56769

	
56,769

	
no

	
158,078

	
189,521

	
19.9%

	
4.6 m

	
173,074

	
9.5%

	
1.0 h

	
4.4 MiB

	
14

	
200,198

	
26.6%

	
56.8 s

	
NN




	
dan59296

	
59,296

	
no

	
165,371

	
199,175

	
20.4%

	
5.0 m

	
180,850

	
9.4%

	
1.2 h

	
4.5 MiB

	
15

	
206,775

	
25.0%

	
1.0 m

	
NN




	
sra104815

	
104,815

	
no

	
251,761

	
326,561

	
29.7%

	
15.6 m

	
295,092

	
17.2%

	
3.7 h

	
7.7 MiB

	
14

	
329,120

	
30.7%

	
3.2 m

	
NN




	
ara238025

	
238,025

	
no

	
578,761

	
747,619

	
29.2%

	
1.4 h

	
674,559

	
16.6%

	
1.5 d

	
16.8 MiB

	
22

	
759,882

	
31.3%

	
16.5 m

	
NN




	
lra498378

	
498,378

	
no

	
2,168,039

	
2,710,116

	
25.0%

	
5.8 h

	
2,438,410

	
12.5%

	
15.0 d

	
34.7 MiB

	
49

	
2,688,804

	
24.0%

	
1.2 h

	
NN




	
lrb744710

	
744,710

	
no

	
1,611,232

	
2,076,966

	
28.9%

	
13.7 h

	
1,867,273

	
15.9%

	
15.0 d

	
51.6 MiB

	
18

	
2,104,585

	
30.6%

	
2.7 h

	
NN
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Figure 1. Block diagram of the CII-algorithm: Phase 1 delivers a partial (yet infeasible) solution, Phase 2 extends the partial solution of Phase 1 to a complete feasible solution, and at Phase 3, the latter solution is further improved. 
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Figure 2. Angle   θ ( i , j )  . 
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Figure 3. Example that shows the extreme vertices and girding polygon. 
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Figure 4. The triangle inequality. 






Figure 4. The triangle inequality.
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Figure 5. Points 1, 3, and 6 that can be inserted between point 4 and 2, 2 and 5, or 5 and 4 from partial tour   T 0   are depicted in Figures (a), (b), and (c), respectively. 
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Figure 6. Point 6 was inserted in the tour   T 0   between points 4 and 2. 
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Figure 7. Point 3 was inserted in the tour   T 1   between points 6 and 2. 
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Figure 8. Point 1 be inserted in the tour   T 2   between points 4 and 6. 
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Figure 9. Block diagram of Phase 3. 
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Figure 10. (a) a fragment of a solution before applying the algorithm 2-Opt; (b) the corresponding fragment after applying algorithm 2-Opt. 
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Figure 11. The improvement rate at Phase 3 for instance usa115475. 
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Figure 12. (a) error vs. number of points, and (b) processing time vs. number of points, where   1 ≤ | V | < 200  . 
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Figure 13. (a) error vs. number of points, and (b) processing time vs. number of points, where   200 ≤ | V | < 10 , 000  . 
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Figure 14. (a) error vs. number of points, and (b) processing time vs. number of points, where   10,000 ≤ | V | < 250,000  . 
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Figure 15. RAM vs. number of points for all the tested instances. 
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Table 1. Procedure extreme_points.






Table 1. Procedure extreme_points.





	
PROCEDURE extreme_points (   V = {  i 1  ,  i 2  , ⋯ ,  i n    })






	
1

	
   y  m a x   : =  y  i 1                                                                  //Initializing variables




