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Abstract: The aim of manifold learning is to extract low-dimensional manifolds from
high-dimensional data. Manifold alignment is a variant of manifold learning that uses two or
more datasets that are assumed to represent different high-dimensional representations of the same
underlying manifold. Manifold alignment can be successful in detecting latent manifolds in cases
where one version of the data alone is not sufficient to extract and establish a stable low-dimensional
representation. The present study proposes a parallel deep autoencoder neural network architecture
for manifold alignment and conducts a series of experiments using a protein-folding benchmark
dataset and a suite of new datasets generated by simulating double-pendulum dynamics with
underlying manifolds of dimensions 2, 3 and 4. The dimensionality and topological complexity
of these latent manifolds are above those occurring in most previous studies. Our experimental
results demonstrate that the parallel deep autoencoder performs in most cases better than the tested
traditional methods of semi-supervised manifold alignment. We also show that the parallel deep
autoencoder can process datasets of different input domains by aligning the manifolds extracted
from kinematics parameters with those obtained from corresponding image data.

Keywords: deep autoencoder; dimensionality reduction; manifold learning; 3-manifold; machine
learning; manifold alignment; autoencoder; deep neural network; deep learning; double pendulum

1. Introduction

Circles and lines are one-dimensional manifolds. Two-dimensional manifolds include surfaces
such as spheres, tori and pretzels. Higher-dimensional manifolds include curved spaces that locally
look like a Euclidean space. The mathematical definition of a topological n-dimensional manifold,
or n-manifold, M, requires that M is a second countable Hausdorff space, and each each point in M
has a neighbourhood that is homeomorphic to an open subset of the Euclidean space Rn [1–3].

Manifold learning refers to techniques of non-linear dimensionality reduction that can extract
latent low-dimensional manifolds from high-dimensional data [4–7]. For example, we can consider the
frames of a video where each frame can be regarded as a pixel vector of a few thousand dimensions.
If the video shows a rotating object or if the camera rotates in a circle, then manifold learning techniques
such as isomap [5] can extract a circle from the video frame sequence, which shows that the essential
information contained in the high-dimensional data is that of a circular rotation, which can be visualised
as a 1-manifold homeomorphic to S1 in two dimensions [8]. If the object in the image sequence is not
only rotated, but also translated, we obtain a manifold homeomorphic to S1 × I, that is a cylinder [9].
A torus homeomorphic to S1 × S1 was obtained by [10] from an image set of robot heads that turn left
and right in one circle or nod up and down in another circle.
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Two major issues that can occur in the context of manifold learning are that there are not enough
data or that the data are too noisy. Both issues can prevent the success of manifold learning, that is
the extraction of an intact latent low-dimensional manifold from high-dimensional input data without
it collapsing [4,11,12].

In this project, we focus on a variation of manifold learning called manifold alignment [13,14]
that can extract manifolds even under suboptimal conditions. If there are not enough samples
in the dataset, then manifold alignment can combine the information from two or more datasets
to provide sufficient data. The datasets can be different high-dimensional representations of the
same underlying non-linear manifold. Manifold alignment can also be used for data matching and
information transfer between these datasets. There are several examples of application studies,
for example, in face processing [14–20], graph matching [21,22], bioinformatics [23], and in image
clustering and classification [24–26].

With respect to the issue of noise, autoencoder neural networks are a possible solution. It is
known that neural networks are not only relatively robust to noise, but that the addition of noise
to the data can even improve performance [27]. Basic autoencoders were already employed for
dimensionality reduction in the 1980s, but had limitations to learn non-linear data patterns [28].
Hinton and Salakhutdinov [29] proposed deep autoencoders to reduce the dimensionality of images
and to embed image sequences in a manifold. Several later studies demonstrated the usefulness of
deep autoencoders for dimensionality reduction and manifold learning in various applications [30–32].
The ability of autoencoder neural networks to deal with noisy data was further established in several
recent studies that developed deep autoencoders to denoise data, for example [33,34].

