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Abstract: In this paper, we first propose a new TVL2 regularization model for image restoration,
and then we propose two iterative methods, which are fixed-point and fixed-point-like methods,
using CGLS (Conjugate Gradient Least Squares method) for solving the new proposed TVL2 problem.
We also provide convergence analysis for the fixed-point method. Lastly, numerical experiments
for several test problems are provided to evaluate the effectiveness of the proposed two iterative
methods. Numerical results show that the new proposed TVL2 model is preferred over an existing
TVL2 model and the proposed fixed-point-like method is well suited for the new TVL2 model.

Keywords: image restoration; total variation; fixed-point method; non-expansive operator;
proximity operator

1. Introduction

Image restoration is the fundamental problem in image processing that recovers a true image
from a blurry and noisy image. The problem of image restoration usually reduces to find the optimal
solution u ∈ Rm based on the following model:

f = Au + ε, (1)

where A ∈ Rm×m is a blurring operator, ε ∈ Rm is an unknown white Gaussian noise with variance σ,
and f and u denote the observed degraded image and the original image, respectively. Our purpose is
to restore the original image u from blurred and noisy image f as well as possible.

Over the past few decades, optimization techniques and various variation models [1–3]
have been widely studied and applied in many image processing fields. The well-known ROF
(Rudin–Osher–Fatemi) total variation model [3] produces the deblurred image given by the following
minimization problem:

min
u

{
1
2
‖Au− f ‖2

2 + βTV(u)
}

, (2)

where TV(u) is the total variation (TV) of u and β > 0 is a regularization parameter.
Many computational methods for solving problem (2) have been proposed in recent years.

For example, the time-marching PDE method, the subgradient descent method, the Newton-like
method, the second-order cone programming method, the lagged diffusivity fixed-point method,
and the split Bregman method have been proposed by many researchers (see [1,3–13] for details).
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Recently, Chen et al. [14] proposed a fixed-point method for solving the following constrained
TVL2 deblurring problem:

min
u∈C

{
1
2
‖Au− f ‖2

2 +
α

2
‖u‖2

2 + β TV(u)
}

, (3)

where α and β are positive constants, and C is a closed convex subset of Rn2
. In this paper, we only

consider the case for C = Rn2
. That is, we only consider the unconstrained TVL2 problem (3) with

C = Rn2
. This approach motivates us to propose a new TVL2 deblurring model

min
u∈Rn2

{
1
2
‖Au− f ‖2

2 + α‖u‖2 + β TV(u)
}

, (4)

where A ∈ Rn2×n2
is a blurring matrix, u ∈ Rn2

is an original image, f ∈ Rn2
is a degraded image,

α and β are positive regularization parameters, and TV(u) stands for the isotropic TV of u. Note that
the new TVL2 model (4) uses a non-smooth term ‖u‖2 instead of using a smooth term ‖u‖2

2 for the
purpose of better preserving the edges and corners in the restored images. The isotropic TV of u is
defined by

TV(u) =
n2

∑
i=1

√
|(∇u)x

i |2 + |(∇u)y
i |2 =

n2

∑
i=1

∥∥∥∥∥
(

(∇u)x
i

(∇u)y
i

)∥∥∥∥∥
2

,

where the discrete gradient operator ∇ : Rn2 → R2n2
is defined by

(∇u)i = ( (∇u)x
i , (∇u)y

i ), i = 1, 2, · · · , n2

with

(∇u)x
i =

{
0 if i mod n = 1,

ui − ui−1 if i mod n 6= 1,
and (∇u)y

i =

{
0 if i ≤ n,

ui − ui−n if i > n.

Notice that TVL2 problems (3) have a unique solution since its objective function is strictly convex,
while the new TVL2 problem (4) may not have a unique solution since its objective function is just
convex, not strictly convex.

The purpose of this paper is to propose two iterative methods, which are fixed-point and
fixed-point-like methods, using CGLS (Conjugate Gradient Least Squares method [15]) for solving
the new proposed TVL2 problem (4). This paper is organized as follows. In Section 2, we introduce
some definitions and properties that are used in this paper. In Section 3, we first propose a fixed-point
method using CGLS for solving TVL2 problem (4), and then we provide convergence analysis for the
fixed-point method. In Section 4, we propose a fixed-point-like method using CGLS for solving TVL2
problem (4). In Section 5, we just provide the split Bregman methods for solving TVL2 problems (3)
and (4) to see how efficiently the fixed-point and fixed-point-like methods perform. In Section 6,
we describe how to carry out numerical experiments for several test problems in order to evaluate the
effectiveness of the proposed two iterative methods. This can be done by comparing their performances
for TVL2 problem (4) with those of the fixed-point method proposed in [14] for TVL2 problem (3) and
the split Bregman methods for TVL2 problems (3) and (4). In Section 7, we provide numerical results
for all test problems. Lastly, some conclusions are drawn.

