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Abstract: The development of robotic applications for agricultural environments has several problems
which are not present in the robotic systems used for indoor environments. Some of these problems
can be solved with an efficient navigation system. In this paper, a new system is introduced to
improve the navigation tasks for those robots which operate in agricultural environments. Concretely,
the paper focuses on the problem related to the autonomous mapping of agricultural parcels
(i.e., an orange grove). The map created by the system will be used to help the robots navigate
into the parcel to perform maintenance tasks such as weed removal, harvest, or pest inspection.
The proposed system connects to a satellite positioning service to obtain the real coordinates where
the robotic system is placed. With these coordinates, the parcel information is downloaded from an
online map service in order to autonomously obtain a map of the parcel in a readable format for the
robot. Finally, path planning is performed by means of Fast Marching techniques using the robot or a
team of two robots. This paper introduces the proof-of-concept and describes all the necessary steps
and algorithms to obtain the path planning just from the initial coordinates of the robot.

Keywords: orange groves; autonomous mapping; satellite images; outdoor navigation

1. Introduction

Agriculture is an important industry to the national economy in Spain, Italy, France,
Switzerland, and other countries around the world. In the case of Spain, the primary forms of
property holding are large estates and tiny land plots. According to the 2009 National Agricultural
Census (http://www.ine.es/jaxi/Tabla.htm?path=/t01/p042/ccaa_prov/l0/&file=010101.px&L=0),
64% of the agricultural terrain was held in properties of 5 or more hectares. Those farms are located
in those zones which are mainly devoted to permanent crops: orchards, olive groves, citric groves,
and vineyards. However, only in the area of Valencia (Spain), there are more than 100,000 small farms
with an exploitation area lower than 1 hectare. This represents 50% of the total number of farms located
in Valencia and 20% of the small farms located in Spain.

The agricultural industry is suffering diverse problems which are causing the progressive leave
of fields, groves, and orchards in Spain. The main problems are the ageing of the agricultural active
population, the low incorporation of young people, and the financial crisis suffered in early 2010.
The bitter campaign for the Spanish citrus sector in 2019, where the average price has been around 35%
lower than previous campaigns, is accelerating the abandonment of small citrus groves in Valencia.
This drives to an undesirable scenario where the active and the abandoned farms coexist. A small
active grove next to abandoned ones is more prone to being affected by plagues or, even, wildfires.
Thus, more effective maintenance tasks are needed.
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One possible solution to minimize costs is to automatize maintenance and surveillance tasks.
This can be done by teams of robots in large farms. In most large farms, the structure and the
distribution of elements (e.g., citric trees) are homogeneous and well known. In contrast, in those areas
where the small farms are located, the structure and distribution depend on the owners (see Figure 1),
who usually are not technology-friendly and do not have digital information about their farms. Thus,
to ease the operation of maintenance robots in such kinds of farms, a procedure to automatically
retrieve information about where they have to operate is needed.

Figure 1. Sample of small farms, including abandoned ones, in Valencia (Spain).

Remote sensing can be used to extract information about the farm. Blazquez et al. [1] introduced
a manual methodology for citrus grove mapping using infrared aerial imagery. However, access to
aerial imagery is often limited and using dedicated satellite imagery is not widely used for navigation
tasks. As the authors of Reference [2] stated, multispectral remote imagery can provide accurate weed
maps but the operating costs might be prohibitive.

This paper introduces a proof-of-concept where we target the combination of public satellite
imagery along with parcel information provided by governmental institutions. In particular, the system
uses the maps and orthophotos provided by SIGPAC (Sistema de Información Geográfica de parcelas
agrícolas) to minimize operational costs. The proposed approach in the present paper is similar
to the system introduced in Reference [3] with some differences. First, it uses public open data.
Second, our system adopts only a binarization of the remote image instead of using classifiers
because determining the kind of tree or grove is not critical. Third, the orange tree lines are also
determined in the proposed mapping.

The remaining of this paper is organized as follows. Section 2 shows some related and
state-of-the-art works in this field. Section 3 describes the algorithms to extract satellite imagery
and the mask of the parcel where the path planning is to be determined. Section 4 describes the
steps required to autonomously determine the path planning according to the available information
(reduced satellite imagery, cadastral information, and the current position of the autonomous robots).
Although this work lacks experimental validation, Section 5 shows an example of the intermediate
and final outputs on a real case as a proof of concept. Finally, a few cases are introduced to show
the potential of the proposed path planning generated for a single robot and a team composed of
two robots.

2. State of the Art

As already mentioned, the agricultural sector is one of the least technologically developed.
Nonetheless, some robotic systems have been already proposed for harvesting [4–7] and for weed
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control/elimination [8–11]. All these tasks have a common element: the robotic systems should
autonomously navigate.

A major part of related works on autonomous mapping is based on remote imagery. An interesting
review can be found in Reference [2]. However, as the authors stated, hyperspectral images produce
highly accurate maps but this technology might not be portable because of the prohibitive operating
costs. Similarly, other approaches (e.g., imagery provided by unmanned aerial vehicles (UAVs) [12] or
airborne high spatial resolution hyperspectral images combined with Light Radar (LiDAR) data [13])
also have high operating costs. Amores et al. [3] introduced a classification system to perform mapping
tasks on different types of groves using airborne colour images and orthophotos.

