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Abstract: Because of the introduction and spread of the second generation of the Digital Video
Broadcasting—Terrestrial standard (DVB-T2), already active television broadcasters and new
broadcasters that have entered in the market will be required to (re)design their networks. This is
generating a new interest for effective and efficient DVB optimization software tools. In this work,
we propose a strengthened binary linear programming model for representing the optimal DVB
design problem, including power and scheduling configuration, and propose a new matheuristic
for its solution. The matheuristic combines a genetic algorithm, adopted to efficiently explore the
solution space of power emissions of DVB stations, with relaxation-guided variable fixing and
exact large neighborhood searches formulated as integer linear programming (ILP) problems solved
exactly. Computational tests on realistic instances show that the new matheuristic performs much
better than a state-of-the-art optimization solver, identifying solutions associated with much higher
user coverage.

Keywords: telecommunications; DVB-T; antenna design; network optimization; mixed integer linear
programming; tight linear relaxations; matheuristics; ILP heuristics

1. Introduction

Television represents one of the most impacting inventions of contemporary times: developed
between the end of the 19th century and the beginning of the 20th century, in the postwar period of
World War II, it had rapidly spread, first in the US and then continued its diffusion in the rest of the
world, bringing programs and shows into private households that have deeply influenced people’s
lives and habits. With the passing of the years, the number of television broadcasting companies
has (greatly) increased, leading to a high demand and competition for obtaining scarce frequency
resources that are fundamental for the effective operation of broadcasting. Due to such spectrum
scarcity and to intrinsic technological features of analogue television broadcasting, which is known to
need a considerable amount of frequency spectrum for broadcasting the content of a television channel
with sufficient quality, it was considered very important to pass to a new generation of (terrestrial)
television broadcasting characterized by more spectral-efficient digital transmissions. Thus, the study
and introduction of digital terrestrial television (DTT) was strongly supported and the switch from
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analogue to digital television around the world has represented a fundamental passage to pursue
a more efficient use of the spectrum and the support of a new range of higher quality television
services [1,2].

It is interesting to note that many different DTT standards have been proposed and adopted
in different countries. However, among such standards, Digital Video Broadcasting—Terrestrial
(DVB-T) [3] is the most adopted around the world, being used in Europe, Asia, Africa and
Oceania. The DVB-T standard was published in 1997 and is strongly based on the use of orthogonal
frequency-division multiplexing (OFDM). OFDM is a modulation technique that, essentially speaking,
subdivides the digital data stream into multiple streams that are transmitted on multiple frequency
channels (subcarriers) that are close in the spectrum and are characterized by orthogonality, i.e. they
do not interfere with one another despite the absence of guard bands between them (we refer the
reader to [4] for an exhaustive introduction to OFDM). Thanks to its attractive features, DVB-T has
rapidly spread, but after a few years the need for an updated standard able to follow the evolution
of next generation telecommunications services, in particular, by offering improved performance in
terms of data rates and spectral efficiency, arose. As a consequence, in 2009 the second generation of
DVB-T, namely DVB-T2, was released and published [5], offering improved features, such as more
sophisticated modulation and coding schemes that can support up to 50% higher data rates and more
flexible bandwidth choices (see e.g., [6]).

Passing from the first to the second generation of DVB-T has represented an important
technological evolution that, in Europe, has been highly pushed by the European Commission. Indeed,
in the European Union, the switch from DVB-T to DVB-T2 is expected to grant a capacity expansion of
the digital television system of not lower than 25%, thus allowing a higher number of broadcasters to
be active and compete in the market, while also enhancing the pluralism of information [7]. The switch
to DVB-T2 will require the television broadcasting companies that are already active in the market
to reconfigure their networks, since they will have to embrace the innovative technological features
of the new standard. Moreover, there will be the need to configure from scratch the new networks
installed by new broadcasting companies entering the market.

The technological context of the switch to DVB-T2 is attracting new interest in the development of
DVB-T network design tools, especially those including mathematical optimization features, that can
improve the outcome of the design. In this work, we thus address the question of developing an
innovative optimization algorithm to tackle the complex mathematical models associated with the
design of DVB-T2 networks. More in detail, the contributions of our work are the following:

• As first step, we show how a mathematical optimization model for DVB-T design can be derived.
We address the two crucial decisions of establishing which DVB broadcasting station must serve
a specific portion of territory, through binary decision variables, and the power setting of the
stations, expressed as continuous decision variables. Furthermore, we include the design of the
horizontal antenna diagram of the transmitters. The resulting optimization model is a Mixed
Integer Linear Programming (MILP) problem, which includes canonical signal-to-interference
ratios to assess service coverage of the territory.

• We provide a discussion about the mathematical weakness of the MILP model, due to a typically
ill-conditioned coefficient matrix and the presence of the notorious big-M coefficients, and we
discuss how to strengthen it through the discretization of the power emissions of the stations,
deriving a purely binary power-indexed model, and how to include further strengthening valid
inequalities expressing conflicts between station power configurations and territory coverage.

• In order to solve the mathematically stronger yet still complex power-indexed model, we propose
a new matheuristic, i.e., a heuristic algorithm based on combining mathematical programming
techniques and metaheuristics (see e.g., [8–10]). Specifically, our new matheuristic is based on
combining a Genetic Algorithm (GA) with variable fixing heuristics exploiting a suitable (tight)
linear relaxation of the problem and an Integer Linear Programming (ILP) improvement heuristic.
The purpose of the GA is providing an efficient exploration of the solution space associated
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with the discrete power emissions of the stations. The relaxation-based fixing heuristic and
the ILP heuristic have the task to pursue the improvement of the best solution found by the
GA, in particular, by operating a so-called exact large neighborhood search: In an exact search,
the search is modeled as an ILP problem which is tackled by exploiting the computational power
of a modern state-of-the-art solver [11].