	
2

	
    x  m i n   : =  x  i 1     




	
3

	
    y  m i n   : =  x  i 1     




	
4

	
    x  m a x   : =  y  i 1     




	
5

	
FOR     j : = 2     TOnDO




	
6

	
   IF    y  i j   >  y  m a x     THEN    y  m a x   : =  y  i j    




	
7

	
   IF    x  i j   <  x  m i n     THEN    x  m i n   : =  x  i j    




	
8

	
   IF    y  i j   <  y  m i n     THEN    y  m i n   : =  y  i j    




	
9

	
   IF    x  i j   >  x  m a x     THEN    x  m a x   : =  x  i j    




	
10

	
    T ′  =  L ′  =  B ′  =  R ′  : = ∅   




	
11

	
FOR     j : = 1   TOnDO




	
12

	
   IF    y  i j   =  y  m a x     THEN    T ′  : =  T ′  ∪  {  i j  }   




	
13

	
   IF    x  i j   =  x  m i n     THEN    L ′  : =  L ′  ∪  {  i j  }   




	
14

	
   IF    y  i j   =  y  m i n     THEN    B ′  : =  B ′  ∪  {  i j  }   




	
15

	
   IF    x  i j   =  x  m a x     THEN    R ′  : =  R ′  ∪  {  i j  }   




	
16

	
   v 1  : =  t 1 ′           //    T ′  =  {  t 1 ′  ,  t 2 ′  , ⋯ ,  t   |   T ′   |   ′  }   ,    |   T ′   | ≤ n   




	
17

	
   v 2  : =  l 1 ′           //    L ′  =  {  l 1 ′  ,  l 2 ′  , ⋯ ,  l   |   L ′   |   ′  }   ,      |   L ′   | ≤ n   




	
18

	
   v 3  : =  b 1 ′           //    B ′  =  {  b 1 ′  ,  b 2 ′  , ⋯ ,  b   |   B ′   |   ′  }   ,    |   B ′   | ≤ n   




	
19

	
   v 4  : =  r 1 ′           //    R ′  =  {  r 1 ′  ,  r 2 ′  , ⋯ ,  r   |   R ′   |   ′  }   ,    |   R ′   | ≤ n   




	
20

	
FOR     j : = 2     TO      |   T ′   |      DO




	
21

	
   IF    x  t j ′   >  x  v 1     THEN    v 1  : =  t j ′   




	
22

	
FOR     j : = 2     TO      |   L ′   |      DO




	
23

	
   IF    x  l j ′   >  x  v 2     THEN    v 2  : =  l j ′   




	
24

	
FOR     j : = 2     TO      |   B ′   |      DO




	
25

	
   IF    x  b j ′   >  x  v 3     THEN    v 3  : =  b j ′   




	
26

	
FOR     j : = 2     TO      |   R ′   |      DO




	
27

	
   IF    x  r j ′   >  x  v 4     THEN    v 4  : =  r j ′   




	
28

	
RETURN  v 1  ,   v 2  ,   v 3  ,   v 4  
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Table 2. Procedure polygon.






Table 2. Procedure polygon.





	
PROCEDURE polygon(V,     v 1  ,  v 2  ,  v 3  ,  v 4     )






	
1

	
  P : = (  v 1  )                                    //Initializing variables




	
2

	
   k : =  v 1    




	
3

	
WHILE  k ≠  v 2   DO                                  //Step 1




	
4

	
    form a subset of vertices    V *  : =  {  i  |   x i  <  x k   ∧   y i  ≥  y  v 2    ;  i ∈ V }            //   V *  ⊂ V  




	
5

	
     form a subset of edges    E *  : =  {  ( k , j )  ; j ∈  V *  }                    //   E *  ⊂ E  




	
6

	
   form a set of angles    Θ *  : =  { θ  ( k , j )  ;  ( k , j )  ∈  E *  }   




	
7

	
   get the minimum angle   θ ( k , l )   from   Θ *  




	
8

	
   append the vertex l to P and update k equal to l.




	
9

	




	
10

	
WHILE  k ≠  v 3   DO                                  //Step 2




	
11

	
   form a subset of vertices    V *  : =  {  i  |   x i  ≤  x  v 3    ∧   y i  <  y k   ;  i ∈ V }   




	
12

	
   form a subset of edges    E *  : =  {  ( k , j )  ; j ∈  V *  }   




	
13

	
   form a set of angles    Θ *  : =  { θ  ( k , j )  ;  ( k , j )  ∈  E *  }   




	
14

	
   get the minimum angle   θ ( k , l )   from   Θ *  




	
15

	
   append the vertex l to P and update k equal to l.