A semi-autonomous navigation system controlled by a human expert operator was introduced by
Stentz et al. [14]. This navigation was proposed to supervise the path planning and navigation of a
fleet of tractors using the information provided by vision sensors. During its execution, the system
determines the route segment where each tractor should drive trough to perform crop spraying.
Each segment is assigned by tracking positions and speeds previously stored. When an obstacle is
detected, the tractor stops and the human operator decides the actions to be carried out.

A sensor fusion system using a fuzzy-logic-enhanced Kalman Filter was introduced by
Subramanian et al. [15]. The paper aimed to fuse the information of different sensor systems
for pathfinding. They used machine vision, LiDAR, an Inertial Measurement Unit (IMU),
and a speedometer to guide an autonomous tractor trough citrus grove alleyways. The system
was successfully tested on curved paths at different speeds.

In the research introduced by Rankin et al. [16], a set of binary detectors were implemented to
detect obstacles, tree trunks, and tree lines, among other entities for off-road autonomous navigation
by an unmanned ground vehicle (UGV). A compact terrain map was built from each frame of stereo
images. According to the authors, the detectors label terrain as either traversable or non-traversable.
Then, a cost analysis assigns a cost to driving over a discrete patch of terrain.

Bakker et al. [17] introduced a Real Time Kinematic Differential Global Positioning System-based
autonomous field navigation system including automated headland turns. It was developed for
crop-row mapping using machine vision. Concretely, they used a colour camera mounted at 0.9 m
above the ground with an inclination of 37◦ for the vertical. Results from the field experiments showed
that the system can be guided along a defined path with cm precision using an autonomous robot
navigating in a crop row.

A navigation system for outdoor mobile robots using GPS for global positioning and GPRS
for communication was introduced in Reference [18]. A server–client architecture was proposed
and its hardware, communication software, and movement algorithms were described. The results
on two typical scenarios showed the robot manoeuvring and depicted the behaviour of the novel
implemented algorithms.

Rovira-Mas et al. [19] proposed a framework to build globally referenced navigation grids by
combining global positioning and stereo vision. First, the creation of local grids occurs in real time
right after the stereo images have been captured by the vehicle in the field. In this way, perception data
is effectively condensed in regular grids. Then, global referencing allows the discontinuous appendage
of data to succeed in the completion and updating of navigation grids over time over multiple mapping
sessions. With this, global references are extracted for every cell of the grid. This methodology takes
the advantages of local and global information so navigation is highly benefited. Finally, the whole
system was successfully validated in a commercial vineyard.

In Reference [20], the authors proposed a novel field-of-view machine system to control a small
agricultural robot that navigates between rows in cornfields. The robot was guided using a camera
with pitch and yaw motion control in the prototype, and it moved to accommodate the near, far,
and lateral fields of view mode.

The approach we propose differs from others since satellite imagery and a camera placed in the
autonomous robot (see References [21,22]) are combined for advanced navigation. GPS sensor and
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satellite imagery are used (1) to acquire global knowledge of the groves where the robots should
navigate and (2) to autonomously generate a first path planning. This first path planning contains the
route where each robotic system should navigate. Moreover, the local vision system at the autonomous
robot, that is composed by a colour Charge Coupled Device (CCD) camera with auto iris control,
is used to add real-time information and to allow the robot to navigate centred in the path (see
Reference [21]). Although the first path planning already introduces a route to navigate centred in the
paths, local vision provides more precise information. We can benefit from combining global and local
information; we can establish a first path planning from remote imagery which can be updated by
local imagery captured in real time.

3. Autonomous Mapping and Navigation with Satellite Imagery and Cadastral Information

This section introduces the steps necessary to obtain the path planning for an autonomous robot
(or team of robots) using the current location of the robots, satellite imagery, and cadastral information.
For this purpose, we identified two main stages.

To allow the interaction among all the modules and sub-modules, proper control architecture is
needed. In particular, we used Agriture [23] to integrate all the modules into the system and to enhance
the interoperability.

3.1. First Stage: Development of the Autonomous Mapping System

The proposed autonomous mapping module is composed of two main sub-modules:

1. Acquisition sub-module: This sub-module is in charge of acquiring the images from online databases
to generate the final map of the parcel. Concretely, the system will download the images from
a public administrative database, SIGPAC, using the information provided by the GPS sensor
included in the robots. In other related experiments, we installed a submeter precision GPS in the
autonomous robots (GPS Pathfinder ProXT Receiver) [22]. The location accuracy obtained in those
cases encourages us to integrate that GPS in the current system. However, the GPS integration is
out of this paper’s scope, since the main objective of this paper is to introduce the algorithms
to combine satellite and cadastral images and to show a proof-of-concept. This sub-module
provides two images to the “map creation module”: the satellite image of the parcel and the
image with parcel borders.

2. Map creation sub-module: This sub-module will be in charge of extracting all the information
from the images: paths, orange trees, borders, and obstacles. With the extracted information,
the map (path planning) which the robots should follow will be generated. The initial strategy
to cover efficiently all the parcels with the robots will be done in this sub-module. The maps
and satellite imagery resolution are set to 0.125 m per pixel. This resolution was easily reached
with both services (satellite imagery and cadastral imagery) and was low enough to represent
the robot dimensions (around 50 by 80 cm), and the computation burden was not so demanding.
With the new Galileo services, higher resolution images can be obtained (with lower cm per pixel
rates). Although more precise paths could be obtained, the computational cost of fast marching
to generate the paths would also considerably increase.

