
algorithms

Article

Parameterised Enumeration for Modification
Problems†

Nadia Creignou 1, Raïda Ktari 2, Arne Meier 3,* , Julian-Steffen Müller 3, Frédéric Olive 1 and
Heribert Vollmer 3

1 Aix-Marseille Université, CNRS, LIS, 13003 Marseille, France
2 Pôle technologique de Sfax, Université de Sfax, Sfax 3000, Tunisia
3 Institut für Theoretische Informatik, Leibniz Universität Hannover, 30167 Hannover, Germany
* Correspondence: meier@thi.uni-hannover.de; Tel.: +49-(0)511-762-19768
† This paper is an extended version of our paper published in Parameterized Enumeration for Modification

Problems. In Proceedings of the Language and Automata Theory and Applications—9th International
Conference, Nice, France, 2–6 March 2015.

Received: 14 July 2019; Accepted: 5 September 2019; Published: 9 September 2019
����������
�������

Abstract: Recently, Creignou et al. (Theory Comput. Syst. 2017), introduced the class DelayFPT into
parameterised complexity theory in order to capture the notion of efficiently solvable parameterised
enumeration problems. In this paper, we propose a framework for parameterised ordered
enumeration and will show how to obtain enumeration algorithms running with an FPT delay
in the context of general modification problems. We study these problems considering two different
orders of solutions, namely, lexicographic order and order by size. Furthermore, we present two
generic algorithmic strategies. The first one is based on the well-known principle of self-reducibility
and is used in the context of lexicographic order. The second one shows that the existence of a
neighbourhood structure among the solutions implies the existence of an algorithm running with
FPT delay which outputs all solutions ordered non-decreasingly by their size.

Keywords: parameterised complexity; enumeration; bounded search tree; parameterised
enumeration; ordering

1. Introduction

Given a computational problem one often is interested in generating all solutions. For instance,
one wants to list all answers to a query to a database [1] or is interested in all hits that a web search
engine produces [2]. Even in bioinformatics [3] or computational linguistics [4] such enumeration
problems play a crucial role. In this setting, one is more interested in the delay between output
solutions rather than in the overall runtime of such algorithms. Here, a uniform stream of solutions
is highly desired. Johnson et al. [5] explain in their seminal paper that the notion of the complexity
class DelayP, which consists of problems whose delay is bounded by a polynomial in the input length,
is very important.

A view on studied enumeration problems fuels the observation that often a specific order in
the output solutions is very central: Many applications benefit from printing “cheap” solutions
first. Moreover, enumerating all solutions in non-decreasing order allows to determine not only
the smallest solution, but also the kth-smallest one. Such a generating algorithm allows finding the
smallest solution obeying further constraints (at each generation step one verifies which constraints
match). Unfortunately, this technique cannot guarantee efficient enumeration because a long prefix of
candidates may not satisfy them. Yet, this technique is very versatile due to its applicability to any
additional decidable constraint [6]. Now, we want to exemplify this observation.

Algorithms 2019, 12, 189; doi:10.3390/a12090189 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0002-8061-5376
https://orcid.org/0000-0002-3552-5566
https://orcid.org/0000-0002-9292-1960
http://www.mdpi.com/1999-4893/12/9/189?type=check_update&version=1
http://dx.doi.org/10.3390/a12090189
http://www.mdpi.com/journal/algorithms

Algorithms 2019, 12, 189 2 of 16

Creignou and Hébrard [7] studied, within the well-known Schaefer framework for Boolean
constraint satisfaction problems [8], which classes of propositional CNF formulas enumerating all
satisfying solutions is possible in DelayP. They showed that for the classes of Horn, anti-Horn, affine
or bijunctive formulas, such an algorithm exists. However, for any other class of formulas, having
a DelayP algorithm implies P = NP. Interestingly, their proof builds on the self-reducibility of the
propositional satisfiability problem. By the approach of a flashlight search, that is, trying first an
assignment 0 and then 1, they observed that their enumeration algorithm obeys lexicographic order.

Later, Creignou et al. [9] studied enumerating satisfying assignments for propositional formulas in
non-decreasing weight. Surprisingly, now, efficiently enumerating is only possible for Horn formulas
and width-2 affine formulas (that is, affine formulas with at most two literals per clause). To achieve
their result, the authors exploited priority queues to ensure enumeration in order (as was observed
already by Johnson et al. [5]).

While parameterised enumeration had already been considered before (see, e.g., the works of
Fernau, Damaschke and Fomin et al. [10–12]), the notion of fixed-parameter tractable delay was novel,
leading to the complexity class DelayFPT [13]. Intuitively, the “polynomial time” in the definition
of DelayP here is substituted by a fixed-parameter runtime-bound of the form nO(1) · f (k), where n
denotes the input length, k is the input parameter and f is a computable function. This introduces
the notion of efficiency in the context of the parameterised world, that is, fixed-parameter tractability
(FPT), to the enumeration framework. Creignou et al. [13] investigated a wealth of problems from
propositional logic and developed enumeration algorithms based on self-reducibility and on the
technique of kernelisation. Particularly, the membership of an enumeration problem in DelayFPT can
be characterised by a specificly tailored form of kernelisability, very much as in the context of usual
decision problems.

As this area of parameterised enumeration is rather young and has received less attention, we want
to further support this topic with this paper. Here, we study ordered enumeration in the context of
parameterised complexity. First, we introduce arbitrary orders to the parameterised enumeration
framework. Then we consider the special context of graph modification problems where we are
interested in ordered enumeration for the two mostly studied orders, namely by lexicographic and
by non-decreasing size (where the size is the number of modifications that have to be made). We use
two algorithmic strategies, depending on the respective order as follows. Based on the principle of
self-reducibility we obtain DelayFPT (and polynomial-space) enumeration algorithms for lexicographic
order, as soon as the decision problem is efficiently solvable. Secondly, we present a DelayFPT
enumeration algorithm for order by size as soon as a certain FPT-computable neighbourhood function
on the solutions set exists (see Theorem 1). Notice that the presented algorithms do not enumerate the
set of minimal solutions but the set of solutions of bounded size. Extending to such solutions from
minimal ones in the enumeration process is not generally trivial. To cope with the order, we use a
priority queue that may require exponential space in the input length (as there exist potentially that
many solutions).

Eventually, we show that the observed principles and algorithmic strategies can be applied to
general modification problems as well. For instance, a general modification problem could allow
to flip bits of a string. It is a rather rare situation that a general algorithmic scheme is developed.
Usually algorithms are devised on a very individual basis. We prove a wide scope of applicability of our
method by presenting new FPT delay ordered enumeration algorithms for a large variety of problems,
such as cluster editing [14], triangulation [15], triangle deletion [16], closest-string [17] and backdoor
sets [18]. Furthermore, there already exists work which adopts the introduced framework of Creignou
et al. [13] in the area of conjunctive query enumeration [19], triangle enumeration [20], combinatorial
optimisation [21], abstract argumentation [22] and global constraints [23].