• We report results that we obtained from computational tests considering realistic DVB-T data.
The results clearly indicated that our new matheuristic offers a superior performance with respect
to a state-of-the-art ILP solver, returning solutions associated with much better values of the
objective function expressing service coverage of the users.

We remark that this paper is an extended journal version of [12]. The remainder of the paper is
organized as follows: in Section 2, we introduce an optimization model for DVB-T2 network design,
while in Section 3, we discuss how to mathematically strengthen it; in Sections 4 and 5, we introduce
the new matheuristic and report the computational tests, respectively. At last, we discuss conclusions
and future directions of research in Section 6.

Related Works

The use of mathematical optimization techniques in the context of wireless network design is not
new and can be traced back to at least twenty years ago, as highlighted and surveyed for quite a wide
range of problems in [13] and in [14]. Also, the adoption of bio-inspired and genetic heuristics is not
new: if we focus on genetic and evolutionary algorithms, we can report the remarkable cases of: [15],
which addresses the problem of the optimal positioning of base stations in a mobile network, encoding
the location of base stations in the chromosomes of the genetic algorithm; [16], which addresses
the decision problem of how establishing the optimal assignment of users to deployed transmitters,
in particular in the context of WiMAX networks, encoding the assignment in the chromosomes; [17],
which focuses on the frequency assignment problem (FAP), proposing a permutation-based genetic
algorithm to solve minimum span and fixed spectrum variants of the FAP; [18], which focuses on the
problem of setting the power emissions of base stations, proposing two distributed power control
algorithms that are based on evolutionary computation techniques to fast solve the linear equation
systems associated with power updates of the stations; [19], which proposes a genetic algorithm
for addressing the joint problem of power, frequency and modulation scheme assignment in fixed
networks based on the WiMAX technology. Moreover, it is interesting to note that other works have
also tried to tackle sources of data uncertainty within wireless network design problems, such as [20,21],
which adopt a stochastic optimization approach to find a robust location plan of base stations to deal
with fluctuations in traffic demand, [22], which deals with the stochastic scheduling of 5G multimedia
services and [23–25], which propose stochastic programming and robust optimization approaches to
deal with signal propagation uncertainty of wireless technologies in real-world environments.

After having discussed the previous works, it is very interesting to note that, to our best
knowledge, in literature there are no matheuristics proposed for DVB network design problems. More
specifically, it is also very important to remark that there are no cases of matheuristic expressly designed
for tackling the numerical difficulties (ill-conditioned matrices and big-M coefficients) associated with
classical optimization models for wireless network design problems (we refer the reader to Section 3
for a discussion about such numerical difficulties). Our new matheuristic, which combines genetic
algorithms and ILP heuristics, is thus the first of its genre in the wireless network design context that
we study.

Within the DVB network design context, we can position our matheuristic between exact
optimization algorithms, guaranteeing, at least theoretically, convergence to an optimal solution,
and (bio-inspired) heuristics, which instead produce solutions without quality guarantees. Concerning
exact algorithms, we can cite the case of [26], which proposes an innovative cutting-plane method
based on generalized-upper bound cover inequalities that eliminates sources of numerical instabilities,
and [27] which proposes a packing reformulation of the single frequency network design problem
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arising in DVB-T. Concerning heuristics, besides the already discussed case of [19], we can cite the cases
of: [28], which proposes particle swarm optimization and adaptive simulated annealing algorithms for
optimizing the coverage of a DVB-T/H network; [29], which proposes a genetic algorithm to solve a
service coverage problem of single frequency digital radio and television networks, considering also the
energy efficiency and carbon footprint; [30], which attempts to reduce interference in single frequency
networks, by optimizing the orientation of transmitters exploiting a simulated annealing algorithm.

In contrast to exact and heuristic approaches, our matheuristic has the merit of running fast, while
at the same time exploiting the precious information that a mathematically stronger model of the
problem can provide. In particular, such information is obtained from suitably strengthened linear
relaxations and can be used to operate a better setting of the values of the decision variables (fixing)
within the genetic algorithm and the ILP improvement heuristics. Furthermore, by exploiting linear
relaxations, we can also compute an optimality gap indicating how far the best feasible solution found is
far from the optimum and thus providing an indication of how good are produced feasible solutions.

To our best knowledge, there is just one work that tried to combine a metaheuristic with an exact
improvement heuristic for the design of DVB networks, namely [31], which proposes an improved
ant colony algorithm. However, in contrast to our present work, it is important to highlight that [31]
considers an approximated model where service coverage is provided by one single transmitter
(differently from the present work, where we consider the combined effect of multiple serving
transmitters as detailed in the DVB-T technical specifications) and was not developed with the aim of
sorting out numerical instabilities that characterize wireless network design.

2. DVB-T2 Network Design

In this section, we derive the mixed integer linear programming model that we use as basis for our
new matheuristic algorithmic proposal. To this end, we first describe the essential elements constituting
the DVB-T2 network that we consider: the network is made up of a set of DVB-T transmitting
stations S that have the task of broadcasting digital television signals to users located in a region.
Each station s ∈ S is characterized by a number of parameters: primarily, its location and then its
radio-electrical parameters, such as the emitted power and the channel used to transmit. In accordance
with recommendations and regulations released by telecommunication authorities, like the Italian
Authority for Telecommunications (AGCOM) [32], the region to be covered with DVB-T services is
partitioned into a raster of pixels corresponding to small squared portions of territories. The center of
each pixel is called a testpoint (TP) and is taken as representative of all points in the pixel, in particular
concerning propagation behavior of signals throughout the pixel. The set of all testpoints included in
the region is denoted by T.