	
16

	




	
17

	
WHILE  k ≠  v 4   DO                                  //Step 3




	
18

	
   form a subset of vertices    V *  : =  {  i  |   x i  >  x k   ∧   y i  ≤  y  v 4    ;  i ∈ V }   




	
19

	
   form a subset of edges    E *  : =  {  ( k , j )  ; j ∈  V *  }   




	
20

	
   form a set of angles    Θ *  : =  { θ  ( k , j )  ;  ( k , j )  ∈  E *  }   




	
21

	
   get the minimum angle   θ ( k , l )   from   Θ *  




	
22

	
   append the vertex l to P and update k equal to l.




	
23

	




	
24

	
WHILE  k ≠  v 1   DO                                  //Step 4




	
25

	
   form a subset of vertices    V *  : =  {  i  |   x i  ≥  x  v 1    ∧   y i  >  y k   ;  i ∈ V }   




	
26

	
   form a subset of edges    E *  : =  {  ( k , j )  ; j ∈  V *  }   




	
27

	
   form a set of angles    Θ *  : =  { θ  ( k , j )  ;  ( k , j )  ∈  E *  }   




	
28

	
   get the minimum angle   θ ( k , l )   from   Θ *  




	
29

	
   append the vertex l to P and update k equal to l.
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Table 3. Procedure insert_point_in_tour.






Table 3. Procedure insert_point_in_tour.





	
PROCEDURE insert_point_in_tour(   T , l , i   )






	
1

	
   p : = | T |   




	
2

	
IF   i < p   THEN




	
3

	
      j : = p + 1  




	
4

	
    WHILE   j > i + 1   DO




	
5

	
          t j  : =  t  j − 1    




	
6

	
         j : = j − 1  




	
7

	
    t  i + 1   : = l   




	
8

	
RETURNT
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Table 4. Procedure construct_tour.






Table 4. Procedure construct_tour.





	
PROCEDURE construct_tour(V,    T 0    )






	
1

	
   h : = 1   




	
2

	
FOR each point   l ∈ V \  T  h − 1     DO




	
3

	
      c l h  : =  min    t i  ∈  T  h − 1      { w  (  t i  , l )  + w  ( l ,  t  i + 1   )  − w  (  t i  ,  t  i + 1   )   }   




	
4

	
WHILE exists a vertex   l ∈ V \  T  h − 1     DO




	
5

	
   get   l h  




	
6

	
   insert_point_in_tour (   T  h − 1   ,  l h  , i  (  l h  )   )




	
7

	
   FOR each point   l ∈ V \  T h    DO




	
8

	
         c l  h + 1   : = min  {  c l h  ,  w  (  t i  , l )  + w  ( l ,  t  i + 1   )  − w  (  t i  ,  t  i + 1   )  ,  w  (  t  i + 1   , l )  + w  ( l ,  t  i + 2   )  − w  (  t  i + 1   ,  t  i + 2   )  }   




	
9

	
     h : = h + 1  
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Table 5. Procedure 2-Opt.






Table 5. Procedure 2-Opt.





	
PROCEDURE 2-Opt(V,T)






	
1

	
   i : = 1   




	
2

	
   n : = | V |   




	
3

	
WHILE   i < n − 2   DO




	
4

	
     j : = i + 1  ;




	
5

	
   WHILE   j < n − 1   DO




	
6

	
    IF   w  (  t i  ,  t j  )  + w  (  t  i + 1   ,  t  j + 1   )  < w  (  t i  ,  t  i + 1   )  + w  (  t j  ,  t  j + 1   )    THEN




	
7

	
        x : = i + 1  




	
8

	
        y : = j  




	
9

	
      WHILE   x < y   DO




	
10

	
          t  a u x   : =  t x   




	
11

	
          t x  : =  t y   




	
12

	
          t y  : =  t  a u x    




	
13

	
         x : = x + 1  




	
14

	
         y : = y − 1  




	
15

	
      j : = j + 1  




	
16

	
     i : = i + 1  




	
17

	
RETURNT
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Table 6. Procedure improve_tour.






Table 6. Procedure improve_tour.





	
PROCEDURE improve_tour(V,T)






	
1

	
   i : = 1   




	
2

	
WHILE   i < n   DO




	
3

	
      t j  : =  t  i + 1    




	
4

	
   remove   t  i + 1    from the tour T      //now T is infeasible




	
5

	
   construct_tour(V,   T \ {  t  i + 1   }  )      //T is feasible again




	
6

	
   IF    t  i + 1   =  t j    THEN




	
7

	
      i : = i + 1  




	
8

	
RETURNT
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Table 7. Statistics about the solutions delivered by CII.