Algorithms 2019, 12, 189 3 of 16

2. Preliminaries

We start by defining parameterised enumeration problems with a specific ordering and their
corresponding enumeration algorithms. Most definitions in this section transfer those of Johnson et al.
and Schmidt [5,24] from the context of enumeration and those of Creignou et al. [13] from the context
of parameterised enumeration to the context of parameterised ordered enumeration.

The studied orderings of enumeration problems in this paper are quasi-orders which will be
defined in the following.

Definition 1 (Quasi-Order). Let R be a set and� a binary relation on R. Then� is a preorder (or quasi-order)
if we have for all elements a, b, c ∈ R:

• a � a and
• if a � b and b � c then a � c.

We will write z 6� y whenever z � y is not true.
Now, we proceed by introducing parameterised enumeration problems with ordering. Intuitively,

the corresponding enumeration algorithm for such problems has to obey the given ordering, that is,
it has to produce solutions without violating that ordering.

Definition 2. A parameterised enumeration problem with ordering is a quadruple E = (I, κ, Sol,�) such that
the following holds:

• I is the set of instances.
• κ : I → N is the parameterisation function; κ is required to be polynomial time computable.
• Sol is a function such that for all x ∈ I, Sol(x) is a finite set, the set of solutions of x. Further we write

S =
⋃

x∈I Sol(x).
• � is a quasi-order on S .

Notice that this order on all solutions is only a short way of simultaneously giving an order for
each instance. Furthermore, we will write an index E letter, e.g., IE, κE, to denote that we are talking
about an instance set, parameterisation function, etc., of a given enumeration problem E. In the next
step, we fix the notion of enumeration algorithms in our setting.

Definition 3 (Enumeration Algorithm). Let E = (I, κ, Sol,�) be a parameterised enumeration problem
with ordering. Then an algorithm A is an enumeration algorithm for E if the following holds:

• For every x ∈ I, A(x) terminates after a finite number of steps.
• For every x ∈ I, A(x) outputs exactly the elements of Sol(x) without duplicates.
• For every x ∈ I and y, z ∈ Sol(x), if y � z and z 6� y then A(x) outputs solution y before solution z.

Before we define complexity classes for parameterised enumeration, we need the notion of delay
for enumeration algorithms.

Definition 4 (Delay). Let E = (I, κ, Sol,�) be a parameterised enumeration problem with ordering and A be
an enumeration algorithm for E. Let x ∈ I be an instance. The ith delay of A is the elapsed runtime with respect
to |x| of A between outputting the ith and (i + 1)th solution in Sol(x). The 0th delay is the precomputation
time which is the elapsed runtime with respect to |x| of A from the start of the computation to the first output
statement. Analogously, the nth delay, for n = |Sol(x)|, is the postcomputation time, which is the elapsed
runtime with respect to |x| of A after the last output statement until A terminates. Then, the delay of A is the
maximum over all 0 ≤ i ≤ n of the ith delay of A.

Now we are able to define two different complexity classes for parameterised enumeration
following the notion of Creignou et al. [13].

Algorithms 2019, 12, 189 4 of 16

Definition 5. Let E = (I, κ, Sol,�) be a parameterised enumeration problem. We say that E is FPT enumerable
if there exists an enumeration algorithm A, a computable function f : N→ N and a polynomial p such that for
every x ∈ I, A outputs all solutions of Sol(x) in time f (κ(x)) · p(|x|).

An enumeration algorithm A is a DelayFPT algorithm if there exists a computable function f : N→ N
and a polynomial p such that for every x ∈ I, A outputs all solutions of Sol(x) with delay of at most
f (κ(x)) · p(|x|).

The class DelayFPT consists of all parameterised enumeration problems that admit a
DelayFPT-enumeration algorithm.

Some of our enumeration algorithms will make use of priority queues to enumerate all solutions
in the correct order and to avoid duplicates. We will follow the approach of Johnson et al. [5].
For an instance x of a parameterised enumeration problem whose sizes of solutions are polynomially
bounded in |x|; we use a priority queue Q to store a subset of Sol(x) of cardinality potentially
exponential in |x|. The insert operation of Q requires O(|x| · log |Sol(x)|) time. The extract minimum
operation requires O(|x| · log |Sol(x)|) time, too. It is important, however, that the computation of the
order between two elements takes at most O(|x|) time. As pointed out by Johnson et al., the required
queue can be implemented with the help of standard balanced tree schemes [25].

2.1. Graph Modification Problems

Graph modification problems have been studied for a long time in computational complexity
theory [26]. Already in the monograph by Garey and Johnson [27], among the graph-theoretic problems
considered, many fall into this problem class. To the best of our knowledge, graph modification
problems were studied in the context of parameterised complexity for the first time in [28].

In this paper, we consider only undirected graphs. Let G denote the set of all undirected graphs.
A graph property P ⊆ G is a set of graphs. Given a graph property P and an undirected graph G,
we write G |= P if the graph G obeys the property P , that is, G ∈ P .

Definition 6 (Graph Operations). A graph operation for G is either of the following:

• removing a vertex: A function remv : G → G such that remv(G) is the graph obtained by removing the
vertex v from G (if v is present; otherwise remv is the identity) and deleting all incident edges to v,

• adding/removing an edge: A function add{u,v}, rem{u,v} : G → G such that add{u,v}(G), rem{u,v}(G)

is the graph obtained by adding/removing the edge {u, v} to G if u and v are present in G; otherwise both
functions are the identity

Two operations o, o′ are dependent if

• o = remv and o′ = rem{u,v} (o removes the vertex v and o′ removes an edge incident to v) or
• o = rem{u,v} and o′ = add{u,v} (o removes the edge {u, v} and o′ adds the same edge {u, v} again).

A set of operations is consistent if it does not contain two dependent operations. Given such a consistent
set of operations S, the graph obtained from G by applying the operations in S on G is denoted by S(G).

Now, we turn towards the definition of solutions and will define minimality in terms of
being inclusion-minimal.

Definition 7 (Solutions). Given a graph property P , a graph G, k ∈ N and a set of operations O, we say that
S is a solution for (G, k, O) with respect to P if the following three properties hold:

1. S ⊆ O is a consistent set of operations,
2. |S| ≤ k and
3. S(G) |= P .

A solution S is minimal if there is no solution S′ such that S′ (S.

Algorithms 2019, 12, 189 5 of 16

Cai [28] was interested in the following parameterised graph modification decision problem with
respect to a given graph property P :

Problem: MP
Input: (G, k, O), G undirected graph, k ∈ N, O set of operations on G.
Parameter: The integer k.
Question: Does there exist a solution for (G, k, O) with respect to P?

Some of the most important examples of graph modification problems are presented now. A
chord in a graph G = (V, E) is an edge between two vertices of a cycle C in G which is not part of
C. A given graph G = (V, E) is triangular (or chordal) if each of its induced cycles of four or more
nodes has a chord. The problem TRIANGULATION then asks, given an undirected graph G and k ∈ N,
whether there exists a set of at most k edges such that adding this set of edges to G makes it triangular.
Yannakakis showed that this problem is NP complete [15]. Kaplan et al. [29] and independently
Cai [28] have shown that the parameterised problem is in FPT. For this problem, a solution is a set of
edges which have to be added to the graph to make the graph triangular. Observe that, in this special
case of the modification problem, the underlying property P , “to be triangular”, does not have a finite
forbidden set characterisation (since cycles of any length are problematic). Nevertheless, we will see
later, that one can efficiently enumerate all minimal solutions as well.