The present study combines the concept of deep neural networks with their robustness to noise
and the concept of manifold alignment with its ability to utilise the information from two or more
datasets to achieve successful manifold learning and proposes a Parallel Deep Autoencoder (PDAE) for
manifold alignment. The approach can be regarded as semi-supervised because it is a combination of
unsupervised learning for dimensionality reduction and supervised learning for aligning the manifolds
using correspondence information in two input datasets.

The goal of our experimental study is to evaluate PDAE in comparison to several other relevant
traditional manifold alignment methods. Specifically, we aim to demonstrate how these methods
and PDAE perform on the task to extract manifolds up to dimension four with a non-trivial topology
from high-dimensional data. As this is a challenging task, we start with ideal data conditions
for semi-supervised manifold alignment and generate datasets that are sufficiently large and have
clearly-defined correspondences. We also investigate how the task is affected by noise in the data.
The sensitivity to noise and the high computational demands in time and memory are among the
limiting abilities of traditional manifold alignment methods that made the extraction of non-trivial
3- and 4-manifolds very uncommon in previous studies.

We can further demonstrate that an asymmetric version of PDAE can be applied to cases where
the two input datasets are of different modalities, for example a feature vector-based representation
and an image-based representation. The ability to process data of two different modalities is another
advantage of PDAE concept over traditional manifold alignment approaches.

Related application studies are emerging using biological data or standard datasets such as
MNIST [35], MS-COCO, or Flickr data [36]. Wang et al. [37] proposed a parallel autoencoder framework
for detection/identification of damage in multi-storey structures. Their parallel autoencoders reduced
dimensionality and extracted features from frequency data and mode shape data. The results showed
better accuracy in damage identification than a sparse auto-encoder-based framework. These studies
showed that for real-world cases, where datasets can differ in representation and dimensionality,
an asymmetric PDAE can be useful. However, in all these emerging application studies, the topology
of the manifolds underlying the data was either trivial or was not determined.
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2. Semi-Supervised Manifold Alignment

Ham et al. [14] characterised manifold alignment using the correspondence information of two
input datasets that have subsets of corresponding point pairs as semi-supervised manifold alignment.
These subsets of corresponding points are employed to establish the alignment of the two latent
low-dimensional manifolds. Ham et al. [14] referred to points with correspondence information as
“labelled” points. Among the semi-supervised manifold alignment methods, two approaches can be
distinguished [38]:

Approach I: Dimensionality reduction is followed by alignment [23].
Approach II: A joint manifold is created to represent the union of the given manifolds, and then,
the joint manifold is mapped to a lower-dimensional space [39].

For experimental comparison with the new PDAE, we employed the following three methods.
Each is an example of one of the above two general approaches and can be applied at the feature level
(feat) and at the instance level (inst) [39]:

Method 1 (MAPA), Manifold Alignment using Procrustes Analysis [23]: This method is a version
of Approach I and in its second step applies Procrustes analysis to rescale and rotate manifold
SY to align it with manifold SX. If Locality Preserving Projections (LPP) [40] are used in the
dimensionality reduction step, it results in feature-level manifold alignment, and we refer to
the method as MAPA-feat in the following sections. If Laplacian eigenmaps [41] are used in
the dimensionality reduction step to obtain instance-level alignment, we refer to the method as
MAPA-inst.
Method 2 (MALG), Manifold Alignment preserving Local Geometry [39]: This method is a version
of Approach II. First, a joint manifold Z is calculated using the graph Laplacians of the given
manifolds. If, in the next step, eigenvalue decomposition of Z provides instance-level alignment,
we refer to it as MALG-inst. If generalised eigenvalue decomposition of Z is used for feature-level
alignment, we refer to the method as MALG-feat.
Method 3 (MAGG), Manifold Alignment preserving Global Geometry [39]: This method is a
version of Approach II. A joint manifold Z is generated using the global distances of corresponding
pairs in X ∪ Y. Eigenvalue decomposition of Z provides dimensionality reduction to obtain
the aligned low-dimensional manifolds in the case of instance-level alignment (MAGG-inst).
Generalised eigenvalue decomposition is used instead in the case of feature-level alignment
(MAGG-feat).