The Wireless Network Design problem (WND) is an optimization problem that generally consists
of choosing the parameters of a set of wireless transmitters (e.g., their location and radio-electrical
configuration) with the aim of providing service coverage to a set of users while maximizing a
revenue function (see e.g., [13,14,26,33]). Notwithstanding the quite high number of parameters
that characterize a transmitter and that can be configured, all works considering the WND focuses
just on a subset of them. In particular, the vast majority of works include the setting of the power
emission of transmitters and the assignment of served users to deployed transmitters as decision
variables, since they constitute critical decision aspects in the design of a wireless network (see, for
example, [7,26,27,34] related to DVB, [35,36] related to 5G, [23,37] related to FTTx, [38,39] related
to mesh networks, [40,41] related to UMTS, [33,42] related to WiMAX, [43,44] related to WLANs
and [13,14,45–48] related to other kind of wireless network technologies).

If the optimization problem requires to decide the power emitted by transmitters and to choose
the assignment of users to transmitters, it is obtained the so-called Scheduling and Power Assignment
Problem (SPAP), which is NP-hard [27] and is considered a crucial WND problem in a hierarchy that
has been developed in [27,33,49].
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Before introducing the decision variables that are included in the optimization model, we make
additional considerations about the power emission of DVB-T stations: such stations typically
correspond with very powerful transmitters that have the task of covering vast portions of
territory and host antennas whose horizontal radiation patterns can be customized (see e.g., [50]).
Such customization of the horizontal antenna diagram typically considers 36 directions associated
with angles from 0 to 350 degrees separated by a 10-degree interval and, from a modeling point of
view, can be represented as the possibility of specifying the power emitted by a station s ∈ S in each
direction d ∈ D = {1, 2, . . . , 36}. As noted in [50], the power emitted by the same station in different
directions cannot exhibit too large differences. In particular, the difference between adjacent directions
cannot exceed a threshold denote by ∆P. For each station s ∈ S and TP t ∈ T, we denote by δ(s, t) ∈ D
the (unique) direction on which station s emits signals to t.

To model the decision of setting the power emission of the transmitters and establishing the
assignment of users to transmitters in the context of DVB-T2 networks, we define two families of
decision variables:

• a continuous decision variable psd ∈ [0, Pmax] that models the power emission of each transmitter
s ∈ S in each direction d ∈ D;

• a binary decision variable xts ∈ {0, 1} modeling the assignment of a TP to a station and such that:

xts =

{
1 if s ∈ S is the serving station of TP t ∈ T
0 otherwise

for every TP t ∈ T and every s ∈ S.

Concerning the evaluation of service quality, the first consideration to be made is that every TP
t ∈ T is able to pick up signals from all stations s ∈ S and the power Pt(s) that t obtains from s is equal
to the power emission of s multiplied by a coefficient ats ∈ [0, 1] (i.e., Pt(s) = ats · ps δ(s,t)—note that
here, we consider the specific direction δ(s, t) on which s emits to t). The factor ats is commonly called
fading coefficient and summarizes the power reduction experienced by a signal that propagates from s
to t [51].

We have written that a TP picks up signals from all stations. However, in the case of DVB-T
networks, only a subset of signals is useful for guaranteeing the service, while all other signals are
interfering and thus deteriorate the quality of service. Specifically, in DVB-T, a TP has to decide when to
start a time window for picking up signals: all signals received within the time window can be summed
up and increase the quality of service obtained, whereas all signals received outside the window are
interfering and decrease service quality. We refer the reader to [27,52] for a detailed discussion of how
the time window mechanism works.

We note that the start of the time window associated with a TP can be positioned in a very high
number of points along the time axis, depending on the time sensitivity of the DVB system. However,
it is common to let the window start when the signal of a station is received [27,32]. In the case of our
optimization model, we follow this practice and thus the number of possible starts of the time window
of a TP t ∈ T equals |S|, i.e., the number of stations. We call server or serving station of t, the station s
whose signal reception is used as starting time of the time window of t.

For a given TP t ∈ T and serving station s ∈ S of t, we denote by U(s, t) ⊆ S the subset of
stations that emit useful signals for t and by I(s, t) ⊆ S the subset of interfering stations. These two
subsets form a partition of the station set S, i.e., S = U(s, t) ∪ I(s, t) and U(s, t) ∩ I(s, t) = ∅. Once the
subsets of useful and interfering signals are established, a TP t is considered served by station s if its
Signal-to-Interference Ratio (SIR) is above a threshold φ > 0. The SIR is the ratio of the sum of useful
powers to the sum of interfering powers [51,52]:

SIRts(p) =
∑σ∈U(s,t) atσ · pσ δ(σ,t)

N + ∑σ∈I(s,t) atσ · pσ δ(σ,t)
≥ φ . (1)
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In the previous inequality, N > 0 is the system noise. Every TP t that is covered with service
generates a revenue rt > 0 (typically, the higher the number of users located in t the higher rt).
By means of simple linear algebra operations, we can reorganize Equation (1) into the inequality that
follows, which is usually named SIR inequality:

∑
σ∈U(s,t)

atσ · pσ δ(σ,t) − φ ∑
σ∈I(s,t)

atσ · pσ δ(σ,t) ≥ φ · N . (2)

As one of the decisions to be considered in the problem is establishing which is the serving station
of a TP, we must include one SIR inequality for every potential serving station s ∈ S of every TP
t ∈ T. As a consequence, for every t, we face the following disjunctive constraint that contains one SIR
inequality for each station s:

∨
s∈S

 ∑
σ∈U(s,t)

atσ · pσ δ(σ,t) − φ ∑
σ∈I(s,t)

atσ · pσ δ(σ,t) ≥ φ · N

 . (3)

The previous single disjunctive constraint can be reformulated as a set of linear constraints,
according to a standard MILP approach (see, for example, [26,53]), which is based on defining a large
constant M (commonly known as big-M coefficient) and exploiting the service variable xts as a binary
variable that activates or deactivates the constraint. More in detail, Equation (3) can be replaced with
the following set of modified SIR inequalities (one for each potential server s ∈ S) that also include the
big-M coefficient and the variables xts:

∑
σ∈U(s,t)

atσ · pσ δ(σ,t) − φ ∑
σ∈I(s,t)

atσ · pσ δ(σ,t) + M(1− xts) ≥ φ · N . (4)

We call such modified inequality SIR constraint and we remark that it represents a fundamental
component of every WND problem that considers coverage of users by means of SIR quantities. It is
straightforward to verify that in Equation (4), when xts = 1, we obtain the original SIR inequality
without a big-M coefficient, and such an inequality must be fulfilled, thus it is required to serve TP t
through station s as a server. Instead, when xts = 0, the large value of the big-M coefficient is added to
the left-hand-side of the SIR inequality, making it satisfied for any setting of power variables of the
stations and thus making the constraint redundant.

We provide an overview of the system elements and notation introduced above in Table 1.

Table 1. System elements and notation.

Symbol Notation

S set of DVB stations
T set of testpoints (TPs)
D set of directions

δ(σ, t) direction on which station s emits signals to TP t
Pmax maximum power emission of a station
∆P maximum power difference between adjacent directions of a station
ats fading coefficient of station s emitting to TP t

U(s, t) subset of stations emitting useful signals when station s serves TP t
I(s, t) subset of stations emitting interfering signals when station s serves TP t

φ SIR threshold
N system noise
M big-M coefficient
psd continuous decision variable representing the power emission of station s in direction d
xts binary decision variable representing whether TP t is served by station s

We can then proceed to define the problem of designing a DVB network as follows.
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Definition 1. The DVB Network Design Problem (DVB-ND): Given a set of stations S, a set of TPs T, the set
of directions D and δ(σ, t) ∀t ∈ T, s ∈ T, the fading coefficients ats ∀t ∈ T, s ∈ T, the testpoint population
rt ∀t ∈ T, the maximum power emission Pmax of each station, the system noise N, the SIR threshold δ and
the antenna adjacent direction power threshold ∆P, the DVB network design problem consists of establishing
the power emission of each station s ∈ S and the serving station of each TP t ∈ T, so that the total population
covered with service is maximized, while the SIR constraints of served TPS are satisfied, each TP is served by at
most one station and the power limits of the stations and antenna technological constraints are respected.

The DVB-ND problem can be modeled as a mixed integer linear programming of which we detail
below the feasibility constraints and objective function. Besides the SIR constraints in Equation (4), we
must ensure that each TP t ∈ T is served by at most one station, namely:

∑
s∈S

xts ≤ 1 t ∈ T. (5)

Also, we need to model the power adjacency constraints of antennas, ensuring that adjacent
directions stay under the power difference threshold (note that here we assume that d = 36 + 1 = 1,
since, in an arc of 360 degrees, by summing the 10 degrees of direction d = 1 to the 360 degrees of
d = 36 we obtain 10 degrees and thus direction d = 1):

ps d ≤ ∆P ps d+1 s ∈ S, d ∈ D. (6)

Finally, the objective function expresses the maximization of total revenue obtained from serving
testpoints, namely:

max ∑
t∈T

∑
s∈S

rt. · xts (7)

Resuming all the elements, we obtain the following MILP model that we shortly indicate
as DVB-MILP:

max ∑
t∈T

∑
s∈S

rt · xts (DVB-MILP)

∑
σ∈U(s,t)

atσ · pσδ(σ,t) − φ ∑
σ∈I(s,t)

atσ · pσδ(σ,t) + M(1− xts) ≥ φN t ∈ T, s ∈ S

ps d ≤ ∆Pps d+1 s ∈ S, d ∈ D

∑
s∈S

xts ≤ 1 t ∈ T

0 ≤ psd ≤ Pmax s ∈ S, d ∈ D

xts ∈ {0, 1} t ∈ T, s ∈ S .

3. Strengthening the Initial MILP Formulation

DVB-MILP represents a straightforward model for DVB design that is based on the direct
inclusion of the SIR constraints, as made in most other works addressing the WND (e.g., [13,14,26,33]).
Nevertheless, such straightforward modeling presents remarkable drawbacks:

• The fading coefficients typically lead to (very) ill-conditioned coefficient matrices, since they
commonly vary in really wide ranges, and this leads to numerical instabilities even in
state-of-the-art optimization software used to solve the problem (see [54] for a detailed discussion).

• The big-Ms constitute notorious coefficients whose inclusion in a model is well-known to lead to
weak bounds that badly affects the performance of optimization software (see e.g., [55]).

• Due to the combined presence of the fading and big-M coefficients and their effects on the solution
process, solutions returned by solvers typically contains errors under the form of SIR constraints
that are recognized as satisfied when they actually are not; coverage plans can thus actually be
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wrong (see [26,46,47] and especially [54] for a more specialistic discussion, attributing errors to
floating-point arithmetic used in solvers).

As a consequence, if we use DVB-MILP, we can hope to get reliable and optimal solutions only for
small-sized instances, while, in the case of large realistic instances, even getting solutions of reasonable
quality can represent a major challenge for state-of-the-art optimization software. It is relevant to
remark that, though such issues are known, only few works have tried to tackle them (we refer
the reader to [26,33] for a survey of such works). Our new matheuristic addresses the highlighted
difficulties, in particular by also using a strengthened optimization model obtained according to the
procedure presented below.

The first step to obtain a model mathematically stronger than DVB-MILP is to discretize the power
emissions of stations: we define a set P = {P1, . . . , Pm} of power values that represent feasible
power emissions of any station and we introduce the set of corresponding power level indices
L = {1, 2, . . . , m}. The second step consists of replacing each continuous power variable psd with
the linear combination of a set of new binary variables zsdl ∈ {0, 1} that multiplies the feasible power
values of P :

psd = ∑
l∈L

Pl · zsdl .