Table 7. Statistics about the solutions delivered by CII.





	Description
	TSPLIB
	NATIONAL
	ART GALLERY
	VLSI
	All





	Number of instances
	83
	27
	6
	102
	218



	Average error percentage of the solutions at Phase 2
	11.8%
	17.7%
	6.7%
	18.4%
	15.4%



	Average number of cycles

performed at Phase 3
	7
	11
	11
	10
	9



	Average decrease in error at Phase 3
	6.5%
	9.6%
	3.1%
	9.8%
	8.3%



	Final average error percentage
	5.3%
	8.2%
	3.6%
	8.6%
	7.2%



	Average memory usage
	0.8 MiB
	1.6 MiB
	10.9 MiB
	2.3 MiB
	1.88 MiB
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Table 8. Statistics between CII and other heuristics.






Table 8. Statistics between CII and other heuristics.













	Description
	TSPLIB
	NATIONAL
	ART GALLERY
	VLSI
	All





	Number of instances
	83
	27
	6
	102
	218



	Number of the known results from other heuristics
	142
	0
	10
	12
	164



	Number of time CII gave a better error than other heuristics
	2
	0
	4
	12
	18



	Number of times CII has improved the earlier known best execution time
	140
	0
	0
	
	140










[image: Table] 





Table 9. Comparative relative errors for some problem instances.






Table 9. Comparative relative errors for some problem instances.





	Description
	    Error CII    
	    Error H    





	TSPLIB/rat783
	7.4%
	19.1% and 19.5% (DFACO [10] and ACO-3Opt [10])



	ART/Mona-lisa100K
	3.4%
	5.5% (Partial ACO [6])



	ART/Vangogh120K
	3.5%
	5.8% (Partial ACO [6])



	ART/Venus140K
	3.4%
	5.8% (Partial ACO [6])



	ART/Earring200K
	3.9%
	7.2% (Partial ACO [6])



	VLSI/dca1376
	7.6%
	19.6% (PRNN [11])



	VLSI/djb2036
	10.0%
	23.4% (PRNN [11])



	VLSI/xqc2175
	9.1%
	21.4% (PRNN [11])



	VLSI/xqe3891
	9.7%
	21.7% (PRNN [11])



	VLSI/bgb4355
	8.4%
	22.8% (PRNN [11])



	VLSI/xsc6880
	10.1%
	21.9% (PRNN [11])



	VLSI/bnd7168
	9.2%
	21.7% (PRNN [11])



	VLSI/ida8197
	7.2%
	23.2% (PRNN [11])



	VLSI/dga9698
	9.6%
	21.1% (PRNN [11])



	VLSI/xmc10150
	9.6%
	20.3% (PRNN [11])



	VLSI/xvb13584
	9.5%
	23.6% (PRNN [11])



	VLSI/frh19289
	9.3%
	22.5% (PRNN [11])
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Table 10. Comparative CPU time for the problem instances for which the other heuristics were faster.






Table 10. Comparative CPU time for the problem instances for which the other heuristics were faster.





	Description
	    Time CII    
	    Time H    





	TSPLIB/pla33810
	25.7 m
	21.0 m (DPIO [12])



	TSPLIB/pla85900
	4.1 h
	1.4 h (DPIO [12])



	Art Gallery/mona-lisa100K
	2.3 h
	1.4 h and 1.1 h (ACO-RPMM [9] and Partial ACO [6])



	Art Gallery/vangogh120K
	4.6 h
	1.9 h and 1.5 h (ACO-RPMM [9] and Partial ACO [6])



	Art Gallery/venus140K
	4.8 h
	2.6 h and 2.1 h (ACO-RPMM [9] and Partial ACO [6])



	Art Gallery/pareja160K
	7.7 h
	3.5 h (ACO-RPMM [9])



	Art Gallery/coubert180K
	10.1 h
	4.5 h (ACO-RPMM [9])



	Art Gallery/earring200K
	15.1 h
	6.0 h and 5.1 h (ACO-RPMM [9] and Partial ACO [6])
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