In summary, this classification comprises six semi-supervised manifold alignment methods:
MAPA-feat, MAPA-inst, MALG-feat, MALG-inst, MAGG-inst, and MAGG-feat. These will be used in
the following for comparisons with the proposed PDAE.

3. Parallel Deep Autoencoder

Let A : Rm −→ Rp and B : Rp −→ Rm be mappings representing the encoder and decoder parts,
respectively, of an autoencoder, that maps an input vector X ∈ Rm to an output X̂ = B ◦ A(X) of equal
dimension where A(X) at the code layer is p-dimensional with p < m. In a deep autoencoder, both
mappings A and B comprise several layers [42].

The autoencoders of the present study use p = 3, so that the code layer activations provide
a compressed representation of the input that can be visualised as a 3D point cloud, which can
approximate a manifold, for example a 2D surface in R3.

In our neural network-based approach to manifold alignment, two deep autoencoders are run in
parallel (Figure 1). The two encoders AX and AY embed the two datasets X and Y in 3D coded space
as SX = AX(X) and SY = AY(Y), respectively. Then, the decoders BX and BY try to reconstruct the
data to X̂ = BX(AX(X)) and Ŷ = BY(AY(Y)) in Rm.
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Figure 1. PDAE: The two high-dimensional datasets X and Y include correspondence subsets XC

and YC, resp., and are compressed to low-dimensional manifolds SX and SY , where DX and DY are
the low-dimensional representations of XC and YC, respectively. The minimisation of Ecorr applies
regularisation pressure to DX and DY to align the low-dimensional manifolds SX and SY .

If dataset X has n instances or points X1, . . . , Xn and each instance comprises m features,
then X is represented as a (n × m)-matrix where the instances correspond to the rows.
Training is conducted to minimise the reconstruction errors E(X, X̂) = ( 1

n ∑n
i=1 ‖Xi − X̂i‖2)

1
2

and E(Y, Ŷ) = ( 1
n ∑n

i=1 ‖Yi − Ŷi‖2)
1
2 . These two error functions are combined to obtain the total

reconstruction error:
Erecon = E(X, X̂) + E(Y, Ŷ). (1)

A correspondence error between the two code layers is calculated to regulate the alignment of the
compressed data. Xc ⊂ X and Yc ⊂ Y are defined as the subsets of corresponding points, that is
selected pairs of points from both datasets that are in a one-to-one relationship and refer to the same
state of the system. In the simulation experiments, Xc ⊂ X and Yc ⊂ Y comprised a uniform selection
of v% of the data of X and Y, respectively. When reducing the dimensionality of X and Y, also Xc and
Yc are mapped into 3D space, resulting in DX = AX(Xc) ⊂ SX and DY = AY(Yc) ⊂ SY. The error
between corresponding points in DX and DY is calculated as:

Ecorr =

√
100
v · n ∑

xiεDX ,yiεDY

‖xi − yi‖2 (2)

and we refer to it as the correspondence error. The aim of minimising Ecorr is to align the manifolds
underlying the data closely in coded space so that they can support each other in establishing the joint
latent manifold that underlies both datasets. Finally, the total model error is defined as:

E = λErecon + µEcorr (3)

Parameters λ and µ can be tuned to put more emphasis on the dimensionality reduction aspects or the
alignment aspect of the model. The parameter setting λ = µ = 1 was sufficient to demonstrate the
desired abilities of PDAE for our study. These weight parameters may require careful re-adjustment
on other more complex data. By minimising Erecon, the deep autoencoders try to learn the intrinsic
manifolds in X and Y separately. The simultaneous minimisation of Erecon and Ecorr reduces the
distance of the code layer outputs where a joint three-dimensional representation of the datasets is
generated, that is the parallel model trained by minimising the total error E extracts the intrinsic
manifolds at the code layer and simultaneously aligns them.