3.1.1. Acquisition Sub-Module

This sub-module is in charge of obtaining the two images which are needed to create the map
of the parcel from the current position of the autonomous system. Its description is detailed in
Algorithm 1 where CurrentPosition represents the current position of the robotic system, Resolution is
the resolution of the acquired imagery, and Radius stands for the radius of the area.
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Algorithm 1 ObtainImages{CurrentPosition,Resolution,Radius}

FullSatImage = ObstainSatImage{CurrentPosition,Resolution,Radius}
Borders = ObstainBorders{CurrentPosition,Resolution,Radius}
Return: FullSatImage, Borders

The output generated in this sub-module includes the full remote image of the area, FullSatImage,
and the borders of the parcels, Borders, which will be processed in the “Map Creation module”.

3.1.2. Map Creation Sub-Module

This sub-module is in charge of creating the map of the parcel from the two images obtained in
the previous sub-module. The map contains information about the parcel: trees rows, paths, and other
elements where the robot cannot navigate through (i.e., obstacles). Its description can be found in
Algorithm 2.

Algorithm 2 GenerateMap{CurrentPosition,FullSatImage,Borders}

FullParcelMask = GenerateParcelMask{CurrentPosition,Borders}
[ParcelMask,SatImage] = CropImagery{FullParcelMask,FullSatImage}
[Path,Trees,Obstacles] = ExtractMasks{CurrentPosition,ParcelMask,SatImage}

The first step consists of determining the full parcel mask from the borders previously acquired.
With the robot coordinates and the image containing the borders, this procedure generates a binary
mask that represents the current parcel where the robot is located. This procedure is described in
Algorithm 3.

Algorithm 3 GenerateParcelMask{CurrentPosition,Borders}

Determine position CurrentPosition in Borders: Posx and Posy
Convert Borders to grayscale: BordersG
Binarize BordersG: BordersMask
Dilate BordersMask: DilatedBorder
Flood-fill DilatedBorder in Posx, Posy: DilatedBorderFlood f illed
Erode DilatedBorderFull f illed: ErodedBorderFlood f illed
Dilate ErodedBorderFlood f illed: FullParcelMask
Return: FullParcelMask

Once the parcel mask is determined from the parcel image, it is time to remove those areas outside
the parcel in the satellite image and the parcel mask itself. To avoid underrepresentation of the parcels,
a small offset was added to the mask. This step is performed to reduce imagery size for further
treatment with advanced techniques. This procedure is detailed in Algorithm 4.
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Algorithm 4 CropImagery{FullParcelMask,FullSatImage}

Determine real position of left-upper corner of FullParcelMask
Determine real position of left-upper corner of FullSatImage
Determine FullSatImage offset in pixels with respect FullParcelMask
Determine parcel’s bounding box:

Determine first and last row of FullParcelMask that is in parcel
Determine first and last column of FullParcelMask that is in parcel

Crop FullParcelMask directly: ParcelMask
Crop FullSatImage according to offset values: SatImage
Return: ParcelMask and SatImage

Since the location of the pixels in the real world is known using the WGS84 with UTM zone
30N system (EPSG:32630), the offset between the satellite image and the parcel mask can be directly
computed. Then, it is only necessary to determine the bounding box surrounding the parcel in the
parcel mask to crop both images.

At this point, the reduced satellite map needs to be processed to distinguish between the path
and obstacles. We analyzed different satellite images from groves located in the province of Castellón
in Spain, and the images were clear with little presence of shadows. Therefore, we set the binarization
threshold to 112 in our work. Although we applied a manual threshold, a dynamic thresholding
binarization could be applied to have a more robust method to distinguish the different elements in
the satellite image, in case shadows were present. Algorithm 5 has been used to process the reduced
satellite map andto obtain the following three masks or binary images:

• Path—a binary mask that contains the path where the robot can navigate;
• Trees—a binary mask that contains the area assigned to orange trees;
• Obstacles—a binary mask that contains those pixels which are considered obstacles: this mask

corresponds to the inverse of the path.

Algorithm 5 GenerateMasks{ParcelMask and SatImage}

Convert SatImage to gray scale: SatImageGray
Extract min and max values of the parcel pixels in SatImageG
Normalize SatImageG values:

SatImageGN(x, y) = 255 · SatImageG(x,y)−MinValue
MaxValue

Generate B&W Masks:

Path(x, y) =

 1 if SatImageGN(x, y) > 112 and ParcelMask(x, y)

0 otherwise

Trees(x, y) =

 1 if SatImageGN(x, y) ≤ 112 and ParcelMask(x, y)

0 otherwise

Remove path pixels not connected to CurrentPosition in Path
Generate Obstacles Mask:

Obstacles(x, y) = 1− Path(x, y)
Return: Path OrangeTrees and Obstacles
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3.2. Second Stage: Path Planning

This module is used to determine the final path that the robotic system or team of robots should
follow. The principal work for path planning in autonomous robotic systems is to search for a
collision-free path and to cover all the groves. This section is devoted to describing all the steps
necessary to generate the final path (see Algorithm 6) using as input the three masks provided by
Algorithm 5.

To perform the main navigation task, the navigation module has been divided into five different
sub-modules:

• Determining the tree lines
• Determining the reference points
• Determining the intermediate points where the robot should navigate
• Path planning through the intermediate points
• Real navigation through the desired path

First of all, the tree lines are determined. From these lines and the Path binary map, the reference
points of the grove are determined. Later, the intermediate points are selected from the reference
points. With the intermediate points, a fast path free of collisions is generated to cover all the groves.
Finally, the robotic systems perform real navigation using the generated path.