A cluster is a graph such that all its connected components are cliques. In order to transform
(or modify) a graph G we allow here only two kinds of operations: Adding or removing an edge.
CLUSTER-EDITING asks, given a graph G and a parameter k, whether there exists a consistent set of
operations of cardinality at most k such that S(G) is cluster. It was shown by Shamir et al., that the
problem is NP complete [14].

The problem TRIANGLE-DELETION asks whether a given graph can be transformed into a
triangle-free graph by deletion of at most k vertices. Yannakakis has shown that the problem is
NP complete [16].

Analogous problems can be defined for many other classes of graphs, e.g., line graphs, claw-free
graphs, Helly circular-arc graphs, etc., see [30].

Now, we turn towards the main focus of the paper. Here, we are interested in corresponding
enumeration problems with ordering. In particular, we will focus on two well-known preorders,
lexicographic ordering and ordering by size. Since our solutions are subsets of an ordered set of
operations, they can be encoded as binary strings in which the ith bit from right indicates whether the
ith operation is in the subset. We define the lexicographic ordering of solutions as the lexicographic
ordering of these strings. Then, the size of a solution simply is its cardinality.

Problem: ENUM-MLEX
P

Input: (G, k, O), G undirected graph, k ∈ N, O ordered set of operations on G.
Parameter: The integer k.
Output: All solutions of (G, k, O) with respect to P in lexicographic order.

Problem: ENUM-MSIZE
P

Input: (G, k, O), G undirected graph, k ∈ N, O set of operations on G.
Parameter: The integer k.
Output: All solutions of (G, k, O) with respect to P in non-decreasing size.

If the context is clear, we omit the subscript P for the graph modification problem and simply
writeM. Furthermore, we write SolM(x) for the function associating solutions to a given instance,
and also SM for the set of all solutions ofM.

Algorithms 2019, 12, 189 6 of 16

3. Enumeration of Graph Modification Problems with Ordering

In this section, we study the two previously introduced parameterised enumeration problems
with ordering (lexicographic and size ordering).

3.1. Lexicographic Ordering

We first prove that, for any graph property P , if the decision problemMP is in FPT then there is
an efficient enumeration algorithm for ENUM-MLEX

P .

Lemma 1. LetMP be a graph modification problem. IfMP is in FPT then ENUM-MLEX
P ∈ DelayFPT with

polynomial space.

Proof. Algorithm 1 enumerates all solutions of an instance of a given modification problemMP by
the method of self-reducibility (it is an extension of the flash light search of Creignou and Hébrard [7]).
The algorithm uses a function ExistsSol(G, k, O) that tests if the instance (G, k, O) of the modification
problemMP has a solution. By the assumption of the lemma,MP ∈ FPT so this function runs in
FPT time. We use calls to this function to avoid exploration of branches of the recursion tree that do
not lead to any output. Moreover, we ensure that the solutions using op have to be consistent. This
consistency check runs in polynomial time for graph operations. The rest yields a search tree of depth
at most k. From this it follows that, for any instance of length n, the time beween the output of any two
solutions is bounded by f (k) · p(n) for some polynomial p and a computable function f .

Algorithm 1: Enumerate all solutions ofMP in lexicographic order

Input: (G, k, O): A graph G, k ∈ N, an ordered set of operations O = {o1, . . . , on}
Output: all consistent sets S ⊆ O s.t. |S| ≤ k, S(G) |= P in lexicographic order

1 if ExistsSol(G, k, O) then Generate(G, k, O, ∅);

Procedure Generate(G, k, O, S):
1 if O = ∅ or k = 0 then return S;
2 else
3 let op be the lexicographically last operation in O, O′ := O \ {op};
4 if ExistsSol(S(G), k, O′) then Generate(S(G), k, O′, S);
5 if S ∪ {op} is consistent and ExistsSol((S ∪ {op})(G), k− 1, O′) then
6 Generate((S ∪ {op})(G), k− 1, O′, S ∪ {op}).

Corollary 1. ENUM-TRIANGULATIONLEX ∈ DelayFPT with polynomial space.

Proof. Kaplan et al. [29] and Cai [28] showed that TRIANGULATION ∈ FPT. Now, by applying
Lemma 1, we get the result.

Cai [28] identified a class of graph properties whose associated modification problems belong to
FPT. Let us introduce some terminology.

Definition 8. Given two graphs G = (V, E) and H = (V′, E′), we write H E G if H is an induced subgraph
of G, i.e., V′ ⊆ V and E′ = E ∩ (V′ ×V′). Let F be a set of graphs and P be a graph property. We say that F
is a forbidden set characterisation of P if for any graph G it holds that: G |= P iff for all H ∈ F , H 6E G.

Among the problems presented in the previous section (see page 5), TRIANGLE-DELETION and
CLUSTER-EDITING have a finite forbidden set characterisation, namely by triangles and paths of
length two. In contrast to that, TRIANGULATION has a forbidden set characterisation which is infinite,
since cycles of arbitrary length are problematic. Actually, for properties having a finite forbidden set

Algorithms 2019, 12, 189 7 of 16

characterisation, the corresponding modification problem is fixed-parameter tractable. Together with
Lemma 1, this provides a positive result in terms of enumeration.

Proposition 1 ([28]). If a property P has a finite forbidden set characterisation thenMP is in FPT.

Corollary 2. For any graph modification problem, if P has a finite forbidden set characterisation then
ENUM-MLEX

P ∈ DelayFPT with polynomial space.

Proof. This result follows by combining Proposition 1 with Lemma 1.

3.2. Size Ordering

A common strategy in the enumeration context consists of defining a notion of a neighbourhood
that allows to compute a new solution from a previous one with small amounts of computation
time (see, e.g., the work of Avis and Fukuda [31]). We introduce the notion of a neighbourhood
function, which, roughly speaking, generates some initial solutions from which all solutions can
be produced. A priority queue then takes care of the ordering and avoids duplicates, which may
require exponential space. For the graph modification problems of interest, we show that if the
inclusion-minimal solutions can be generated in FPT, then such a neighbourhood function exists,
accordingly providing a DelayFPT-enumeration algorithm. In the following, O (the “seed”) is a
technical symbol that will be used to generate the initial solutions.

Definition 9. LetM be a graph modification problem. A neighbourhood function forM is a (partial) function
NM : IM × (SM ∪ {O})→ 2SM such that the following holds:

1. For all x = (G, k, O) ∈ IM and S ∈ SolM(x) ∪ {O}, NM(x, S) is defined.
2. For all x ∈ IM, NM(x,O) = ∅ if SolM(x) = ∅, and NM(x,O) is an arbitrary set of solutions

otherwise.
3. For all x ∈ IM and S ∈ SolM(x), if S′ ∈ NM(x, S) then |S| < |S′|.
4. For all x ∈ IM and all S ∈ SolM(x), there exists p > 0 and S1, . . . , Sp ∈ SolM(x) such that (i)

S1 ∈ NM(x,O), (ii) Si+1 ∈ NM(x, Si) for 1 ≤ i < p and (iii) Sp = S.