A variable zsdl is such that:

zsdl =

{
1 if s ∈ S emits with power value Pl in direction d
0 otherwise.

Moreover, we must impose that every station s ∈ S emits by one single power value. Therefore,
for every station s and direction d, it is necessary to add the following constraint

∑
l∈L

zsdl ≤ 1

for each station s and direction d (note that having ∑l∈L zsdl = 0 corresponds to a non-activated
station emitting at zero power). Such constraints go under the name of Generalized Upper Bound
(GUB) constraints.

By exploiting the new binary power emission variables, we obtain the following new purely
binary version of SIR constraints:

∑
σ∈U(s,t)

atσ ·
(

∑
l∈L

Pl · zσδ(σ,t)l

)
− φ ∑

σ∈I(s,t)
atσ ·

(
∑
l∈L

Pl · zσδ(σ,t)l

)
+ M(1− xts) ≥ φ · N . (8)

We denote by DVB-PI the Power-Indexed (PI) version of DVB-MILP that employs the binary
variables zsdl and includes the modified SIR constraints (8) and the corresponding GUB constraints.

Exploiting the presence of the GUB constraints, following the approach initially proposed
in [26,33], we can replace the SIR constraints in Equation (8) with a set of GUB cover inequalities.
For an exhaustive introduction to simple and GUB cover inequalities and to their GUB version, we
refer the reader to [53,56]. Here, we just concisely remind major well-known results about cover
inequalities: if we are given a knapsack constraint ∑j∈J ajxj ≤ b with aj, b ∈ R+ and xj ∈ {0, 1}, ∀j ∈ J,
then we can replace it with its cover inequalities ∑j∈C xj ≤ |C| − 1, where C is a cover. A cover
represents a subset of indices C ⊆ J with the property that the sum of the corresponding coefficients
aj, j ∈ C does not satisfy the knapsack constraint (i.e., ∑j∈C aj > b). Each cover inequality associated
with a cover C can therefore be interpreted as a combination of binary variables xj that cannot be set
to 1 at the same time and thus we can activate at most |C| − 1 of them. The GUB cover inequalities
represent a stronger version of the simple cover inequalities, which one can define exploiting the
presence of GUB constraints.



Algorithms 2020, 13, 27 9 of 18

Proceeding as in [26,33], we can define the general form of the GUB cover inequalities through
which we can replace constraints in Equation (8), obtaining a stronger formulation:

xts + ∑
i∈Σ

λi

∑
l=1

zsδ(σ,t)l + ∑
i∈Γ

|L|

∑
l=qi

ziδ(i,t)l ≤ |∆|+ |Γ| , (9)

in which Σ ⊆ S is a subset of stations emitting useful signals towards TP t and Γ ⊆ S\Σ is a subset
of interfering stations. Moreover, (q1, . . . , q|Γ|) ∈ LI(t, Σ, λ, Γ), with LI(t, Σ, λ, Γ) ⊆ L|Γ| represent the
subset of interfering levels of interfering stations in Γ that destroy the service of t provided by the
subset of serving stations Σ, emitting with power levels corresponding to indices λ = (λ1, . . . , λ|Σ|).
Intuitively, for a fixed TP, subset of serving stations Σ and subset of interfering stations Γ, a GUB cover
inequality is built by fixing a power setting of the serving stations and defining a power setting of the
interfering stations that compromise the coverage of the considered TP.

We remark that in what follows we do not completely replace the binary SIR constraints in
Equation (9), but we add the GUB constraints that consider one single useful station and one single
interferer to DVB-PI. Indeed, as shown in [26,33], such a GUB provides a complete convex hull
characterization for the single-server–single-interferer case and, even in the case of multiple serving
stations and multiple interferers, still provide (tight) valid inequalities.

We further strengthen the mathematical formulation by including additional valid inequalities
that are aimed at modeling the presence of couples of SIR constraints that consider only two stations
and that cannot be satisfied at the same time by any power configuration. In a more formal way, let us
consider two SIR constraints corresponding with TPs t1 and t2 served by two stations s1 and s2:

at1s1 ·
(

∑
l∈L

Pl · zs1δ(s1,t1)

)
− φat1s2 ·

(
∑
l∈L

Pl · zs2δ(s2,t1)

)
+ M(1− xt1s1) ≥ φ · N

at2s2 ·
(

∑
l∈L

Pl · zs2δ(s2,t2)

)
− φat2s1 ·

(
∑
l∈L

Pl · zs1δ(s1,t2)

)
+ M(1− xt2s2) ≥ φ · N .

The previous constraints respectively represent TP t1 served by s1 and interfered by s2 and TP t2

served by s2 and interfered by s1. If there exists no assignment of discrete power levels in P to s1, s2

that can satisfy the two previous constraints, then coverage variables xt1s1 and xt2s2 cannot be activated
at the same time and the following is a valid inequality:

xt1s1 + xt2s2 ≤ 1. (10)

We can identify the inequalities in Equation (10) through pre-processing and include them in the
model, obtaining a remarkable strengthening, as discussed in [57].

We denote by DVB-PI+, the power-indexed model DVB-PI strengthened by including the
power-indexed GUB cover inequalities in Equation (9) and the conflict inequalities in Equation (10).

4. A Matheuristic for DVB Design

Though DVB-PI+ constitutes a binary linear program that can be easily passed to any optimization
software to be solved, even a sophisticated last generation solver like CPLEX [58] may experience a
very hard time just trying to identify solutions of reasonable quality. Furthermore, CPLEX also exhibits
a very slow convergence to optimal solutions. In order to tackle such computational issues, we propose
to solve DVB-PI+ through a new matheuristic algorithm that combines a Genetic Algorithm (GA) with
relaxation-based variable fixing and exact large neighborhood searches.