Algorithm 6 PathPlanning{CurrentPosition,Trees,Path}

SortedTreeLines = DetectLines{Trees,Path}
[Vertexes,MiddlePaths] = ReferencePoints{Path,SortedTreeLines}
FinalPath = CalculatePath{Position,Path,MiddlePath,Vertexes
Return: FinalPath

3.2.1. Detecting Tree Lines

The organization of citric groves is well defined as it can be seen in the artificial composition
depicted in Figure 2; the trees are organized in rows separated by a relatively wide path to optimize
treatment and fruit collection. The first step of the navigation module consists of detecting the tree lines.

Figure 2. A farmer performing maintenance tasks in a young orange grove: The red lines stand for
the rows of citrus trees (or just tree rows), and the green line stands for the path where the farmer
is walking.

The Obstacles binary map (Obstacles in Algorithm 5) contains the pixels located inside the parcel
that correspond to trees. For this reason, the rows containing trees are extracted by using the Hough
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Transform method (see Reference [24]). Moreover, some constraints to this technique have been
added to avoid selecting the same tree line several times. In this procedure, the Hesse standard
form (Equation (1)) is used to represent lines with two parameters: θ (angle) and ρ (displacement).
Each element of the resulting matrix of the Hough Transform contains some votes which depend on
the number of pixels which corresponds to the trees that are on the line.

y · sin(θpath) + x · cos(θpath)− ρpath = 0 (1)

According to the structure of the parcels, the main tree rows can be represented with lines.
We applied Algorithm 7 to detect the main tree rows (rows of citric trees). First, the most important
lines, the ones with the highest number of votes, are extracted. The first extracted line (the line with the
highest number of votes) is considered the “main” line, and its parameters (θ1,ρ1 and votes1) are stored.
Then, those lines that have at least 0.20 · votes1 and of which the angle is ρ± 1.5 are also extracted. This
first threshold (Γ1 = 0.20) has been used to filter the small lines that do not represent full orange rows,
whereas the second threshold (Γ2 = 1.5) has been used to select those orange rows parallel to the main
line. We have determined the two threshold values according to the characteristics of the analyzed
groves: the target groves have parallel orange rows with similar length.

Algorithm 7 DetectLines{Trees,Path}

Apply Hough to Threes: H = Hough(Trees)
Extract line with highest value from H: valuemain = H(ρmain,φmain)
Set Treshold value: Γ1 = 0.20 · valuemain
Limit H to angles close the main angle (φmain ± 1.5o): HL
lines = true
Store main line parameters in StoredLines: ρmain φmain valuemain
while lines do

Extract candidate line with highest value from HL: valuec = HL(ρc,φc)
Remove value in the matrix: HL(ρc, φc) = 0
if (valuec > Γ1) then

Calculate that distance to previous extracted lines is lower than threshold:
‖ρc − ρi‖ > (12 · (1 + ‖θc − θi‖))

if distance between candidate and stored lines is never lower than threshold then

Store line parameters in StoredLines: ρc φc valuec
end if

else

lines = false
end if

end while
Sort stored lines: SortedTreeLines
Return: SortedTreeLines

Furthermore, to avoid detecting several times the same tree row, each extracted line cannot be
close to any previous extracted line. We used Equation (2) to denote the distance between a candidate
line (c) and a previous extracted line (i) since the angles are similar (±1.5◦). If this distance is higher
than a threshold value (Γ3), the candidate line is extracted. We use Equation (3) to calculate the
threshold value according to the difference of angles of the two lines.

distancec,i = ‖ρc − ρi‖ (2)

Γ3 = 12 · (1 + ‖θc − θi‖) (3)
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Hough Transform has been commonly used in the literature related to detection tasks in
agricultural environments. Recent research shows that it is useful to process local imagery [25,26] and
remote imagery [27,28].

3.2.2. Determining the Reference Points

Reference or control points contain well-known points and parts of the grove, e.g., the vertex of
the orange tree lines or the middle of paths where farmers walk. A set of reference points will be used
as intermediate points in the entire path that a robotic system should follow.

Firstly, the vertexes of the orange tree rows are extracted. For each extracted line, the vertexes
correspond to the first and last points that belongs to the path according to the Path binary map Path.

Then, Hough transform is applied again to detect the two border paths perpendicular to the
orange rows. With these two lines, their bisection is used to obtain additional reference points.
These last points correspond to the centre of each path row (the path between two orange rows).
Concretely, the intersection between the bisection line and the Path binary map is used to calculate
the points. After obtaining the intersection, the skeleton algorithm is applied to obtain the precise
coordinates of the new reference points.

However, under certain conditions, two central points have been detected for the same row, e.g., if
obstacles are present at the centre of the path, the skeleton procedure can provide two (or more) middle
points between two orange tree rows. In those cases, only the first middle point is selected for each
path row.

Finally, all the reference points can be considered basic features of the orange grove since a subset
of them will be used as intermediate points of the collision-free path that a robotic system should
follow to efficiently navigate through the orange grove. For that purpose, we applied Algorithm 8 to
extract all the possible middle points in a parcel.

Algorithm 8 ReferencePoints{Path SortedTreeLines}

Vertexes = Extract reference points from SortedTreeLines
MiddlePaths = Extract reference points that belong to middle of path rows
Return: Vertexes and MiddlePaths

3.2.3. Determine Navigation Route from Reference Points

In this stage, the set with the intermediate points is extracted from the reference points.
They correspond to the points where the robot should navigate. The main idea is first to move
the robot to the closest corner, and then, the robot navigates through the grove (path row by path row),
alternating the direction of navigation (i.e., a zig-zag movement).