Furthermore, we say that NM is FPT computable, when NM(x, S) is computable in time f (κ(x)) ·
poly(|x|) for any x ∈ IM and S ∈ SolM(x).

As a result, a neighbourhood function for a problemM is a function that in a first phase computes
from scratch an initial set of solutions (see Definition 9(2)). In many of our applications below,
NM(x,O) will be the set of all minimal solutions for x. In a second phase these solutions are iteratively
extended (see condition (3)), where condition (4) guarantees that we do not miss any solution, as we
will see in the next theorem.

Theorem 1. Let M be a graph modification problem. If M admits a neighbourhood function NM that is
FPT-computable, then ENUM-MSIZE ∈ DelayFPT.

Proof. Algorithm 2 outputs all solutions in DelayFPT time. By the definition of the priority queue
(recall in particular that insertion of an element is done only if the element is not yet present in the
queue) and by the fact that all elements of NM((G, k, O), S) are of bigger size than S by Definition 9(3),
it is easily seen that the solutions are output in the right order and that no solution is output twice.

Besides, no solution is omitted. Indeed, given S ∈ SolM(G, k, O) and S1, . . . , Sp associated with S
by Definition 9(4), we prove by induction that each Si is inserted in Q during the run of the algorithm:

i = 1: This proceeds from line 2 of the algorithm.
i > 1: The solution Si−1 is inserted in Q by induction hypothesis and hence all elements of

NM((G, k, O), Si−1), including Si, are inserted in Q (line 5 of Algorithm 2). Consequently,
each Si is inserted in Q and then output during the run. In particular, this is true for S = Sp.

Algorithms 2019, 12, 189 8 of 16

Algorithm 2: DelayFPT algorithm for ENUM-M
Input : (G, k, O) : G is an undirected graph, k ∈ N, and O is a set of operations.

1 compute NM((G, k, O),O);
2 insert all elements of NM((G, k, O),O) into priority queue Q (ordered by size);
3 while Q is not empty do
4 extract the minimum solution S of Q and output it;
5 insert all elements of NM((G, k, O), S) into Q;

N((G, k, O),O)
priority
queue

output current
solution S

initial
solutions

extract
head

insert N((G, k, O), S)

Figure 1. Structure of Algorithm 2.

Finally, we claim that Algorithm 2 (see Fig. 1 for a graphical representation) runs in DelayFPT time.
Indeed, the delay between the output of two consecutive solutions is bounded by the time required
to compute a neighbourhood of the form NM((G, k, O),O) or NM((G, k, O), S) and to insert all its
elements in the priority queue. This is in FPT due to the assumption on NM being FPT computable
and as there is only a single extraction and many FPT insertion operations in the queue.

A natural way to provide a neighbourhood function for a graph modification problemM is to
consider the inclusion minimal solutions ofM. Let us denote by MIN-M the problem of enumerating
all inclusion minimal solutions ofM.

Theorem 2. LetM be a graph modification problem. If MIN-M is FPT enumerable then ENUM-MSIZE ∈
DelayFPT.

Proof. Let A be an FPT algorithm for MIN-M. Because of Theorem 1, it is sufficient to build an
FPT-neighbourhood function forM. For an instance (G, k, O) ofM and for S ∈ SolM(G, k, O) ∪ {O},
we define NM((G, k, O), S) as the result of Algorithm 3.

Accordingly, the function NM clearly fulfils Conditions 2 and 3 of Definition 9. We prove by
induction that it also satisfies Condition 4 (that is, each solution T of size k comes with a sequence
T1, . . . , Tp = T such that T1 ∈ NM((G, k, O),O) and Ti+1 ∈ NM((G, k, O), Ti) for each i). If T is a
minimal solution for (G, k, O), then T ∈ NM((G, k, O),O) and the expected sequence (Ti)1≤i≤p reduces
to T1 = T. Otherwise, there exists an S ∈ SolM(G, k, O) and a non-empty set of transformations,
say S′ ∪ {t}, such that T = S ∪ S′ ∪ {t} and there is no solution for G between S and S ∪ S′ ∪ {t}.
This entails that S′ is a minimal solution for

(
(S ∪ {t})(G), k − |S| − 1

)
and, as a consequence,

T ∈ NM((G, k, O), S) (see lines 4–5 of Algorithm 3). The conclusion follows from the induction
hypothesis that guarantees the existence of solutions S1, . . . , Sq such that S1 ∈ NM((G, k, O),O),
Si+1 ∈ NM((G, k, O), Si) and Sq = S. The expected sequence T1, . . . , Tp for T is nothing but
S1, . . . , Sq, T. To conclude, it remains to show that Algorithm 3 is FPT. This follows from the fact that
A is an FPT algorithm (Lines 1 and 4 of Algorithm 3).

Corollary 3. ENUM-TRIANGULATIONSIZE ∈ DelayFPT.

Proof. All inclusion-minimal k-triangulations can be output in time O(24k · |E|) for a given graph G
and k ∈ N as shown by Kaplan et al. [29, Theorem 2.4]. This immediately yields the expected result via
Theorem 2.

Algorithms 2019, 12, 189 9 of 16

Algorithm 3: Procedure for computing NM((G, k, O), S)
Input : (G, k, O), S: G is an undirected graph, k ∈ N, O and S are sets of operations.

1 if S = O then return A(G, k, O);
2 res := ∅;
3 for all t ∈ O do
4 for all S′ ∈ A((S ∪ {t})(G), k− |S| − 1, O \ {t}) do
5 if S ∪ S′ ∪ {t} is consistent then res := res∪ {S ∪ S′ ∪ {t}} ;

6 return res;

Corollary 4. For any property P that has a finite forbidden set characterisation, the problem ENUM-MSIZE
P is

in DelayFPT.

Proof. The algorithm developed by Cai [28] for the decision problem is based on a bounded search
tree, whose exhaustive examination provides all size minimal solutions in FPT. Theorem 2 yields the
conclusion.

Corollary 5. ENUM-CLUSTER-EDITINGSIZE and ENUM-TRIANGLE-DELETIONSIZE are in DelayFPT.

Proof. Both problems have a finite forbidden set characterisation. For the cluster editing problem,
paths of length two are the forbidden pattern, and, regarding ENUM-TRIANGLE-DELETIONSIZE,
the forbidden patterns are triangles. The result then follows from Corollary 4.

4. Generalisation to Modification Problems

In this section, we will show how the algorithmic strategy that has been defined and formalised
in the context of graph modification can be of use for many other problems, coming from various
combinatorial frameworks.

Definition 10 (General Operations). Let Q ⊆ Σ∗ be a language defined over an alphabet and let x ∈ Σ∗ be
an input. A set of operations Ω(Q) = {ωn : Σ∗ → Σ∗ | n ∈ N } is an infinite set of operations on instances of
Q. We say that an operation ω is valid with respect to an instance x ∈ Q, if ω(x) ∈ Q. We write Ω/x for the
set of possible (valid) operations on an instance x.