2. Preliminaries

In this section, we briefly refer to some definitions and important properties which will be the
foundation for the development of algorithms proposed in this paper.
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Definition 1. Let ϕ : Rn → R∪ {+∞} be a proper, convex, and lower semi-continuous function (see [16]).
The proximity operator of ϕ at x ∈ Rn is defined by

proxϕ(x) = argmin
{

1
2
‖u− x‖2

2 + ϕ(u) : u ∈ Rn
}

. (5)

Definition 2. Let ϕ : Rn → R ∪ {+∞} be a proper, convex, and lower semi-continuous function.
The subdifferential of ϕ at x ∈ Rn is defined by

∂ϕ(x) = {y ∈ Rn : ϕ(z) ≥ ϕ(x) + 〈y, z− x〉, ∀z ∈ Rn}. (6)

Definition 3. A nonlinear operator H : Rn → Rn is called non-expansive if for any x, y ∈ Rn,

‖H(x)− H(y)‖2 ≤ ‖x− y‖2. (7)

Definition 4. A nonlinear operator H : Rn → Rn is called firmly non-expansive if for any x, y ∈ Rn,

‖H(x)− H(y)‖2
2 ≤ 〈x− y, H(x)− H(y)〉. (8)

It is easy to show that a firmly non-expansive operator is non-expansive. The following proposition
shows a relationship between the proximity operator and the subdifferential of a convex function.

Proposition 1. If ϕ is a convex function defined on Rn and x, y ∈ Rn, then (see [16–18])

y ∈ ∂ϕ(x) ⇔ x = proxϕ(x + y). (9)

Let ϕ : R2n2 → R be a convex function defined by

ϕ(d) =
n2

∑
i=1

∥∥∥∥∥
(

di

dn2+i

)∥∥∥∥∥
2

for each d = (di) ∈ R2n2
, (10)

and let B be a 2n2 × n2 matrix that represents a discrete gradient operator ∇, which is

B =

(
In ⊗ D
D⊗ In

)
, (11)

where In is the n× n identity matrix, ⊗ denotes the Kronecker product, and D is the first order finite
difference matrix of order n

D =



0 0 · · · · · · 0
−1 1 · · · · · · 0

...
. . . . . . . . .

...
0 · · · −1 1 0
0 · · · 0 −1 1


.

Then, the isotropic TV of u ∈ Rn2
can be expressed as

TV(u) = (ϕ ◦ B)(u). (12)

We now provide the fixed-point method, called Algorithm 1, for solving TVL2 problem (3),
which was proposed by Chen et al. [14].
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Algorithm 1 Fixed-point method for TVL2 problem (3)

1: Given : observed image f , positive parameters α, β, λ and κ ∈ (0, 1)
2: Initialization : v0 = 0 and u0 = f
3: for k = 0 to maxit do
4: Solve (AT A + αI)uk+1 = AT f − λBTvk for uk+1

5: vk+1 = κvk + (1− κ)(I − prox β
λ ϕ

)(vk + Buk+1)

6: if ‖u
k+1−uk‖2
‖uk+1‖2

< tol then
7: Stop
8: end if
9: end for

Notice that line 4 of Algorithm 1 is solved using CGLS instead of using CG (Conjugate
Gradient method [19–21]) since the linear system in line 4 is equivalent to solving the following
least squares problem

min
u

∥∥∥∥∥
(

f
− λ√

α
BTvk

)
−
(

A
√

αI

)
u

∥∥∥∥∥
2

2

.

For all algorithms presented in this paper, maxit denotes the maximum number of iterations,
and tol denotes the tolerance value of the stopping criterion.

3. Fixed-Point Method for TVL2 Problem (4)

In this section, we propose a fixed-point method using CGLS for solving the new TVL2
regularization problem (4). From relation (12), TVL2 problem (4) can be expressed as

min
u∈Rn2

{
1
2
‖Au− f ‖2

2 + α‖u‖2 + β(ϕ ◦ B)(u)
}

. (13)

Using Proposition 1, we can obtain the following property for a solution of TVL2 problem (13).

Theorem 1. If ϕ is a real valued convex function on R2n2
, B is a 2n2 × n2 matrix, A is an n2 × n2 matrix, u is

a solution to model (13), then, for any γ, λ > 0 there exist vectors a ∈ Rn2
and b ∈ R2n2

such that

a = (I − prox 1
γ ‖·‖2

)(u + a), (14)

b = (I − prox β
λ ϕ

)(Bu + b), (15)

(AT A)u = AT f − αγa− λBTb. (16)

Conversely, if there exists γ, λ > 0, a ∈ Rn2
, b ∈ R2n2

and u ∈ Rn2
satisfying Equations (14)–(16), then u is

a solution to model (13).