GAs correspond to heuristics for optimization problems that draw inspiration from the
evolutionary dynamics of populations and have known a wide success in many different application
contexts. For a thorough introduction to GAs, we refer an interested reader to [59–61]. Any GA is



Algorithms 2020, 13, 27 10 of 18

based on maintaining a population, in which every individual provides a feasible solution to the
optimization problem. The feasible solution is encoded in the chromosome of the individual and a
fitness function is used to evaluate how good the chromosome is, and thus, the corresponding feasible
solution. During the execution of the GA, the population evolves, iteration after iteration, by means of
procedures that resemble the process of natural selection, implementing the crossover of individuals’
chromosomes, chromosome mutation and the death of individuals.

In our case, we strengthen the performance of a GA by combining it with relaxation-based variable
fixing, in which the value of decision variables is set a-priori considering the value of variables in an
optimal solution to a suitable (tight) linear relaxation of the problem, followed by exact large neighborhood
searches, where the search for solutions of improved quality in a large neighborhood is expressed as
an optimization problem solved exactly through a state-of-the-art solver. The rationale at the basis of
the approach is that, while a state-of-the-art solver may find difficulties in solving a complete hard
optimization problem, it may instead tackle effectively and efficiently suitable subproblems of it,
obtained by fixing variables and exploring related large neighborhoods. We were attracted by the
possibility of defining a matheuristic by combining a GA with tight linear relaxations and exact ILP
search, since such an original combination allows the ability to explore the solution space of DVB-PI
fast and effectively, exploiting the valuable tight linear relaxations associated with the strengthened
formulation DVB-PI+.

The overall scheme of the GA that we consider is provided in Algorithm 1.

Algorithm 1 General Genetic Algorithm (GA-alg).

1: Creation of the initial population
2: while an arrest condition is not satisfied do
3: Selection of individuals for generating the offspring
4: Crossover of individuals’ chromosomes for generating the offspring
5: Mutation of a portion of the population
6: Death of a portion part of the population
7: end while
8: Improvement by ILP Heuristic

We now proceed to discuss in detail the features of all the steps of the algorithm.

4.1. Characteristics of the Population

4.1.1. Representing the Individuals

In our GA algorithm, a chromosome encodes the power setting of the DVB stations and therefore
coincides with a power vector p of size |S| · |D| that sets the emission of every station in every direction.
A generic position (s, d) in the chromosome specifies the discrete power level pl ∈ P that station s ∈ S
emits in direction d ∈ D.

After having completely characterized a chromosome/power vector, it is still necessary to
establish how to choose the serving station of a TP and thus set the values of the variables xts.
To this end, we compute the signal-to-interference ratio SIRts(p) for the power vector p and use the
distinction between useful and interfering signals that is originated by selecting s as serving station
of t. We then introduce Σ(t, p) ⊆ S to denote the subset of serving stations that are able to provide
service coverage to TP t for the power vector p by satisfying the corresponding SIR inequality, i.e.,

Σ(t, p) = {s ∈ S : SIRts(p). ≥ δ}

When Σ(t, p) is not empty, we select as the serving station σ of t, the station σ ∈ Σ(t, p) that grants
the highest SIR value SIRts(p). In terms of the binary variables representing the server-TP assignment,
we therefore impose xtσ = 1 and xts = 0, ∀s ∈ S \ {σ}.
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4.1.2. Fitness Function

As a fitness function, it is natural to use the coverage that is provided by an individual as a
function of the power vector/chromosome p. We denote such function by COV(p) and it returns the
sum of the population of TPs for which the SIR inequalities are satisfied and whose serving stations
are identified following the steps illustrated earlier.

4.1.3. Initial Population

We generate the initial population through inclusion of power vectors in which one single station
is activated in only one direction and, for every station, we define one power vector for every discrete
power value excluding the zero value. In a more formal way, for every s ∈ S and d ∈ D, the initial
population POP includes the vectors provided below:

(0, 0, . . . , psd = P1 , . . . , 0, 0)

(0, 0, . . . , psd = P2 , . . . , 0, 0)
...

(0, 0, . . . , psd = P|L| , . . . , 0, 0).

Such vectors provide |S| · |D| · |P| initial individuals.
Moreover, besides such elementary individuals, we enrich the population through more complex

individuals with better fitness, identified by a variable-fixing-based procedure defined as follows.
Let DVB-PI+RLX be the linear relaxation of DVB-PI+ and (x, z)RLX its optimal solution. We exploit
DVB-PI+RLX as starting point to fix the value of a subset of variables in DVB-PI+ and obtain a smaller
version of the problem that is easier to solve. We denote by DVB-PI+FIX the problem where some
variables are fixed and the strategy for fixing consists of setting to 1 the variables whose value in
DVB-PI+RLX is sufficiently close to 1. In a more formal way, we adopt this fixing rule:

IF zRLX
sdl ≥ 1− ε THEN zsdl = 1

where ε > 0. The rationale at the basis of this approach is that, if the value of a variable coming from
a (tight) continuous relaxation of the problem (i.e., a version of the problem where the integrality
requirement on variables is dropped and the mathematical strength of the relaxation is improved by
adding valid inequalities) is sufficiently close to an integer value, then we have a good indication that
the value of such variable should be set to the close integral value in a solution of good quality.

For the proposed fixing, we focus just on the binary power emission variables since, due to
the presence of the GUB constraints, they are particularly critical and, once that we set zsdl = 1 for
some triple (s, d, l), we know that we can set zsdλ = 0 for all other triples (s, d, λ) with λ ∈ L\{l}.
By adopting this fixing strategy, we obtain DVB-PI+FIX, where we do not need to decide the power
setting of some stations in some direction anymore and thus we face a smaller and, in general, easier to
solve problem. DVB-PI+FIX is solved through CPLEX, with an imposed time limit, and all the feasible
solutions identified during the solution process are added to the initial population.