Two operations ω, ω′ are dependent with respect to an instance x ∈ Q if

• ω(ω′(x)) = x or (intuitively, ω and ω′ cancel out)
• ω(ω′(x)) = ω′(x) or ω(ω′(x)) = ω(x). (intuitively, the order of ω and ω′ does not matter)

A set of operations O ⊆ Ω/x is consistent with respect to x if it does not contain two dependent operations.
Similarly, we say that an operation ω is consistent with a set S if and only if S ∪ {ω} is consistent.

For instance, the set Ω could contain operations that add edges or, in another case, flip bits.
How exactly Ω is defined highly depends on the corresponding language Q.

Example 1. Let G ⊆ {0, 1}∗ be the language of all undirected graphs encoded by adjacency matrices.
Then Ω(G) is the set of all graph operations in the sense of Definition 6: Removing vertices or edges, adding
edges. Note that Ω(G) contains all operations of the kind

remi : G → G, rem{i,j} : G → G, add{i,j} : G → G

for all i, j ∈ N. Furthermore, let G = (V, E) ∈ {0, 1}∗ be a concrete input graph. As a result, Ω/G then is the
restriction of Ω to those i, j ∈ N such that vi, vj ∈ V encode vertices in G.

Algorithms 2019, 12, 189 10 of 16

Similarly to how it was defined in Subsection 2.1, a property is just a set. In the following context,
it is a subset of a considered language Q. Intuitively, in the concept of graph modification problems,
one may think of Q as G. Then a graph property P is just a subset of G.

Definition 11 (General Solutions). Let Q ⊆ Σ∗ be a language defined over an alphabet, S ⊆ Ω/x be a finite
set of operations on x ∈ Q and P ⊆ Q be a property. We say that S is a solution (of x) if S is a consistent set
of operations and S(x) ∈ P . Furthermore, we denote by SQ :=

⋃
x∈Q{ S | S is a solution of x } the set of all

solutions for every instance x ∈ Q. In addition, Sol(x) is the set of solutions for every instance x ∈ Q.

Example 2. Continuing the previous example, if the property P is “to be a cluster” then a consistent solution
S to a given graph is a sequence of removing vertices, adding and deleting of edges where

• there is no edge (i, j) added or deleted such that vertex i or j is removed,
• there is no edge (i, j) added and removed and
• S(G) |= P .

Similarly, adding edge (i, j) together with removing vertex i or j or removing edge (i, j) is an inconsistent
set of operations.

Now we want to define the corresponding decision and enumeration tasks. On that account, let
P be a property, Π = (Q, κ) be a parametrised problem with Q ⊆ Σ∗ and Ω be a set of operations.

Problem: ΠP — parameterised modification problem Π w.r.t. a property P over Σ

Input: x ∈ Σ∗, k ∈ N, Ω/x set of operations.
Parameter: The integer k.
Question: Is there a solution S ⊆ Ω/x and |S| ≤ k?

Problem: ENUM-MIN-ΠP — parameterised minimum enumeration modification problem
w.r.t. a property P over Σ

Input: x ∈ Σ∗, k ∈ N, Ω/x set of operations.
Parameter: The integer k.
Output: All minimal (w.r.t. some order) solutions S ⊆ Ω/x with |S| ≤ k.

The enumeration modification problem where we want to output all possible sets of
transformations on a given instance x (and not only the minimum ones) then is ENUM-ΠP .

In the following, we show how the notion of neighbourhood functions can be generalised as well.
This will in turn yield generalisations of the results for graph modification problems afterwards.

Definition 12. Let Σ be an alphabet, P ⊆ Σ∗ be a property and ΠP be a parameterised modification problem
over Σ. A neighbourhood function for ΠP is a (partial) function NΠP : Σ∗ ×

(
SΠP ∪ {O}

)
→ 2SΠP such that

the following holds:

1. For all x ∈ Σ∗ and S ∈ SolΠP (x) ∪ {O}, NΠP (x, S) is defined.
2. For all x ∈ Σ∗, NΠP (x,O) = ∅ if SolΠP (x) = ∅, and NΠP (x,O) is an arbitrary set of

solutions otherwise.
3. For all x ∈ Σ∗ and S ∈ SolΠP (x), if S′ ∈ NΠP (x, S) then |S| < |S′|.
4. For all x ∈ Σ∗ and all S ∈ SolΠP (x), there exists p > 0 and S1, . . . , Sp ∈ SolΠP (x) such that (i)

S1 ∈ NΠP (x,O), (ii) Si+1 ∈ NΠP (x, Si) for 1 ≤ i < p and (iii) Sp = S.

Furthermore, we say thatNΠP is FPT computable whenNΠP (x, S) is computable in time f (k) · poly(|x|)
for any x ∈ Σ∗ and S ∈ SolΠP (x).

As already announced before, we are able to state generalised versions of Theorems 1 and 2 which
can be proven in a similar way. However, one has to replace the graph modification problems by
general modification problems.

Algorithms 2019, 12, 189 11 of 16

Corollary 6. Let P be a property, Π ⊆ Σ∗ ×N be a parameterised modification problem and Ω be a set of
operations such that Ω/x is finite for all x ∈ Σ∗. If ΠP admits a neighbourhood function that is FPT computable
then ENUM-ΠP ∈ DelayFPT using

• polynomial space for lexicographic order and
• exponential space for size order.

Corollary 7. Let P be a property, Π ⊆ Σ∗ ×N be a parameterised modification problem and Ω be a set of
operations such that Ω/x is finite for all x ∈ Σ∗. If ENUM-MIN-ΠP is FPT enumerable and the consistency of
solutions can be checked in FPT then ENUM-ΠP ∈ DelayFPT and using

• polynomial space for lexicographic order and
• exponential space for size order.

4.1. Closest String

In the following, we consider a central NP complete problem in coding theory [32]. Given a set of
binary strings I, we want to find a string s with maximum Hamming distance max{ dH(s, s′) | s′ ∈
I } ≤ d for a d ∈ N, where dH(s, s′) is the Hamming distance between two strings.

Definition 13 (Bit-Flip operation). Given a string w = w1 · · ·wn with wi ∈ {0, 1}, n ∈ N and a set
S ⊆ {1, . . . , n}, S(w) denotes the string obtained from w by flipping the bits indicated by S, more formally
S(w) := S(w1) · · · S(wn), where S(wi) = 1− wi if i ∈ S and S(wi) = wi otherwise.

The corresponding parametrised version is the following.

Problem: CLOSEST-STRING

Input: A sequence (s1, s2, ..., sk) of k strings over {0, 1} each of given length n ∈ N and
an integer d ∈ N.

Parameter: The integer d.
Question: Does there exist S ⊆ {1, . . . , n} such that dH(S(s1), si) ≤ d for all 1 ≤ i ≤ k?

Proposition 2 ([17]). CLOSEST-STRING is in FPT.

Moreover, an exhaustive examination of a bounded search tree constructed from the idea of
Gramm et al. [17, Figure 1], allows to produce all minimal solutions of this problem in FPT. Accordingly,
we get the following result for the corresponding enumeration problems.

Theorem 3.
• ENUM-CLOSEST-STRINGLEX ∈ DelayFPT with polynomial space.
• ENUM-CLOSEST-STRINGSIZE ∈ DelayFPT with exponential space.