Proof. Assume that u ∈ Rn2
is a solution to the model (13). By Fermat’s rule in convex analysis for

model (13), we obtain the following equivalent relation for the solution u

0 ∈ AT(Au− f ) + α · ∂(‖ · ‖2)(u) + βBT ◦ (∂ϕ) ◦ (Bu)

= AT(Au− f ) + α · ∂(‖ · ‖2)(u) + BT∂(βϕ)(Bu).
(17)

For any γ, λ > 0, we can choose two vectors a ∈ ∂( 1
γ‖ · ‖2)(u) and b ∈ ∂( β

λ ϕ)(Bu) satisfying

AT(Au− f ) + αγa + λBTb = 0. (18)
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Using Proposition 1, one obtains

u = prox 1
γ ‖·‖2

(u + a) and Bu = prox β
λ ϕ

(Bu + b). (19)

From Equation (19), we obtain Equations (14) and (15). In addition, from Equation (18), we obtain
Equation (16).

Conversely, suppose that there exist γ, λ > 0, a, b and u ∈ Rn2
satisfying Equations (14)–(16).

From Equation (16), we obtain Equation (18). By Proposition 1, Equations (14) and (15) ensure
a ∈ ∂( 1

γ‖ · ‖2)(u) and b ∈ ∂( β
λ ϕ)(Bu), respectively. Using these relations and Equation (18), one obtains

0 = AT(Au− f ) + αγa + λBTb

∈ AT(Au− f ) + α∂(‖ · ‖2)(u) + βBT ◦ (∂ϕ) ◦ (Bu).

Consequently, Equation (17) holds. Thus, u is a solution to model (13).

From Equations (14)–(16) in Theorem 1, we can develop a fixed-point algorithm which converges
to a solution to TVL2 problem (4). We now describe how to develop the fixed-point algorithm. Let u
be an approximate solution to the ill-conditioned linear system (16) in Theorem 1. Then, u can be
expressed as

u = M(AT f − αγa− λBTb), (20)

where M is a symmetric positive semi-definite matrix approximating an inverse of the linear system
matrix in (16). For example, we can choose M = (AT A)†

r , which is a truncated pseudoinverse
of AT A using the r largest positive singular values of AT A. Substituting Equation (20) into
Equations (14) and (15), one obtains

a = (I − prox 1
γ ‖·‖2

)
(
(In2 − αγM)a− λMBTb + MAT f

)
, (21)

b = (I − prox β
λ ϕ

)
(
−αγBMa + (I2n2 − λBMBT)b + BMAT f

)
. (22)

Let us define some operators. For the given convex functions 1
γ‖ · ‖2 on Rn2

and β
λ ϕ on R2n2

,

we define an operator T : R3n2 → R3n2
at a vector (u

v) ∈ R3n2
with u ∈ Rn2

and v ∈ R2n2
as follows:

T
(

u
v

)
=

 (I − prox 1
γ ‖·‖2

) (u)

(I − prox β
λ ϕ

) (v)

 . (23)

We also introduce an affine transformation L : R3n2 → R3n2
defined, for all (a

b) ∈ R3n2
with

a ∈ Rn2
and b ∈ R2n2

, by

L
(

a
b

)
=

(
In2 − αγM −λMBT

−αγBM I2n2 − λBMBT

)(
a
b

)
+

(
MAT f

BMAT f

)
, (24)

and an operator G : R3n2 → R3n2
defined by

G = T ◦ L. (25)

Then, Equations (21) and (22) can be expressed as

w = Gw, (26)

where w = (a
b).
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Proposition 2. The operator G defined by (25) has a fixed point.

Proof. Since a solution of TVL2 problem (13) exists, from Equation (26) and the first part of the proof
of Theorem 1, G has a fixed point.

Lemma 1. If the operator T is defined by Equation (23), then the operator T is non-expansive.

Proof. Note that I − prox 1
γ ‖·‖2

and I − prox β
λ ϕ

are firmly non-expansive and thus non-expansive [7].

For any vectors s = (u
v) ∈ R3n2

and t = (a
b) ∈ R3n2

with u, a ∈ Rn2
and v, b ∈ R2n2

‖T(s)− T(t)‖2
2 =

∥∥∥∥∥∥
 (I − prox 1

γ ‖·‖2
)(u)− (I − prox 1

γ ‖·‖2
)(a)

(I − prox β
λ ϕ

)(v)− (I − prox β
λ ϕ

)(b)

∥∥∥∥∥∥
2

2

=

∥∥∥∥(I − prox 1
γ ‖·‖2

)(u)− (I − prox 1
γ ‖·‖2

)(a)
∥∥∥∥2

2

+

∥∥∥∥(I − prox 1
γ ‖·‖2

)(v)− (I − prox 1
γ ‖·‖2

)(b)
∥∥∥∥2

2

≤ ‖u− a‖2
2 + ‖v− b‖2

2

=

∥∥∥∥∥
(

u− a
v− b

)∥∥∥∥∥
2

2

= ‖s− t‖2
2.