Asymmetric PDAE

We also developed an asymmetric version of PDAE to perform manifold alignment in situations
where the two datasets represent two different input modalities (Figure 2). Specifically, we considered
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the case where dataset X is a sample set of feature vectors and dataset Y comprises images.
The framework is the same as in the symmetric case above with the difference being that one of
the two autoencoders is replaced by a convolutional autoencoder (CAE), that is a fully-connected
autoencoder (FAE) was used to reduce the dimensionality of X to SX and a CAE was used to reduce the
dimensionality of the image dataset Y to SY. In our experiments, the code layer of both autoencoders
had dimension three, and both datasets were assumed to be different high-dimensional representations
of the same latent manifold. The input layer of the CAE had five kernels with a dimension equal to the
pixel dimension of the input images in Y. In the encoder part, the CAE had multiple convolutional
layers with maxpooling and dropout layers, and the decoder part mirrored this architecture. The errors
Erecon, Ecorr and E were calculated similarly as in Equations (1)–(3). The gradient for training was
applied to the total hyper-parameter set of PDAE.
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Figure 2. Architecture of asymmetric PDAE: The left autoencoder is a fully-connected autoencoder,
which takes feature vectors from X as input. The right autoencoder is a CAE, which takes images from
Y as input. Both autoencoders have a fully-connected layer with three neurons as their code layer.

4. Performance Evaluation

The main tool for performance evaluation in the present study is the qualitative visual assessment
of the resulting manifold visualisations. This is supported by a quantitative evaluation, which takes
into account that method-associated scaling effects can affect the distances between corresponding
points. To counteract this effect, these distances were normalised by the maximum Euclidean distance
of points on each of the manifolds as follows:

Di =
‖SX(i)− SY(i)‖

max j=1,...,n
k=1,...,n

(‖SX(j)− SX(k)‖, ‖SY(j)− SY(k)‖)
(4)
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where SX(i) and SY(i) are corresponding points for i = 1, . . . , n. Note that in the present study,
all datasets are constructed so that each point in X has a corresponding point in Y. This allows
calculating the matching error ∆ = (∑n

i=1 Di)/n as the average of the normalised Euclidean distances
Di, i = 1, . . . , n. Smaller distances between corresponding points usually indicate more close
alignments. Hence, ∆ reflects the proximity of two aligned manifolds in low-dimensional space,
which we considered as a measure of the quality of an alignment. In addition, we considered the
standard deviation:

σ =

√
(

n

∑
i=1

(Di − ∆)2)/n (5)

as a measure of the smoothness of an alignment. Note that when using more general datasets,
other more general performance measures such as maximum mean discrepancy, KL divergence, or
correlation matrices would be required as is common, for example, in the field of domain adaption [43].

5. Experiments and Results

In the experiments, the proposed PDAE approach and the six above discussed traditional manifold
alignment methods were compared to extract and align pairs of 1-, 2-, 3-, and 4-dimensional manifolds.
A well-known benchmark dataset that contains protein structure manifolds in three dimensions [44]
was used in experiments that resulted in the extraction and alignment of one-dimensional manifolds.
The other datasets were new and generated specifically for our study in simulation. They were the
main datasets of our study and comprised high-dimensional motion data representing the dynamics of
two double pendulums with different degrees of freedom. This data were used for a series of manifold
alignment experiments that resulted in the extraction and alignment of manifolds homeomorphic
to S1 × S1, S1 × S2, and S2 × S2, which were 2-, 3-, and 4-manifolds, respectively. For testing the
asymmetric PDAE, one of the S1 × S1 datasets was replaced by a corresponding image sequence of the
pendulum motion. The traditional manifold alignment methods were executed in MATLAB 2016, and
the autoencoders were developed, trained, and executed using TensorFlow 1.3.1 with Python 3.5.