Firstly, the closest corner of the parcel is determined by the coordinates provided by the robotic
system using the Euclidean distance. The corners are the vertexes of the lines extracted from the first
and last rows containing trees previously detected. The idea is to move the robot from one side of the
parcel to the opposite side through the row paths. The sequence of intermediate points is generated
according to the first point (corner closest to the initial position of the robot) being the opposite corner
the destination. Intermediate points are calculated using Algorithm 9.

Finally, this stage is not directly performed by path planning but Algorithm 10) will be used to
determine the sequence of individual points. Those points will be the basis for the next stage where
the paths for any robotic system that composes the team are determined.
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Algorithm 9 IntermediatePoints{Position,MiddlePaths,Vertexes}

Extract corners from Vertexes:
Corners = [Vertexes(1),Vertexes(2),Vertexes(Penultimate),Vertexes(Last)]

Detect closest corner to CurrentPosition: Corner
Add Corner to ListIntermediatePoints
ListPoints = SequencePoints{Corner, MiddlePaths, Vertexes}
Add ListPoints to ListIntermediatePoints
Return: ListIntermediatePoints

Algorithm 10 SequencePoints{Corner,MiddlePaths,Vertexes}

Let be Npoints the number of points in MiddlePath
if Corner is Vertexes(1) then

for i = 1 to (Npoints-1) do

Add MiddlePaths(i) to ListPoints
Add Vertexes(i · 2−module(i + 1, 2)) to ListIPoints

end for
Add MiddlePaths(Npoints) to ListPoints
Add Vertexes(last) to ListPoints

end if
if Corner is Vertexes(2) then

for i = 1 to (Npoints-1) do

Add MiddlePaths(i) to ListPoints
Add Vertexes(i · 2−module(i, 2)) to ListPoints

end for
Add MiddlePaths(Npoints) to ListPoints
Add Vertexes(penultimate) to ListPoints

end if
if Corner is Vertexes(penultimate) then

for i = 1 to (Npoints-1) do

j = Npoints + 1− i
Add MiddlePaths(j) to ListIPoints
Add Vertexes((j− 1) · 2−module(i, 2)) to ListPoints

end for
Add MiddlePaths(1) to ListPoints
Add Vertexes(2) to ListPoints

end if
if Corner is Vertexes(last) then

for i = 1 to (Npoints-1) do

j = Npoints + 1− i
Add MiddlePaths(j) to ListPoints
Add Vertexes((j− 1) · 2 - module(i+1,2)) to ListPoints

end for
Add MiddlePaths(1) to ListPoints
Add Vertexes(1) to ListPoints

end if
Return: ListPoint
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3.2.4. Path Planning Using Processed Satellite Imagery

Once the initial and intermediate points and their sequence are known, the path planning map is
determined. This means calculating the full path that the robotic system should follow.

Firstly, the Speed map is calculated with Equation (4). This map is related to the distance to the
obstacles (where the robot cannot navigate). The novel equation introduces a parameter, α, to penalize
those parts of the path close to obstacles and to give more priority to those areas which are far from
obstacles. Theoretically, the robotic system will navigate faster in those areas far from obstacles due to
the low probability of collision with the obstacles. Therefore, the equation has been chosen to penalize
the robotic system for navigating close to obstacles.

Speed(x, y) =

{
100 + distance(x, y)α if distance(x, y) > 0

1 otherwise
(4)

where distance refers to the pixel-distance of point (x, y) in the image to the closest obstacle. The final
Speed value is set to value 1 when the pixel corresponds to an obstacle, whereas it has a value higher
than 100 in those pixels which correspond to the class “path”.

The final procedure carried out to calculate the Speed image is detailed in Algorithm 11.

Algorithm 11 Speed = CalculateSpeed{ Path , SortedTreeLines }

Add detected tree lines to the path binary mask Path
Select Non-Path points with at least one neighbor which belong to path: ObstablePoints
Set initial Speed values: Speed(x, y) = 1 ∀ x ∈ [1, TotalWidth] y ∈ [1, TotalHeight]
for x=1:TotalWidth do

for y=1:TotalHeight do

if PathMask(x,y) belongs to Path then

Calculate Euclidean distance to all ObstaclePoints
Select the lowest distance value: mindistance
Speed(x, y) = 100 + mindistance3

end if
end for

end for
Return: Speed

Then, the Fast Marching algorithm is used to calculate the Distances matrix. It contains the
“distance” to a destination for any point of the satellite image. The values are calculated using the
Speed values and the target/destination coordinates in the satellite image. The result of this procedure
is a Distance matrix of which the normalization can be directly represented as an image. This distance
does not correspond to the Euclidean distance; it corresponds to a distance measurement based on the
expected time required to reach the destination.

The Fast Marching algorithm, introduced by Sethian (1996), is a numerical algorithm that is able to
catch the viscosity solution of the Eikonal equation. According to the literature (see References [29–33]),
it is a good indicator of obstacle danger. The result is a distance image, and if the speed is constant,
it can be seen as the distance function to a set of starting points. For this reason, Fast Marching
is applied to all the intermediate points using the previously calculated distances as speed values.
The aim is to obtain one distance image for each intermediate point; this image provides information
to reach the corresponding intermediate point from any other point of the image.