Hence, one obtains ‖T(s)− T(t)‖2 ≤ ‖s− t‖2, which means that the operator T is non-expansive.

Let

c :=

(
MAT f

BMAT f

)
∈ R3n2

, P :=

(
In2

B

)
, R :=

(
αγIn2 0

0 λI2n2

)
.

Then, Label (24) can be expressed as

Lw = (I3n2 − PMPT R)w + c. (27)

Proposition 3. If ϕ is a convex function on R2n2
, B is a 2n2 × n2 matrix, A is an n2 × n2 matrix and α, γ, λ

are positive constants such that ‖I3n2 − PMPT R‖2 ≤ 1, then G is non-expansive.

Proof. Since the operator T is non-expansive by Lemma 1, for all w1, w2 ∈ R3n2
, we have

‖G(w1)− G(w2)‖2 = ‖T(Lw1)− T(Lw2)‖2

≤ ‖Lw1 − Lw2‖2.

By the assumption ‖I3n2 − PMPT R‖2 ≤ 1 and Equation (27), we obtain

‖Lw1 − Lw2‖2 = ‖(I3n2 − PMPT R)(w1 − w2)‖2

≤ ‖I3n2 − PMPT R‖2 ‖w1 − w2‖2

≤ ‖w1 − w2‖2.

Hence, G is non-expansive.

Let S : RN → RN be an operator. Then, the Picard iteration of the operator S is defined by

xi+1 = Sxi (i = 0, 1, 2, · · · )
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for a given vector x0 ∈ RN . For κ ∈ (0, 1), the κ-averaged operator Sκ of S is defined by

Sκ = κ I + (1− κ)S.

Proposition 4 (Optial κ-averaged Theorem). Let C be a closed convex set in R3n2
and let S : C → C be a

non-expansive mapping with at least one fixed point. Then, for any w0 ∈ C and κ ∈ (0, 1), the Picard iteration
of Sκ converges to a fixed point of S (see [22]).

Theorem 2. If ϕ is a convex function, A is an n2 × n2 matrix, B is a 2n2 × n2 matrix and α, γ, λ > 0
are positive constants such that ‖I3n2 − PMPT R‖2 ≤ 1, then for any κ ∈ (0, 1) the Picard iteration of Gκ

converges to a fixed point of G.

Proof. From Propositions 2 and 3, we know that the opertor G has a fixed point and is non-expansive.
Hence, for any w0 ∈ R3n2

and κ ∈ (0, 1), the Picard iteration of Gκ converges to a fixed point of G by
Proposition 4.

For a square matrix K, let ρ(K) denote the spectral radius of K. Then, the following lemma
can be obtained.

Lemma 2. Let ϕ and B be defined by Equations (10) and (11) respectively, and let A be a given n2× n2 blurring
matrix. If we choose α, γ and λ such that

0 < λ = αγ <
2

ρ(PMPT)
,

then ‖I3n2 − PMPT R‖2 ≤ 1 and thus the operator G is non-expansive.

Proof. Since λ = αγ and thus R = λI3n2 , one obtains

I3n2 − PMPT R = I3n2 − λPMPT .

Note that PMPT is a symmetric positive semi-definite matrix. Hence,

‖I3n2 − PMPT R‖2 = ρ(I3n2 − λPMPT)

= max{|1− λ · λmin(PMPT)|, |1− λ · λmax(PMPT)|},

where λmin(PMPT) and λmax(PMPT) denote the minimum and maximaum eigenvalues of PMPT ,
respectively. Since 0 < λ = αγ < 2

ρ(PMPT)
, 0 ≤ λ · λmin(PMPT) < 2 and 0 < λ · λmax(PMPT) < 2.

Hence, one obtains
‖I3n2 − PMPT R‖2 ≤ 1.

Therefore, the operator G is non-expansive by Proposition 3.

Theorem 3. If the assumptions of Lemma 2 hold and κ ∈ (0, 1), then the Picard iteration of Gk converges to a
fixed point of G.

Proof. The proof follows from Lemma 2 and Theorem 2.