4.2. Evolution of the Population

4.2.1. Selection

We select the individuals to be combined to give birth to the new generation by operating a
tournament selection: given the current population POP, as first step we create k > 0 subgroups by
random selection of bα · |P|c individuals from POP, with α ∈ (0, 1). As second step, we extract
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m < bα · |P|c individuals offering the highest fitness value in every group. These extracted individuals
are then combined to create the new generation by means of crossover.

4.2.2. Crossover, Mutation and Death

The individuals selected in the previous step are randomly associated in couples, so as to form bk ·
m/2c pairs. After pairing, each couple generates two offspring through chromosome crossover. More
in detail, let us consider the crossover of a pair (the parents) corresponding with power vectors p1, p2;
the crossover combines the power levels in the same position of p1, p2 for generating two offspring
characterized by new power vectors p3, p4 that hopefully are associated with higher fitness value.

With the aim of evaluating the effect of crossover, we define the measure ∆COV(p, ps = Pl) ∈ Z
to represent the variation in the number of covered users that is caused by changing the power value
ps in position s of a power vector p to a value Pl ∈ P , while keeping all other power values unchanged.
Exploiting measure ∆COV(p, ps = Pl), we operate the following crossover, which tries to make p3

the best individual in the offspring. When the crossover starts, p3 and p4 have all elements equal to 0.
Then, by following an increasing order of the index s from 1 to |S| and, for each s, of the index d from
1 to |D|, each value 0 inherits the power value of one of the two parents in the same position. More
in detail, let us assume to focus on the crossover procedure for a position (σ, δ) with σ ∈ {1, . . . , |S|}
and δ ∈ {1, . . . , |D|}: For values of s ∈ {1, . . . , |S|} such that s < σ and, for fixed σ, for values of
d ∈ {1, . . . , |D|} such that d < δ, the crossover has been operated and thus the vectors p3, p4 include
power levels inherited by the parents p1, p2; in contrast, positions corresponding to values s ≥ σ and,
for fixed σ, to values d ≥ δ have not yet been processed and are thus still equal to 0.

The inheritance of power values of p3 and p4 from their parents p1 and p2 is set according to
these rules:

p3
sd =

{
p1

sd if ∆COV(p3, p3
sd = p1

sd) ≥ ∆COV(p3, p3
sd = p2

sd)

p2
sd otherwise

p4
sd =

{
p1

sd if ∆COV(p3, p3
sd = p1

sd) < ∆COV(p3, p3
sd = p2

sd)

p2
sd otherwise

which lead p3 to inherit the power values offering the best variation in coverage ∆COV.
In addition to crossover, we also provide for varying the values of power vectors through mutation,

since it allows the ability to more effectively explore the set of solutions and helps to avoid the trap
of local optimal solutions. To implement mutation, at every iteration, we select bγ · |POP|c with
0 < γ < 1 individuals in a random way. After this, we randomly select |L| · |D| power levels and we
change them to the immediately lower power value included in P . The aim of this mutation procedure
is to create individuals that grant the same coverage but using lower power emission: this is beneficial
since it allows the ability to reduce interference among stations. When some crossover or mutation
implies a violation of the constraint imposing a maximum difference between powers in adjacent
directions of a station, we reduce the power to the closest value in P that allows the ability to satisfy
the constraint.

As the last step, some individuals die and are excluded from POP. In particular, we remove the
2 · bk ·m/2c individuals with lowest fitness function values.

4.3. ILP Improvement Heuristic

Using the best solution found by the GA as basis, we attempt to find a better solution by running
an ILP heuristic that corresponds to executing a very large neighborhood search in an exact way, i.e.,
modeling the search as an ILP problem solved through a state-of-the-art solver [11]. This is based on
the observation that, in contrast to the complete hard-to-solve problem, suitable subproblems of the
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complete problem, derived through fixing the value of a subset of variables, may be efficiently solved
by a state-of-the-art solver.

In the ILP heuristic, we use a modified Relaxation Induced Neighborhood Search (RINS)
(see [62] for a full description of the algorithm). Let (x̄, z̄) be a feasible solution of the strengthened
power-indexed problem DVB-PI+ and let (xTLR, zTLR) be an optimal solution of the linear relaxation,
strengthened by the cuts found by CPLEX in the root node of the branch-and-bound tree. Moreover,
let (x̄, z̄)j, (xTLR, zTLR)j denote the j-th component of the vectors.

The modified RINS that we use and that we denote by mod-RINS corresponds to solving a
subproblem where we a-priori fix the value of those decision variables whose value in (x̄, z̄) and
(xTLR, zTLR) differs of at most ρ : 0 < ρ < 1, as specified by the rules that follow:

(x̄, z̄)j = 0 ∧ (xTLR, zTLR) ≤ ρ =⇒ (x, z)j = 0

(x̄, z̄)j = 1 ∧ (xTLR, zTLR) ≥ 1− ρ =⇒ (x, z)j = 1.

The resulting problem is then passed to CPLEX, to which a solution time limit is imposed.

5. Computational Tests

For testing the performance of the new matheuristic, we considered 25 instances corresponding
with regional DVB-T networks from Italy. Every instance corresponds to a single frequency network
that is based on terrestrial DVB technology and is made up of a number of stations with a power
emission belonging to the range [−40, 26] dBkW. The number of stations involved in the instances
varies from 127 to more than 500 and the number of testpoints vary from about 2000 to more than 7000.
We conducted the computational tests on a notebook equipped with the Windows operating system,
a 2.70 GHz Intel i7 and 8 GB of RAM. In order to solve the MILP and ILP problems, we used the
optimization software IBM ILOG CPLEX 12.5. We implemented the optimization model and solution
algorithms by means of C/C++, using IBM Concert Technology for interfacing the code with CPLEX.