5.1. 1-Manifold Alignment

The dataset stemmed from the Protein Data Bank at Brookhaven National Laboratories [44].
It contains one-dimensional manifolds representing the structure of the glutaredoxin protein
PDB-1G7O. The protein structure can be described in three-dimensional space as a chain of amino
acids, that is the structures are 1-manifolds in three-dimensional space. The dataset comprises 21
models of the glutaredoxin protein and provides for each model 215 points in 3D. Models 1 and
21 were previously used for method evaluation by articles on manifold alignment using Procrustes
analysis [23] and manifold alignment preserving local geometry [39]. We followed their example
and used the same models to test our PDAE. To examine the robustness of the methods, the dataset
generated from Model 21 was scaled by a factor of four because previous publications on manifold
alignment did the same when testing the robustness of their methods [22,23,39,45,46]. Figure 3a shows
the three-dimensional graphs of Models 1 and 21 where the x, y, and z coordinates of each model were
the columns of the input data matrices X and Y, respectively.

Datasets X and Y were aligned by MAPA, MALG, MAGG, and PDAE. PDAE had nine
fully-connected layers, where the architecture of the encoder network was 3-4-5-4-, the code layer had
three neurons, and the decoder architecture was -4-5-4-3, that is it mirrored the encoder. The tanh
function was applied to the output of each layer as the activation function. The network was trained
for 10,000 epochs using the Adam optimiser with a learning rate of 0.001 and stopping condition
E ≤ 0.0008.

The graphs of the resulting aligned manifolds shown in Figure 3b indicated that the outcome of
MAPA-feat was not as robust as that of the other methods in Figure 3c–h. The manifolds aligned by
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the parallel autoencoders in Figure 3h were as well-aligned and as accurate as the MALG and MAGG
methods from Approach 2 in Figure 3d–f.

(a) Before alignment (b) MAPA-feat (c) MAPA-inst (d) MALG-feat

(e) MALG-inst (f) MAGG-feat (g) MAGG-inst (h) PDAE

Figure 3. Protein structure manifold alignment. 3D structure of the glutaredoxin protein PDB-1G7O:
The blue graph shows Model 1, and the red graph shows Model 21 scaled by a factor of four.
(a) shows the manifolds before alignment. The other subfigures show the resulting alignments using
(b) MAPA-feature (feat), (c) MAPA-instance (inst), (d) MALG-feat, (e) MALG-inst, (f) MAGG-feat,
(g) MAGG-inst and (h) PDAE.

We calculated ∆ and σ of the aligned manifolds for each method. The results in Table 1
show that PDAE was the best performer. PDAEs were executed 10 times with 10 different sets
of randomly-initialised weights. The standard deviation of ∆ for the basic autoencoder was 0.009 and
for the deep autoencoder was 0.003. This showed that the selection of the initial weights did not have
much impact on the autoencoder results.

Table 1. The table shows ∆ of the alignment of Models 1 and 21 for all methods that were tested and
visualised in Figure 3. The standard deviation σ is provided in parenthesis. PDAE performed the best.

Methods ∆(σ)

MAPA feat 0.094 (0.039)
inst 0.030 (0.021)

MALG feat 0.022 (0.016)
inst 0.023 (0.021)

MAGG feat 0.033 (0.024)
inst 0.034 (0.030)

PDAE 0.017 (0.010)

5.2. Experiments on 2-, 3- and 4-Manifold Alignment

5.2.1. Double Pendulum Datasets

We generated high-dimensional datasets by simulating the motion of double pendulums where
three different conditions were considered (Figure 4): 2D-2D, 2D-3D and 3D-3D. The two limbs of
the double pendulum are denoted as u1 and u2, and the joints are denoted as J1 and J2. One end
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of u1 is fixed at R1, and the limb can rotate around this joint. The other end of u1 is attached to u2

at joint R2. u2 can rotate freely around joint J2. The free end point e of the pendulum is referred to
as the “end-effector” and has coordinates

(
ex, ey

)
in the two-dimensional case and

(
ex, ey, ez

)
in the

three-dimensional version using a right-handed coordinate system with the origin at joint J1.