Proof. Ω is just the set of operations which flip the ith bit of a string for every i ∈ N. By combining
Proposition 2 with Corollary 7 we get the desired result.

4.2. Backdoors

In this section, we will consider the concept of backdoors. Let C be a class of propositional
formulas. Intuitively, a C backdoor is a set of variables of a given propositional formula with the
following property. Applying assignments over these variables to the formula always yields a formula
in the class C. Of course, one aims for formula classes for which satisfiability can be decided efficiently.
Informally speaking, with the parameter backdoor size of a formula one tries to describe a distance to
tractability. This definition was first introduced by Golmes, Williams and Selman [18] to model short
distances to efficient subclasses. Until today, backdoors gained copious attention in many different

Algorithms 2019, 12, 189 12 of 16

areas: abduction [33], answer set programming [34,35], argumentation [36], default logic [37], temporal
logic [38], planning [39] and constraint satisfaction [40,41].

Consider a formula φ in conjunctive normal form. Denote by φ[τ] for a partial truth assignment τ

the result of removing all clauses from φ which contain a literal ` with τ(`) = 1 and removing literals
` with τ(`) = 0 from the remaining clauses.

Definition 14. Let C be a class of CNF formulas and φ be a CNF formula. A set V ⊆ Vars(φ) of variables of φ

is a strong C backdoor set of φ if for all truth assignments τ : V → {0, 1} we have that φ[τ] ∈ C.

Definition 15 ([42,43]). Let C be a class of CNF formulas and φ be a CNF formula. A set V ⊆ Vars(φ) of
variables of φ is a C-deletion backdoor set of φ if φ[V] is in C, where φ[V] denotes the formula obtained from φ

by deleting in φ all occurrences of variables from V.

Definition 16 (Weak Backdoor Sets). Let C be a class of CNF formulas and φ be a propositional CNF formula.
A set V ⊆ Vars(φ) of variables from φ is a weak C backdoor set of φ if there exists an assignment θ ∈ Θ(V)

such that φ[θ] ∈ C and φ[θ] is satisfiable.

Now let us consider the following enumeration problem.

Problem: ENUM-WEAK-BACKDOORSET(C)

Input: A formula φ in CNF, k ∈ N.
Parameter: The integer k.
Output: The set of all weak C backdoor sets of φ of size at most k.

Similarly, define ENUM-STRONG-BACKDOORSET(C) for the set of all strong C backdoor sets of φ

of size at most k. Observe that the backdoor set problems can be seen as modification problems where
solutions are sequences of variable assignments. The target property then simply is the class of CNF
formulas C.

Notice that Creignou et al. [13, Theorem 4], have studied enumeration for exact strong
HORNbackdoor sets and provided an algorithm running in DelayFPT, where HORN denotes the set
of all Horn formulas, that is, CNF formulas whose clauses contain at most one positive literal.

Definition 17 (Base Class [44]). The class C is a base class if it can be recognised in P (that is, C ∈ P), the
satisfiability of its formulas is in P and the class is closed under isomorphisms w.r.t. variable names. We say that
C is clause defined if for every CNF formula φ we have: φ ∈ C if and only if {C} ∈ C for all clauses C from φ.

Proposition 3 ([44, Proposition 2]). For every clause-defined base class C, the detection of weak C backdoor
sets is in FPT for input formulas in 3-CNF.

In their proof, Gaspers and Szeider [44] describe how utilising a bounded search tree allows one
to solve the detection of weak C backdoors in FPT time. Interesting to note, this technique results in
obtaining all minimal solutions in FPT time. This observation results in the following theorem.

Theorem 4. For every clause-defined base class C and input formula in 3-CNF

• ENUM-WEAK-C-BACKDOORSLEX ∈ DelayFPT with polynomial space and
• ENUM-WEAK-C-BACKDOORSSIZE ∈ DelayFPT with exponential space.

Proof. The set of operations Ω contains functions that replace a specific variable i ∈ N
by a truth value t ∈ {0, 1}. A solution encodes the chosen backdoor set together with
the required assignment. Proposition 3 yields ENUM-MIN-WEAK-CBACKDOORSLEX, resp.,
ENUM-MIN-WEAK-C-BACKDOORSSIZE being FPT enumerable. As the consistency check for solutions
is in polynomial time, applying Corollary 7 completes the proof.

Algorithms 2019, 12, 189 13 of 16

In the following result, we will examine the parametrised enumeration complexity of the task to
enumerate all strong C-backdoor sets of a given 3-CNF formula for some clause-defined base class C.
Crucially, every strong backdoor set has to contain at least one variable from a clause that is not in C
which relates to “hitting all bad clauses” like in the definition of deletion backdoors (see Definition 15).

Theorem 5. For every clause-defined base class C and input formula in 3-CNF:

• ENUM-STRONG-C-BACKDOORSLEX ∈ DelayFPT with polynomial space and
• ENUM-STRONG-C-BACKDOORSSIZE ∈ DelayFPT with exponential space.

Proof. We show that for every clause-defined base class C and input formula in 3-CNF, the problem
MIN-STRONG-C-BACKDOORS is FPT enumerable. Indeed, we only need to branch on the variables
from a clause C /∈ C and remove the corresponding literals over the considered variable from φ.
The size of the branching tree is at most 3k. As for base classes the satisfiability test is in P, this yields
an FPT algorithm. The neighbourhood function N(x, S) for x = (φ, k) is defined to be the set of the
pairwise unions of all minimal strong C backdoors of (φ[(S∪ {xi})], k− |S| − 1) together with S∪ {xi}
for all variables xi 6∈ S. If Vars(φ) = {x1, . . . , xn}, then the operations are ωi : φ 7→ φ(0/xi) ∧ φ(1/xi).
As application of the functions ωi happens only with respect to the backdoor size k, which is the
parameter, the formula size increases by an exponential factor in the parameter only. This yields the
preconditions for Corollary 7 .

4.3. Weighted Satisfiability Problems

Finally, we consider satisfiability questions for formulas in the Schaefer framework [8].
A constraint language Γ is a finite set of relations. A Γ formula φ, is a conjunction of constraints
using only relations from Γ and, consequently, is a quantifier-free first order formula.

As opposed to the approach of Creignou et al. [13], who examined maximum satisfiability, we
now focus on the problem MINONES-SAT(Γ) defined below.

If θ : X → {0, 1}, θ′ : Y → {0, 1} are two (partial) assignments over some set of variables X and Y,
then θ ⊂ θ′ is true, if θ(x) = θ′(x) for all x ∈ X and X ⊂ Y.

Definition 18 (Minimality). Given a propositional formula φ and an assignment θ over the variables in φ

with θ |= φ, we say that θ is minimal if there does not exist an assignment θ′ ⊂ θ and θ′ |= φ. The size |θ| of θ

is the number of variables it sets to true.

Formally, the problem of interest is defined with respect to any fixed constraint language Γ:

Problem: MIN-MINONES-SATSIZE(Γ)

Input: (φ, k), a Γ formula φ, k ∈ N.
Parameter: The integer k.
Output: Generate all inclusion-minimal satisfying assignments θ of φ with |θ| ≤ k by

non-decreasing size.