From Theorem 2 and the Picard iteration of the κ-averaged operator Gκ = κ I + (1− κ)G, we can
obtain a fixed-point method, called Algorithm 2, which converges to a solution to TVL2 problem (4).
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Algorithm 2 Fixed-point method for TVL2 problem (4)

1: Given : observed image f , positive parameters α, β, γ, λ and κ ∈ (0, 1)
2: Initialization : a0 = 0, b0 = 0 and u0 = f
3: for k = 0 to maxit do
4: âk+1 =

(
I − prox 1

γ ‖·‖2

) (
uk + ak)

5: ak+1 = κak + (1− κ)âk+1

6: b̂k+1 =

(
I − prox β

λ ϕ

) (
Buk + bk)

7: bk+1 = κbk + (1− κ)b̂k+1

8: Solve AT Auk+1 = AT f − αγak+1 − λBTbk+1 for uk+1

9: if ‖u
k+1−uk‖2
‖uk+1‖2

< tol then
10: Stop
11: end if
12: end for

The linear system in line 8 of Algorithm 2 is ill-conditioned, so we need to consider how to find an
approximate solution to the ill-conditioned linear system. A typical method for finding an approximate
solution to the linear system is

uk+1 = M (AT f − αγak+1 − λBTbk+1),

where M = (AT A)†
r . However, computation of (AT A)†

r is very time-consuming when A is large. Thus,
we want to propose a different approach for finding an approximate solution to the linear system in
line 8 of Algorithm 2. We first split the coefficient matrix AT A into

AT A = (AT A + δD)− (δD), (28)

where δ is a positive constant and D = diag(AT A) is a diagonal part of AT A. Then, the ill-conditioned
linear system can be solved using the following iterative method:

Inner Solver
Choose y1 = uk

for ` = 1 to maxl
Solve (AT A + δD)y`+1 = δDy` + AT f − αγak+1 − λBTbk+1 for y`+1

end for
uk+1 = y`+1,

where uk refers to the restored image computed at the previous kth step, and the optimal parameter
δ > 0 is chosen by numerical tries. Semi-convergence analysis for Inner Solver has been studied by
Han and Yun [23]. Algorithm 2 is an iterative method that converges to a solution to TVL2 problem (4)
as k→ ∞, so we do not have to get an accurate solution to the linear system in line 8 of Algorithm 2.
For this reason, we have used maxl = 1 for Inner Solver.

Notice that the linear system in Inner Solver is equivalent to solving the following least
squares problem:

min
u

∥∥∥∥∥
(

f
1√
δ

D−
1
2 (δDy` − αγak+1 − λBTbk+1)

)
−
(

A√
δD

1
2

)
u

∥∥∥∥∥
2

2

. (29)

Hence, the linear system in Inner Solver is solved by applying the CGLS to (29).

4. Fixed-Point-like Method for TVL2 Problem (4)

In this section, we propose a fixed-point-like method using CGLS for solving the new
TVL2 problem (4) that can be obtained by modifying Algorithm 2. Notice that Algorithm 2
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computes âk+1 and ak+1 before the solution step of finding uk+1 (see lines 4 and 5 of Algorithm 2).
However, the fixed-point-like method to be proposed in this section computes âk+1 and ak+1 after the
solution step of finding uk+1. Below, we describe how to develop the fixed-point-like method in detail.
We first split line 4 of Algorithm 2 into

âk+1 = uk + ak+ 1
2 , (30)

where ak+ 1
2 = ak − prox 1

γ ‖·‖2

(
uk + ak). Replacing the old value uk of Equation (30) with the new value

uk+1, one obtains the following equation:

âk+1 = uk+1 + ak+ 1
2 . (31)

Then, the solution step (i.e., line 8 of Algorithm 2) is changed to

AT Auk+1 = AT f − αγâk+1 − λBTbk+1, (32)

where âk+1 is computed using Equation (31) instead of using Equation (30). Substituting Equation (31)
into Equation (32), one obtains

(AT A + αγI)uk+1 = AT f − αγak+ 1
2 − λBTbk+1. (33)

After finding uk+1 from Equation (33), we compute âk+1 using Equation (31) and ak+1 = κak + (1−
κ)âk+1. By incorporating the above ideas into Algorithm 2, we can obtain a fixed-point-like method,
called Algorithm 4, for solving TVL2 problem (4).

In addition, notice that the linear system in line 7 of Algorithm 3 is equivalent to solving the
following least squares problem:

min
u

∥∥∥∥∥
(

f
− 1√

αγ (αγak+ 1
2 + λBTbk+1)

)
−
(

A
√

αγI

)
u

∥∥∥∥∥
2

2

. (34)

Hence, the linear system in line 7 of Algorithm 3 is solved using the CGLS instead of using the CG.

Algorithm 3 Fixed-point-like method for TVL2 problem (4)

1: Given : observed image f , positive parameters α, β, γ, λ and κ ∈ (0, 1)
2: Initialization : a0 = 0, b0 = 0 and u0 = f
3: for k = 0 to maxit do
4: ak+ 1

2 = ak − prox 1
γ ‖·‖2

(
uk + ak)

5: b̂k+1 =

(
I − prox β

λ ϕ

) (
Buk + bk)

6: bk+1 = κbk + (1− κ)b̂k+1

7: Solve (AT A + αγI)uk+1 = AT f − αγak+ 1
2 − λBTbk+1 for uk+1

8: âk+1 = uk+1 + ak+ 1
2

9: ak+1 = κak + (1− κ)âk+1

10: if ‖u
k+1−uk‖2
‖uk+1‖2

< tol then
11: Stop
12: end if
13: end for

5. Split Bregman Methods for TVL2 Problems (3) and (4)

In this section, we just provide the alternating split Bregman methods for solving the TVL2
problems (3) and (4) in order to evaluate the performance of Algorithms 2 and 3. For more details
about the alternating split Bregman method as well as its convergence analysis, we refer to [5,8].
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The following Algorithms 4 and 5 are the alternating split Bregman methods corresponding to the
TVL2 problems (3) and (4), respectively.