A time limit of 3600 s was set for CPLEX when solving the instances. Also the new matheuristic
runs with a time limit of 3600 s. Such computational time budget is distributed in the following way
among the two main phases: the GA phase is subject to a time limit of 3000 s, while the ILP-based
improvement heuristic exploiting mod-RINS is subject to a time limit of 600 s. The parameters of
the algorithm were set as follows, on the basis of preliminary computational experience: (1) In every
tournament selection we use k = 10 groups; (2) each group includes a fraction α = 0.1 of the population
POP; (3) the best m = 10 individuals of every group are chosen for crossover; (4) after having generated
the new individuals, a fraction γ = 0.2 of the population experiences mutation; (5) in mod-RINS,
we set ρ = 0.1.

In Table 2, we report the results of the computational tests. ID is the identifier of the instances.
COV-CPLEX% is the percentage of population covered by the best solution found by the optimizer
CPLEX within the time limit. COV-mathGA% and COV-mathGA+ILP% are instead the percentages of
population covered by the matheuristic before and after the execution of the mod-RINS improvement
heuristic. Finally, ∆COV-mathGA% and ∆COV-mathGA+ILP% denote the percentage coverage increase
that the matheuristic grant with respect to CPLEX before and after mod-RINS.

Considering the values reported in Table 2, it is evident that even an effective and efficient solver
like CPLEX finds difficulties in getting feasible solutions of high quality for the DVB model and that for
the instances of larger size (with ID from I16 to I25) the percentage coverage is quite low. In contrast,
the new matheuristic is able to identify solutions of much higher quality for all instances, both before
and after the application of the mod-RINS improvement heuristic. Specifically, before the execution
of mod-RINS, the matheuristic grants an average percentage improvement that is about 25% and
that reaches almost 40% in the best case. After the execution of the improvement phase, the average
percentage increase raises to 48% with peaks that exceed 60% improvement with respect to CPLEX.
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As discussed in the subsection devoted to strengthening the model, this can be explained by the fact
that CPLEX must face the combined effect of complicating signal-to-interference constraints with
a large number of stations involved, ill-conditioned matrices and weak big-M formulations, which
greatly slow the convergence to optimal solutions, whereas the matheuristic can much faster and
more effectively explore the discrete space of power emissions. The improvements that we are able
to obtain are very remarkable, especially considering that, when dealing with instances that involve
large portions of territories like our regional instances, even small increases in coverage may entail
that thousands of additional users are able to obtain the service.

Table 2. Computational results.

ID COV-CPLEX% COV-mathGA% ∆COV-mathGA% COV-mathGA+ILP% ∆COV-mathGA+ILP%

I1 48.6 60.5 24.5 70.6 45.3
I2 55.3 67.9 22.7 77.4 40.0
I3 54.7 65.5 19.7 78.9 44.3
I4 49.2 57.2 16.3 70.6 43.5
I5 50.0 66.8 33.7 75.5 51.1
I6 56.4 69.9 24.0 80.8 43.3
I7 53.9 70.0 30.0 83.1 54.1
I8 62.4 67.6 8.4 84.3 35.2
I9 55.5 75.2 35.5 85.3 53.8

I10 46.3 64.7 39.8 73.4 58.7
I11 57.2 65.4 14.3 80.2 40.2
I12 57.7 73.9 28.0 79.6 37.9
I13 51.4 71.6 39.3 81.7 59.0
I14 62.5 70.3 12.5 82.7 32.4
I15 58.8 71.5 21.7 84.0 42.8
I16 39.5 50.9 28.9 64.0 62.2
I17 46.3 58.5 26.3 68.0 47.0
I18 48.9 57.7 18.0 76.2 55.9
I19 35.8 45.8 27.9 51.7 44.5
I20 33.0 43.2 31.0 49.4 49.9
I21 38.5 53.3 38.6 63.5 65.0
I22 43.0 50.7 18.0 66.4 54.5
I23 36.6 43.3 18.4 50.8 38.8
I24 40.3 51.4 27.7 61.0 51.4
I25 41.7 54.9 30.9 64.7 55.2

6. Conclusions and Future Work

Optimally designing DVB-T networks by means of Mathematical Programming is a very
challenging task and resulting models may prove very tough even for state-of-the-art optimization
commercial software. With the aim of tackling the unsatisfying performance of commercial solvers,
we presented a new matheuristic for DVB network design that combines mathematical optimization
with exact and heuristic solution strategies. Specifically, we combined a genetic algorithm with a
linear relaxation-based variable fixing strategy and an exact large neighborhood search formulated
as an Integer Linear Programming problem. The obtained matheuristic refers to a Power-Indexed
formulation, a strong and numerically stable pure Binary Linear Programming model for a DVB
network design that is obtained through discretization of the power emissions of the DVB stations
from a Mixed Integer Linear Programming model that explicitly include signal-to-interference ratios.
Computational tests on realistic instances indicate that our matheuristic is able to identify solutions
of much higher quality than those identified by a state-of-the-art solver, thanks to a more efficient
exploration of the power emission solution space.

As future work, we plan to further increase the performance of the matheuristic, in particular
through integration of it within a branch-and-cut approach. To this end, we would plan also to consider
more refined lifting techniques of the considered GUB cover inequalities, to obtain stronger valid
inequalities that could improve the upper bounds available on the problem. Moreover, we would
aim also at improving the lower bounds, by studying refinements of the matheuristic, in particular
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by investigating alternative integrations of the GA-phase with suitable exact ILP searches. Last but
not least, we also plan to tackle the uncertainty of signal propagation by means of Multiband Robust
Optimization [63,64], a robust model that allows the ability to easily represent empirical discrete
distributions commonly built in real-world applications on the basis of historical data.
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