Similarly, the problem ENUM-MINONES-SAT(Γ) asks for all satisfying assignments θ of φ with
|θ| ≤ k. In this context, the operations in Ω are functions that replace the variable with index i ∈ N
by true.

Theorem 6. For all constraint languages Γ, we have: MIN-MINONES-SATSIZE(Γ) is FPT enumerable and
ENUM-MINONES-SATSIZE(Γ) ∈ DelayFPT with exponential space.

Proof. For the first claim we can simply compute the minimal assignments by a straightforward
branching algorithm: Initially, begin with the all 0-assignment, then consider all unsatisfied clauses in
turn and flip one of the occurring variables to true. The second claim follows by a direct application
of Corollary 7.

Algorithms 2019, 12, 189 14 of 16

5. Conclusions

We presented FPT delay ordered enumeration algorithms for a large variety of problems, such as
cluster editing, chordal completion, closest-string and weak and strong backdoors. An important point
of our paper is that we propose a general strategy for efficient enumeration. This is rather rare in the
literature, where algorithms are usually devised individually for specific problems. In particular, our
scheme yields DelayFPT algorithms for all graph modification problems that are characterised by a
finite set of forbidden patterns.

Initially, we focussed on graph-theoretic problems. Afterwards, the generic approach we
presented covered problems which are not only of a graph-theoretic nature. Here, we defined general
modification problems detached from graphs and constructed generic enumeration algorithms for
arising problems in the world of strings, numbers, formulas, constraints, etc.

As an observation, we would like to mention that the DelayFPT algorithms presented in this
paper require exponential space due to the inherent use of the priority queues to achieve ordered
enumeration. An interesting question, continuing the research of Meier [45], is whether there is a
method which requires less space but uses a comparable delay between the output of solutions and
still obeys the underlying order on solutions.

Author Contributions: Conceptualization, N.C., R.K., A.M., J.-S.M., F.O. and H.V.; Funding acquisition, N.C.,
A.M. and H.V.; Methodology, N.C., R.K., A.M., J.-S.M., F.O. and H.V.; Supervision, N.C., A.M. and H.V.;
Writing—original draft, N.C., R.K., A.M., F.O. and H.V.; Writing—review and editing, N.C., R.K., A.M., F.O.
and H.V.

Funding: This research was funded by Deutsche Forschungsgemeinschaft (ME 4279/1-2) and the French Agence
Nationale de la Recherche (AGGREG project reference ANR-14-CE25-0017).

Acknowledgments: We thank the anonymous reviewers for their valuable feedback.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Durand, A.; Schweikardt, N.; Segoufin, L. Enumerating answers to first-order queries over databases of
low degree. In Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, PODS’14, Snowbird, UT, USA, 22–27 June 2014; Hull, R., Grohe, M., Eds.; pp. 121–131,
doi:10.1145/2594538.2594539.

2. Fogaras, D.; Rácz, B. A Scalable Randomized Method to Compute Link-Based Similarity Rank
on the Web Graph. In Proceedings of the Current Trends in Database Technology—EDBT 2004
Workshops, EDBT 2004 Workshops PhD, DataX, PIM, P2P&DB, and ClustWeb, Heraklion, Crete, Greece,
14–18 March 2004; Revised Selected Papers; Lindner, W., Mesiti, M., Türker, C., Tzitzikas, Y., Vakali, A.,
Eds.; Lecture Notes in Computer Science; Springer: Berlin, Germany, 2004; Volume 3268, pp. 557–567,
doi:10.1007/978-3-540-30192-9_55.

3. Acuña, V.; Milreu, P.V.; Cottret, L.; Marchetti-Spaccamela, A.; Stougie, L.; Sagot, M. Algorithms and
complexity of enumerating minimal precursor sets in genome-wide metabolic networks. Bioinformatics 2012,
28, 2474–2483, doi:10.1093/bioinformatics/bts423.

4. Dill, K.A.; Lucas, A.; Hockenmaier, J.; Huang, L.; Chiang, D.; Joshi, A.K. Computational linguistics:
A new tool for exploring biopolymer structures and statistical mechanics. Polymer 2007, 48, 4289–4300,
doi:10.1016/j.polymer.2007.05.018.

5. Johnson, D.S.; Papadimitriou, C.H.; Yannakakis, M. On Generating All Maximal Independent Sets.
Inf. Process. Lett. 1988, 27, 119–123.

6. Sörensen, K.; Janssens, G.K. An algorithm to generate all spanning trees of a graph in order of increasing
cost. Pesqui. Oper. 2005, 25, 219–229.

7. Creignou, N.; Hébrard, J.J. On generating all solutions of generalized satisfiability problems. Theor. Informatics
Appl. 1997, 31, 499–511.

Algorithms 2019, 12, 189 15 of 16

8. Schaefer, T.J. The Complexity of Satisfiability Problems. In Proceedings of the 10th Annual ACM Symposium
on Theory of Computing, San Diego, CA, USA, 1–3 May 1978; Lipton, R.J., Burkhard, W.A., Savitch, W.J.,
Friedman, E.P., Aho, A.V., Eds.; pp. 216–226, doi:10.1145/800133.804350.

9. Creignou, N.; Olive, F.; Schmidt, J. Enumerating All Solutions of a Boolean CSP by Non-decreasing Weight.
In Proceedings of the 14th International Conference on Theory and Applications of Satisfiability Testing, SAT
2011, Ann Arbor, MI, USA, 19–22 June 2011; Lecture Notes in Computer Science; Springer: Berlin, Germany,
2011; Volume 6695, pp. 120–133.

10. Fernau, H. On Parameterized Enumeration. In Computing and Combinatorics; Springer: Berlin, Germany, 2002.
11. Damaschke, P. Parameterized enumeration, transversals, and imperfect phylogeny reconstruction.

Theor. Comput. Sci. 2006, 351, 337–350.
12. Fomin, F.V.; Saurabh, S.; Villanger, Y. A Polynomial Kernel for Proper Interval Vertex Deletion. SIAM J.

Discret. Math. 2013, 27, 1964–1976.
13. Creignou, N.; Meier, A.; Müller, J.; Schmidt, J.; Vollmer, H. Paradigms for Parameterized Enumeration.

Theory Comput. Syst. 2017, 60, 737–758, doi:10.1007/s00224-016-9702-4.
14. Shamir, R.; Sharan, R.; Tsur, D. Cluster graph modification problems. Discret. Appl. Math. 2004, 114, 173–182.
15. Yannakakis, M. Computing the minimum fill-in is NP complete. SIAM J. Algebr. Discret. Methods

1981, 2, 77–79, doi:10.1137/0602010.
16. Yannakakis, M. Node- and edge-deletion NP complete problems. In Proceedings of the 10th Annual ACM

Symposium on Theory of Computing, San Diego, CA, USA, 1–3 May 1978; pp. 253–264.
17. Gramm, J.; Niedermeier, R.; Rossmanith, P. Fixed-Parameter Algorithms for CLOSEST STRING and Related

Problems. Algorithmica 2003, 37, 25–42.
18. Williams, R.; Gomes, C.P.; Selman, B. Backdoors To Typical Case Complexity. In Proceedings of the IJCAI-03,

Eighteenth International Joint Conference on Artificial Intelligence, Acapulco, Mexico, 9–15 August 2003;
pp. 1173–1178.