As was done in line 7 of Algorithm 3, the linear systems in line 4 of Algorithms 4 and 5 are solved
using the CGLS instead of using the CG.

Algorithm 4 Split Bregman method for TVL2 problem (3)

1: Given : observed image f , positive parameters α, β, λ
2: Initialization : a0 = 0, b0 = 0 and u0 = f
3: for k = 0 to maxit do
4: Solve (AT A + λBT B + αI)uk+1 = AT f + λBT(ak − bk) for uk+1

5: ak+1 = prox β
λ ϕ

(
Buk+1 + bk)

6: bk+1 = bk + Buk+1 − ak+1

7: if ‖u
k+1−uk‖2
‖uk+1‖2

< tol then
8: Stop
9: end if

10: end for

Algorithm 5 Split Bregman method for TVL2 problem (4)

1: Given : observed image f , positive parameters α, β, λ, γ
2: Initialization : a0 = b0 = 0, c0 = d0 = 0 and u0 = f
3: for k = 0 to maxit do
4: Solve (AT A + λBT B + γI)uk+1 = AT f + λBT(dk − ck) + γ(ak − bk) for uk+1

5: ak+1 = prox α
γ ‖·‖2

(
uk+1 + bk)

6: dk+1 = prox β
λ ϕ

(
Buk+1 + ck)

7: bk+1 = bk + uk+1 − ak+1

8: ck+1 = ck + Buk+1 − dk+1

9: if ‖u
k+1−uk‖2
‖uk+1‖2

< tol then
10: Stop
11: end if
12: end for

6. Numerical Experiments

In this section, we describe how to carry out numerical experiments for several test problems to
evaluate the efficiency of two iterative methods, called Algorithms 2 and 3, using CGLS for solving
the new proposed TVL2 problem (4). Performance of Algorithms 2 and 3 is evaluated by comparing
their numerical results with those of the existing fixed-point method called Algorithm 1 and the split
Bregman methods called Algorithms 4 and 5.

All numerical tests have been performed using Matlab R2016a on a personal computer equipped
with Intel Core i5-3337 1.8 GHz CPU and 8 GB RAM. For numerical experiments, we have used
three types of PSFs (point spread functions) which are Gaussian blur with standard deviation 9 and
Average blur and Motion blur of size 9× 9. PSF arrays P for Gaussian blur with standard deviation
9 and Average blur and Motion blur of size 9 × 9 are generated by the built-in Matlab function
f special(′Gaussian′, [9, 9], 9), f special(′average′, 9) and

P = zeros(9); P(4 : 6, :) = f special(′motion′, 9, 1),

respectively. The blurred and noisy image f is generated by

f = A · vec(X) + vec(E),

where A stands for the blurring matrix that can be generated by the PSF array P according to the
reflexive boundary condition, and E is the Gaussian white noise with mean 0 and standard deviation
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3 that can generated using Matlab function E = 3× randn(m, n), where (m, n) denotes the size of
true image.

In order to illustrate efficiency of the proposed algorithms, we have used four test images with
an intensity range of [0, 255] such as Cameraman, Lena, House, and Boat with pixel size 256× 256.
To evaluate the quality of the restored images, we have used the peak signal-to-noise ratio (PSNR)
between the original image and restored image, which is defined by

PSNR = 10 log10

(
maxi,j|uij|2 ·m · n
‖u− ũ‖2

F

)
,

where ‖ · ‖F represents the Frobenius norm, ũ denotes the restored image of the original image u with
size m× n, and uij stands for the value of the original image u at the pixel point (i, j). In general, the
larger PSNR stands for the better quality of the restored image.

For all numerical experiments, an initial image was set to the blurred and noisy image f , κ =

1× 10−6, maxit = 150, and tol is set to 5× 10−4 (for Algorithms 1 and 5), 2× 10−4 (for Algorithm 4) or
1× 10−3 (for Algorithms 2 and 3). For the CGLS method that is used to solve a linear system every
iteration of Algorithms 1–5, the tolerance for stopping criterion is set to 5× 10−2 (for Algorithms 1, 4
and 5) or 1× 10−3 (for Algorithms 2 and 3), and the maximum number of iterations is set to 60.