Fast Marching is used to reach the fastest path to a destination, not the closest one. Although it is
a time-consuming procedure, an implementation based on MultiStencils Fast Marching [34] has been
used to reduce computational costs and to use it in real-time environments.
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The final Distances matrix obtained is used to reach the destination point from any other position
of the image with an iterative procedure. The procedure carried out to navigate from any point to
another determined point is given by Algorithm 12. First, the initial position (position where the
robotic system is currently placed) is assigned to the path; then, the algorithm seeks iteratively for
the neighbour with lowest distance value until the destination is reached (Distance value equal to 0).
This algorithm will provide the path as a sequence of consecutive points (coordinates of the distance
image). Since the geometry of the satellite imagery is well known, the list of image coordinates can be
directly translated to real-world coordinates. This information will be used by the low-level navigation
system to move the system according to the calculated path.

Algorithm 12 PathPoints = NavigationPt2Pt{InitialPt,DestinyPt,Speed}

Distances = FastMarching(DestinyPt, Speed)
CurrentPoint = InitialPt
while Distances(Currentpoint.x, Currentpoint.y) > 0 do

Search the neighbor with lowest Distance Value: NewPoint
CurrentPoint = NewPoint
Add CurrentPoint to PathPoints

end while
Return: PathPoints

Finally, the final full path that the robotic system should follow consists of reaching sequentially
all the intermediate points previously determined. This strategy is fully described in Algorithm 13,
but it is only valid for the case of using only one single robotic system in the grove. For more than one
robot present in the grove, an advanced algorithm is needed. Algorithm 14 introduces the strategy for
two robots when they are close to each other.

Algorithm 13 CalculatePath{Position,Path,MiddlePaths,Vertexes}

ListPoints = SequencePoints{CurrentPosition, MiddlePaths, Vertexes}
Speed = CalculateSpeed(Path)
StartingPoint = CurrentPosition
for i = 1 to NumberOfIntermediatePoints do

IntermediatePoint = ListPoints(i)
PathPoints = NavigationPt2Pt{ StartingPoint , IntermediatePoint , Speed }
Add PathPoints to FinalPath
StartingPoint = IntermediatePoint

end for
Return: FinalPath
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Algorithm 14 CalculatePath{Positions,Path,MiddlePaths,Vertexes}

Extract current position for robot 1: CurrentPositionsrobot1
Extract current position for robot 2: CurrentPositionsrobot2
Extract corners from Vertexes:

Corners = [Vertexes(1),Vertexes(2),Vertexes(Penultimate),Vertexes(Last)]
Detect closest corner and the distance for the two robots

Cornerrobot1 = getClosestCorner(CurrentPositionsrobot1, Corners)
distancerobot1 = getPixelDistance(CurrentPositionsrobot1, Cornerrobot1)
Cornerrobot2 = getClosestCorner(CurrentPositionsrobot2, Corners)
distancerobot2 = getPixelDistance(CurrentPositionsrobot2, Cornerrobot2)

if distancerobot1 < distancerobot2 then

Add Cornerrobot1 to ListIntermediatePointrobot1
ListPointsrobot1 = SequencePoints{Cornerrobot1, MiddlePaths, Vertexes}
Add ListPointsrobot1 to ListIntermediatePointrobot1
Detect opposite corner to Cornerrobot1 closest to robot 2: Oppositerobot1
Add Oppositerobot2 to ListIntermediatePointrobot2
ListPointsrobot2 = SequencePoints{Oppositerobot2, MiddlePaths, Vertexes}
Add ListPointsrobot2 to ListIntermediatePointrobot2

else

Add Cornerrobot2 to ListIntermediatePointrobot2
ListPointsrobot2 = SequencePoints{Cornerrobot2, MiddlePaths, Vertexes}
Add ListPointsrobot2 to ListIntermediatePointrobot2
Detect opposite corner to Cornerrobot2 closest to robot 1: Oppositerobot1
Add Oppositerobot1 to ListIntermediatePointrobot1
ListPointsrobot1 = SequencePoints{Oppositerobot1, MiddlePaths, Vertexes}
Add ListPointsrobot1 to ListIntermediatePointrobot1

end if
Speed = CalculateSpeed(ParcelMask)
StartingPointrobot1 = CurrentPositionrobot1
for i = 1 to NumberOfIntermediatePoints do

IntermediatePoint = ListIntermediatePoints(i) f
Path = NavigationPoint2Point{ StartingPoint , IntermediatePoint , Speed }
Add Path to FinalPathrobot1
StartingPoint = IntermediatePoint

end for
StartingPointrobot2 = CurrentPositionrobot2
for i = 1 to NumberOfIntermediatePoints do

IntermediatePoint = ListIntermediatePoints(i)
Path = NavigationPoint2Point{ StartingPoint , IntermediatePoint , Speed }
Add Path to FinalPathrobot2
StartingPoint = IntermediatePoint

end for
Store FinalPath

4. Results on a Real Case: Proof-of-Concept Validation

The previous section introduced the algorithms to obtain the path that a robot or system of two
robots have to follow to cover the whole citric grove for, for instance, maintenance tasks. To show the
feasibility of the proposed system, the system has been evaluated in a real context as a proof-of-concept.
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4.1. Results of the Mapping System

First, given the current position of the robot (or team of robots), the maps and parcel masks are
obtained. For our test, a GPS receiver with submeter precision was used. It is important to remark that
the system must be inside the parcel to get the data accurately. From the initial position of the system,
inside the parcel, the satellite maps of the parcel will be obtained using a satellite maps service via
the Internet. In our case, two images were downloaded from the SIGPAC service, the photography
of the parcel and the image with the boundaries of the parcel, as can be seen in Figure 3. Due to the
characteristics of the latter image, some additional steps were included in Algorithm 3.

sat image (2308x2308) parcel image (2048x2048)

upper left corner

place the robot

obtain coordinates

obtain the maps
precision 0.125m per pixel x  752242.00

y 4427054.10
x  752250.00
y 4427033.10upper left corner

Figure 3. Obtaining the satellite maps from the current position.