19. Kröll, M.; Pichler, R.; Skritek, S. On the Complexity of Enumerating the Answers to Well-designed Pattern
Trees. In Proceedings of the 19th International Conference on Database Theory (ICDT 2016), Bordeaux,
France, 15–18 March 2016; Martens, W., Zeume, T., Eds.; Leibniz International Proceedings in Informatics
(LIPIcs); Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik: Wadern, Germany, 2016; Volume 48, pp.
22:1–22:18, doi:10.4230/LIPIcs.ICDT.2016.22.

20. Bentert, M.; Fluschnik, T.; Nichterlein, A.; Niedermeier, R. Parameterized aspects of triangle enumeration.
J. Comput. Syst. Sci. 2019, 103, 61–77, doi:10.1016/j.jcss.2019.02.004.

21. Bökler, F.; Ehrgott, M.; Morris, C.; Mutzel, P. Output-sensitive complexity of multiobjective combinatorial
optimization. J. Multi-Criteria Decis. Anal. 2017, 24, 25–36, doi:10.1002/mcda.1603.

22. Kröll, M.; Pichler, R.; Woltran, S. On the Complexity of Enumerating the Extensions of Abstract
Argumentation Frameworks. In Proceedings of the 26th International Joint Conference on Artificial
Intelligence, IJCAI 17, Melbourne, Australia, 19–25 August 2017; AAAI Press: Palo Alto, CA, USA, 2017;
pp. 1145–1152.

23. Carbonnel, C.; Hebrard, E. On the Kernelization of Global Constraints. In Proceedings of the 26th
International Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, 19–25 August
2017; AAAI Press: Palo Alto, CA, USA, 2017, pp. 578–584, doi:10.24963/ijcai.2017/81.

24. Schmidt, J. Enumeration: Algorithms and Complexity. Master’s Thesis, Leibniz Universität Hannover,
Hanover, Germany, 2009.

25. Hirai, Y.; Yamamoto, K. Balancing weight-balanced trees. J. Funct. Program. 2011, 21, 287–307,
doi:10.1017/S0956796811000104.

26. Bodlaender, H.L.; Heggernes, P.; Lokshtanov, D. Graph Modification Problems (Dagstuhl Seminar 14071).
Dagstuhl Rep. 2014, 4, 38–59, doi:10.4230/DagRep.4.2.38.

27. Garey, M.R.; Johnson, D.S. Computers and Intractability; A Guide to the Theory of NP-Completeness;
W. H. Freeman & Co.: New York, NY, USA, 1990.

28. Cai, L. Fixed-parameter tractability of graph modification problems for hereditary properties. Inf. Process.
Lett. 1996, 58, 171–176.

29. Kaplan, H.; Shamir, R.; Tarjan, R.E. Tractability of parameterized completion problems on chordal, strongly
chordal, and proper interval graphs. SIAM J. Comput. 1999, 28, 1906–1922.

Algorithms 2019, 12, 189 16 of 16

30. Brandtstädt, A.; Le, V.B.; Spinrad, J.P. Graph Classes: A Survey; Monographs on Discrete Applied Mathematics,
SIAM: Philadelphia, PA, USA, 1988.

31. Avis, D.; Fukuda, K. Reverse search for enumeration. Discret. Appl. Math. 1996, 65, 21–46.
32. Frances, M.; Litman, A. On covering problems of codes. Theory Comput. Syst. 1997, 30, 113–119.
33. Pfandler, A.; Rümmele, S.; Szeider, S. Backdoors to Abduction. In Proceedings of the 23rd International Joint

Conference on Artificial Intelligence, IJCAI 13, Beijing, China, 3–9 August 2013; Rossi, F., Ed.; pp. 1046–1052.
34. Fichte, J.K.; Szeider, S. Backdoors to tractable answer set programming. Artif. Intell. 2015, 220, 64–103,

doi:10.1016/j.artint.2014.12.001.
35. Fichte, J.K.; Szeider, S. Backdoors to Normality for Disjunctive Logic Programs. ACM Trans. Comput. Log.

2015, 17, 7:1–7:23, doi:10.1145/2818646.
36. Dvořák, W.; Ordyniak, S.; Szeider, S. Augmenting tractable fragments of abstract argumentation. Artif. Intell.

2012, 186, 157–173, doi:10.1016/j.artint.2012.03.002.
37. Fichte, J.K.; Meier, A.; Schindler, I. Strong Backdoors for Default Logic. In Proceedings of the 19th

International Conference on Theory and Applications of Satisfiability Testing—SAT 2016, Bordeaux, France,
5–8 July 2016; pp. 45–59, doi:10.1007/978-3-319-40970-2_4.

38. Meier, A.; Ordyniak, S.; Ramanujan, M.S.; Schindler, I. Backdoors for Linear Temporal Logic. Algorithmica
2019, 81, 476–496, doi:10.1007/s00453-018-0515-5.

39. Kronegger, M.; Ordyniak, S.; Pfandler, A. Backdoors to planning. Artif. Intell. 2019, 269, 49–75,
doi:10.1016/j.artint.2018.10.002.

40. Ganian, R.; Ramanujan, M.S.; Szeider, S. Combining Treewidth and Backdoors for CSP. In Proceedings
of the 34th Symposium on Theoretical Aspects of Computer Science, STACS 2017, Hannover, Germany,
8–11 March 2017; Leibniz International Proceedings in Informatics (LIPIcs); Vollmer, H., Vallée, B., Eds.;
Schloss Dagstuhl—Leibniz-Zentrum fuer Informatik: Wadern, Germany, 2017; Volume 66, pp. 36:1–36:17,
doi:10.4230/LIPIcs.STACS.2017.36.

41. Gaspers, S.; Misra, N.; Ordyniak, S.; Szeider, S.; Zivny, S. Backdoors into heterogeneous classes of SAT and
CSP. J. Comput. Syst. Sci. 2017, 85, 38–56, doi:10.1016/j.jcss.2016.10.007.

42. Nishimura, N.; Ragde, P.; Szeider, S. Solving #SAT using vertex covers. Acta Inform. 2007, 44, 509–523,
doi:10.1007/s00236-007-0056-x.

43. Szeider, S. Matched Formulas and Backdoor Sets. J. Satisf. Boolean Model. Comput. 2009, 6, 1–12.
44. Gaspers, S.; Szeider, S. Backdoors to Satisfaction. In The Multivariate Algorithmic Revolution and Beyond;

Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7370, pp. 287–317,
doi:10.1007/978-3-642-30891-8_15.

45. Meier, A. Enumeration in Incremental FPT-Time. arXiv 2018, arXiv:1804.07799.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries
	Graph Modification Problems

	Enumeration of Graph Modification Problems with Ordering
	Lexicographic Ordering
	Size Ordering

	Generalisation to Modification Problems
	Closest String
	Backdoors
	Weighted Satisfiability Problems

	Conclusions
	References