7. Numerical Results

In this section, we provide numerical results for four test images that are listed in Tables 1–4 and
Figure 1. In Tables 1–4, “Alg” represents the algorithm number to be used, “P0” represents the PSNR
values for the blurred and noisy image f , “PSNR” represents the PSNR values for the restored image,
“Iter” denotes the number of iterations required for Algorithms 1–5, the values in parentheses under
the “Iter” column refer to the average number of iterations for CGLS, and “α, β, γ, λ” and “δ” denote
parameters that are chosen by numerical tries. Notice that, according to Theorem 1, the parameters
α, β, γ, λ should be chosen appropriately for good performance of the fixed-point methods.

As can be seen in Tables 1–4, Algorithm 3 restores the true image better than Algorithms 1 and 2.
This means that the fixed-point-like method for TVL2 problem (4) restores the true image better than
the fixed-point methods for TVL2 problems (3) and (4). The linear system in Algorithm 3 that is
obtained by computing ak+1 after the solution step of finding uk+1 is well-conditioned, while the linear
system in Algorithm 2 is ill-conditioned. This is the reason why Algorithm 3 restores the true image
significantly better than Algorithm 2. Since PSNR values of Algorithm 2 are about 0.3 to 1.0 smaller
than those of Algorithm 3 for all test images, numerical results of Algorithm 2 are not provided for
House and Boat images in Tables 3 and 4. Figure 1 shows the restored images by the fixed-point
method, called Algorithm 1, for TVL2 problem (3) and the fixed-point-like method, called Algorithm 3,
for TVL2 problem (4).

The fixed-point method (Algorithm 1) for the TVL2 model (3) performs worse than the
corresponding split Bregman method (Algorithm 4), while the fixed-point-like method (Algorithm 3)
for the TVL2 model (3) performs almost as well as the corresponding split Bregman method
(Algorithm 5). Note that both the split Bregman methods for the TVL2 models (3) and (4) perform
the same for almost all cases. When considering the number of iterations required for the CGLS,
the total number of iterations for Algorithm 3 is less than that of Algorithm 1. Each iteration of
Algorithms 1–3 requires one linear system solver CGLS and two matrix-times-vector operations that
are the main time-consuming kernels, and each iteration of CGLS requires two matrix-times-vector
operations. In addition, there are some additional vector-update operations that can be negligible as
compared with matrix-times-vector operation. This means that the execution time of Algorithm 3 for
the new TVL2 problem (4) is less than that of Algorithm 1 for TVL2 problem (3). For example, for the
Cameraman image with Gaussian blur, the CPU times for Algorithms 1 and 3 are about 68 and 42
seconds, respectively.
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Table 1. Numerical results for Cameraman image

Blur P0 Alg α β γ λ δ tol PSNR Iter

1 0.0016 0.12 0.00041 5× 10−4 25.17 67(47)
2 1.15 0.135 0.05 0.01 4.2 1× 10−3 24.60 34(9)

Gaussian 20.85 3 1.15 0.135 0.05 0.01 1× 10−3 25.51 132(8)
4 0.00001 0.135 0.02 2× 10−4 25.53 56(10)
5 0.15 0.14 0.005 0.008 5× 10−4 25.52 28(13)

1 0.0016 0.13 0.00041 5× 10−4 25.24 58(48)
2 0.75 0.14 0.095 0.0095 4.2 1× 10−3 24.64 33(9)

Average 20.76 3 0.75 0.14 0.095 0.0095 1× 10−3 25.59 120(8)
4 0.00001 0.145 0.02 2× 10−4 25.60 42(14)
5 0.01 0.14 0.002 0.009 5× 10−4 25.61 27(15)

1 0.0017 0.22 0.00049 5× 10−4 28.05 51(36)
2 0.85 0.23 0.085 0.002 1.3 1× 10−3 27.52 41(7)

Motion 21.85 3 0.85 0.23 0.085 0.002 1× 10−3 28.57 67(12)
4 0.00001 0.24 0.03 2× 10−4 28.51 36(7)
5 0.01 0.24 0.03 0.003 5× 10−4 28.59 37(10)

Table 2. Numerical results for Lena image

Blur P0 Alg α β γ λ δ tol PSNR Iter

1 0.0016 0.17 0.0004 5× 10−4 26.17 69(48)
2 1.9 0.17 0.085 0.01 6.2 1× 10−3 25.89 35(8)

Gaussian 22.55 3 1.9 0.17 0.085 0.01 1× 10−3 26.22 92(5)
4 0.00001 0.17 0.09 2× 10−4 26.29 66(5)
5 0.01 0.175 0.00009 0.04 5× 10−4 26.29 28(7)

1 0.0016 0.17 0.0004 5× 10−4 26.20 69(48)
2 1.9 0.18 0.075 0.0095 6.2 1× 10−3 25.89 36(8)

Average 22.44 3 1.9 0.18 0.075 0.0095 1× 10−3 26.27 107(5)
4 0.00001 0.20 0.09 2× 10−4 26.33 63(5)
5 0.01 0.180 0.00010 0.04 5× 10−4 26.33 28(8)