In Algorithm 3, the image with the borders of the parcel (see parcel image in Figure 3) is first
processed to obtain a binary mask with pixels which belongs to the parcel and the pixels which are
outside the parcel. For this reason, this image is first converted to black and white with a custom
binarization algorithm (see Figure 4a). The purpose of the binarization is double: (1) to remove
watermarks (red pixels in Figure 3) and (2) to highlight the borders (purple pixels in Figure 3).

This early version of the binary mask is then dilated to perform a better connection between those
pixels which correspond to the border (see Figure 4b). The dilation is performed three times with a
5 × 5 mask. Then, the pixel corresponding to the position of the robots is flood-filled in white (see
Figure 4c). Finally, the image is eroded to revert the dilated filtering previously performed and to
remove the borders between parcels. For this purpose, the erosion algorithm is run 6 times with the
same 5 × 5 mask. After applying this last filter, the borders are removed and the parcel area is kept in
the mask image. After obtaining the last binary mask, it is dilated again 3 times to better capture the
real borders of the parcel (see Figure 4d).

(a) (b) (c) (d)

Figure 4. Filtering the parcel images to detect the parcel or grove where the robots are located. (a) after
applying the custom binarization, (b) after dilating, (c) after filling the current parcel, (d) after erosion.
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Then, it is only necessary to determine the bounding box surrounding the parcel in the parcel
mask (see Figure 4d) to crop both images. This procedure is visually depicted on the top side of
Figure 5.

The first mask, Path, contains the path where the robot can navigate (see Figure 5b). The second
mask, Trees, contains the area assigned to orange trees (see Figure 5c). The last mask, Obstacles,
contains those pixels which are considered obstacles; this mask corresponds to the inverse of the path
(see Figure 5d).

 

(a) (b) (c) (d)

Figure 5. Generating binary maps from the satellite maps. (a) satellite view of the current parcel,
(b) Path image of the current parcel, (c) Trees image of the current parcel, (d) Obstacles image of the
current parcel.

4.2. Results of the Path Planner System

4.2.1. Detecting Tree Lines

As a result of the Hough Transform application in Algorithm 7, all the orange tree rows are
extracted as depicted in Figure 6. Although the order in which they are extracted does not correspond
to the real order inside the grove, they are reordered and labelled according to its real order for
further steps.
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(a) (b) (c)

Figure 6. Detecting tree rows with Hough. (a) current parcel view with the first detected row, (b) current
parcel view with the first and second detected rows, (c) current parcel view with all detected rows.

4.2.2. Determining the Reference Points

Algorithm 8 introduced how to determine the reference points that could be used as intermediate
points in the path planner. Figures 7 and 8 show a graphical example of these reference points.
The former set of images shows how the tree row vertexes are computed, whereas the latter includes
the process to extract the middle point of each path row.

(a) (b)

Figure 7. Detecting tree rows with Hough: (a) the extended satellite image related to the parcel with
the detected lines and (b) the extended parcel with detected vertexes.
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(a) (b) (c)

(d) (e) (f)

Figure 8. Extracting reference points: (a) determining path row lines perpendicular to tree rows, (b)
determining bisection between path row lines, (c,d) intersection between bisection and the Path binary
map, and (e,f) new reference points and its representation on the parcel satellite image.

4.2.3. Determine Navigation Route from Reference Points

The results of Algorithm 9 are shown in Figure 9, where the numbered sequence of points
is shown for four different initial configurations. In each one, the robot is placed near a different
corner, simulating four possible initial places for the robots, so the four possible intermediate point
distributions are considered.

(a) (b) (c) (d)

Figure 9. Intermediate points (numbered blue dots) for four different configurations depending on
the robot initial position (red circle). The robot must move first to the closest corner (green circle), and
then, it must navigate trough the intermediate points (small numbered circles) in order to achieve the
last position in the opposite corner (big blue circle). (a) robot placed in the upper-left corner, (b) robot
placed in the bottom-left corner, (c) robot placed in the bottom-right corner, (d) robot placed in the
upper-right corner.

4.2.4. Path Planning Using Processed Satellite Imagery

Algorithm 11 is used to calculate the Speed image required to determine the path that the robot
should follow. Initially, the Path binary map (Figure 10a) was considered to be used as a base to
determine the distances, but a modified version was used instead (Figure 10b). The modification
consisted of adding the detected lines for the orange rows. The lines have been added to ensure that
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the robot navigates entirely through each path row and that there is no way of trespassing the orange
tree rows during navigation.

(a) (b)

Figure 10. Generating Speed images: (a) the original Path binary map and (b) the modified map.

Three different Speed images are shown in Figure 11a–c depending on the value of the α

parameter. After performing some experiments, the best results are obtained when the α value
is set to 3. With lower values of α, the points close to obstacles were not penalized. With higher values,
some narrow path rows were omitted from navigation due to their low-speed values. Finally, in our
experiments, we used α = 3, as shown in Algorithm 11.

(a) (b) (c)

Figure 11. Generating Speed images: (a–c) graphical representations of Speed values calculated with
Equation (4) for α equal to 1, 2, and 3.

Figure 12a shows the parcel with the destination position drawn on it along with two
representations of the Distances matrix (Figure 12b,c). The first one corresponds to the normalized
Distances matrix of which the values are adapted to the [0 . . . 255] range. However, it is nearly
impossible to visually see how to arrive at the destination from any other point inside the parcel. It is
due to the high penalty value assigned to those points belonging to obstacles (non-path points). For this
reason, a modified way to visualize the distance matrix is introduced by the following equation:

DistImg(x, y) =


100 + 155 Distances(x,y)

max(Distances) if Obstacles(x, y) = f alse

0 otherwise

(5)

In the image, it can be seen that there are high distance values in the first and last path rows
(top-left and bottom-right sides of Figure 12c) which are not present in most of the other path rows.
These two rows are narrow, and the speed values are, therefore, also quite low. For example, a robot
placed in the top-left corner should navigate through the second path row to achieve the top-right
corner instead of navigating through the shortest path (first path row). The aim of Fast Marching is
to calculate the fastest path to achieving the destination point, not the shortest one. In the first row,
the distance to obstacles is almost always very low.
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(a) (b) (c)

Figure 12. Distance images: (a) Parcel satellite image with the final position (blue x-cross),
(b) a representation of the normalized Distance matrix image, and (c) the modified representation.

Figure 13 shows the results of the path planner for a robotic system. In the example image,
the robotic is initially placed in the location marked with the red x-cross. Then, all the intermediate
points, including the closest corner, are determined (green x-crosses).

initial
position

closest
corner

opposite
corner

path with distance
to initial position

path with distance
to initial position

intermediate 
point

Figure 13. Example of a path planned for a robotic system.

Figure 14 introduces an example for a team composed of two robots. Figure 14a,b shows the
complete determined path for the first and second robots. The first robot moves to the closest corner
and then navigates through the grove, and the second robot moves to the closest opposite corner
(located at the last row) and then also navigates through the grove but in the opposite direction
(concerning the first robot). The path is coloured depending on the distance to the initial position (blue
is used to denote low distances, and red is used to denote high distances).

However, the robotic systems will not perform all the paths because they will arrive at a point
(stop point marked with a black x-cross) which has been already reached by the other robotic system
and they will stop there (see Figure 14c,d). The colour between the initial point (red x-cross) and
the stop point (black x-cross) graphically denotes the relative distance. Finally, Figure 14d shows a
composition of the path done by each robotic system into one image.

Similar examples are shown in Figures 15 and 16, where the robots are not initially close to the
corners. In the former example, the path between the initial position and the corners are not marked
as “visited” because the robotic system navigation starts when the robot gets to the first intermediate
point. In the latter case, we show an example where the robots stop when they detect that they have
reached the same location.
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(a) (b)

(c) (d) (e)

Figure 14. Determining path planning for a team composed by two robots (I). (a) path planning
for robot1, (b) path planning for robot2, (c) real path for robot1, (d) real path planning for robot2,
(e) superposition of (c) and (d).

(a) (b) (c)

Figure 15. Determining path planning for a team composed by two robots (II). (a) real path for robot1,
(b) real path planning for robot2, (c) superposition of (a) and (b).

(a) (b) (c)

Figure 16. Determining path planning for a team composed by two robots (III). (a) real path for robot1,
(b) real path planning for robot2, (c) superposition of (a) and (b).
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5. Conclusions

This paper has shown a proof-of-concept of a novel path planning based on remote imagery
publicly available. The partial results, shown as intermediate illustrative real examples of each
performed step, encourage reliance on satellite imagery and cadastral information to automatically
generate the path planning. According to it, useful knowledge can be obtained from the combination of
satellite imagery and information about the borders that divide the land into parcels. Some limitations
have been also identified: some parameters (such as thresholds) are image dependent and have been
manually set for the current set of satellite images; it can only be applied in the current configuration of
citric trees in rows; and changes in the grove distribution are not immediately reflected in the satellite
imagery. In our platform, this path planning is complemented by local imagery, which provides
navigation centred in the path.

We can conclude by remarking that the steps necessary to autonomously determine path planning
in citric groves in the province of Castellón have been described in this paper and that the potential of
this autonomous path planner has been shown with successful use cases. Firstly, a procedure to extract
binary maps from a public remote imagery service has been described. Secondly, a novel methodology
to automatically detect reference points from orange groves has been introduced using remote imagery.
Some knowledge and global information about the grove can be extracted from those points. Thirdly,
a procedure to determine a path has been designed for a stand-alone robotic vehicle. Moreover, it has
been modified to be suitable for a team composed of two robotic systems. The first path planning
provides useful information, and it may be considered the fast way to perform a maintenance task.
This path is complemented by local navigation techniques (see Reference [21]) to obtain optimal results
in the final implementation of the whole navigation module. Finally, although we introduced the
system for orange groves, all the steps can be applied to other groves with a similar main structure
(other citrus groves or some olive groves). Moreover, they could be also adapted for other crops or
situations by changing the way they extract reference points, i.e., a hybrid team of multiple robots will
require a specific planner and path strategy.

Finally, this paper has introduced a proof-of-concept showing the feasibility of the proposed
algorithms to automatically determine path planning inside a citric grove. The proposed algorithms
can be used to ease the manual labelling of satellite imagery to create manual maps for each
parcel. We will identify the full implementation in different contexts and experimental validation as
further work.
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