1 0.0017 0.24 0.0005 5× 10−4 28.28 57(37)
2 1.1 0.26 0.075 0.0075 1.3 1× 10−3 28.02 32(7)

Motion 23.06 3 1.1 0.26 0.075 0.0075 1× 10−3 28.45 46(11)
4 0.00001 0.26 0.07 2× 10−4 28.46 43(5)
5 0.01 0.265 0.00010 0.025 5× 10−4 28.46 18(8)

Table 3. Numerical results for House image

Blur P0 Alg α β γ λ tol PSNR Iter

1 0.0020 0.20 0.00051 5× 10−4 30.09 71(41)
Gaussian 24.19 3 3.2 0.20 0.075 0.02 1× 10−3 30.30 82(4)

4 0.00001 0.20 0.13 2× 10−4 30.52 56(5)
5 0.01 0.210 0.0001 0.055 5× 10−4 30.52 24(7)

1 0.0020 0.20 0.00051 5× 10−4 30.02 58(41)
Average 24.05 3 3.1 0.19 0.07 0.0095 1× 10−3 30.24 117(4)

4 0.00001 0.20 0.13 2× 10−4 30.50 56(5)
5 0.01 0.215 0.0001 0.0055 5× 10−4 30.50 24(7)

1 0.0017 0.41 0.00051 5× 10−4 32.87 68(31)
Motion 27.01 3 1.5 0.55 0.045 0.01 1× 10−3 33.32 82(12)

4 0.00001 0.50 0.60 2× 10−4 33.42 53(6)
5 0.01 0.520 0.0020 0.100 5× 10−4 33.52 18(6)
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Table 4. Numerical results for Boat image

Blur P0 Alg α β γ λ tol PSNR Iter

1 0.0016 0.12 0.00041 5× 10−4 25.13 60(49)
Gaussian 21.28 3 2.5 0.13 0.07 0.009 1× 10−3 25.17 58(6)

4 0.00001 0.14 0.11 2× 10−4 25.29 74(5)
5 0.10 0.12 0.0003 0.075 5× 10−4 25.31 36(6)

1 0.0016 0.12 0.00041 5× 10−4 25.19 54(50)
Average 21.19 3 2.4 0.135 0.075 0.008 1× 10−3 25.24 62(5)

4 0.00001 0.13 0.18 2× 10−4 25.38 85(5)
5 0.01 0.130 0.0001 0.070 5× 10−4 25.38 35(7)

1 0.0018 0.24 0.00052 5× 10−4 27.70 54(36)
Motion 23.32 3 0.6 0.265 0.09 0.02 1× 10−3 27.87 34(14)

4 0.00001 0.26 0.12 2× 10−4 27.91 52(5)
5 0.01 0.255 0.0001 0.050 5× 10−4 27.91 22(4)

True image Blurred and noisy image Restoration by Algorithm 1 Restoration by Algorithm 3

True image Blurred and noisy image Restoration by Algorithm 1 Restoration by Algorithm 3

True image Blurred and noisy image Restoration by Algorithm 1 Restoration by Algorithm 3

True image Blurred and noisy image Restoration by Algorithm 1 Restoration by Algorithm 3

Figure 1. Restored images by Algorithms 1 and 3 (The first row images are Cameramen images for
Gaussian blur, the second row images are Lena images for Motion blur, the third row images are House
images for Motion blur, and the fourth row images are Boat images for Average blur).
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8. Conclusions

In this paper, we first proposed a new TVL2 regularization model (4) for image restoration, and
then we proposed the fixed-point method (Algorithm 2) and the fixed-point-like method (Algorithm 3)
for solving TVL2 problem (4). According to numerical experiments, the fixed-point-like method for the
new TVL2 problem (4) restores true image better than the fixed-point method for TVL2 problem (4).
The reason for this is that the linear system in line 7 of Algorithm 3 is well-conditioned and ak+1 is
computed after the solution step of finding uk+1, i.e., ak+1 is computed using the new value of uk+1

instead of using the old value of uk.
Both of the split Bregman methods for TVL2 problems (3) and (4) perform the same for almost all

cases, while the fixed-point-like method for TVL2 problem (4) performs better than the fixed-point
method for TVL2 problem (3). It can be also seen that the execution time of the fixed-point-like method
for TVL2 problem (4) is less than that of the fixed-point method for TVL2 problem (3). Hence, it can be
concluded that the new proposed TVL2 model (4) for image restoration is preferred over the TVL2
model (3), and the proposed fixed-point-like method (Algorithm 3) is well suited for the new TVL2
model (4).

The fixed-point-like method and TVL2 model (4) proposed in this paper can be applied to the
image inpainting problem or image restoration problem with Poisson noise. Future work will study
these kinds of problems.
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