(a) 2D-2D (b) 2D-3D (c) 3D-3D

Figure 4. (a) shows the 2D-2D version of the double pendulum where both limbs are rotating in a
two-dimensional plane. x and y are the local coordinate axes of limb u1. x′ and y′ are the local axes of
limb u2. (ex, ey) are the end-effector coordinates. (b) shows the 2D-3D version of the double pendulum
where limb u1 is in a two-dimensional plane and limb u2 is rotating on a sphere in three-dimensional
space. x and y are the local coordinate axes of limb u1. x′, y′ and z′ are the local coordinate axes of
limb u2, and (ex, ey, ez) are the end-effector coordinates. (c) shows the 3D-3D version of the double
pendulum where both limbs are rotating on spheres in three-dimensional space. x, y and z are the local
axes of limb u1. x′, y′ and z′ are the local axes of limb u2, and (ex, ey, ez) are the end-effector coordinates.

The data were generated in simulation for the 2D-2D, 2D-3D and 3D-3D cases as follows (Figure 4):

(i) 2D-2D motion: The pendulum has two Degrees-Of-Freedom (DOF), that is, both limbs u1 and
u2 rotate in the two-dimensional (x-y)-plane, each of them describing a circle. In Figure 4a, θ1

and θ2 are the rotation angles of limbs u1 and u2 at joints J1 and J2, respectively. Accordingly, the
manifold representing the dynamics of the 2D-2D case is the cross-product of two circles, S1 × S1,
which is homeomorphic to the two-dimensional torus, that is a 2-manifold.

(ii) 2D-3D motion: The pendulum has three DOFs, where limb u2 can rotate on a two-dimensional
sphere S2 in three-dimensional space, while u1 is restricted to rotate on a circle S1 in a
two-dimensional plane. That is, the manifold representing the dynamics of the 2D-3D case
is homeomorphic to S1 × S2, which is a 3-manifold. As the pendulum moves in 3D space, the
end-effector has the 3D coordinates

(
ex, ey, ez

)
. In Figure 4b, θy′ and θz′ are the angles of u2 with

axes y′ and z′, respectively, and describe the motion on the sphere S2. θ1 is the angle between the
x-axis and u1 and describes the two-dimensional rotation of the sphere’s centre in the (x-y)-plane.

(iii) 3D-3D motion: In this case, the pendulum has four DOFs, where both limbs can rotate on
two-dimensional spheres in 3D space. In Figure 4c, θy and θz are the angles of u1 with the y
and z axes, respectively, and θy′ and θz′ are the angles of u2 with the y′ and z′ axes, respectively.
Accordingly, we expected that the manifolds representing the dynamics of the 3D-3D case were
homeomorphic to S2 × S2, which is a 4-manifold.

For each case, two datasets, X and Y, were generated that represented the motion of two similar
double pendulums that differed only in different limb lengths and limb length ratios:

Pendulum X: (u2/u1) = 0.75/1.25 = 0.60
Pendulum Y: (u2/u1) = 1.25/1.56 = 0.80
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that is, we restricted the experiments to the case u2 < u1.
The feature vectors for each sample point (or instance) were calculated from the kinematics at

the joints and the coordinates of the end-effector. The end-effector coordinates were calculated using
forward kinematics. Then, feature vectors for the 2D-2D, 2D-3D, and 3D-3D cases were defined as:

2D-2D: (ex, ey, cos θ1, cos θ2, sin θ1, sin θ2)

2D-3D: (ex, ey, ez, cos θ1, cos θy′ , cos θz′ , sin θ1, sin θy′ , sin θz′)

3D-3D: (ex, ey, ez, cos θy, cos θz, cos θy′ , cos θz′ , sin θz, sin θy, sin θy′ , sin θz′)

The data points for the 2D double pendulums were generated using its equations of motion and
then sampled at angular increments of 10◦ in θ1 and θ2 at both joints. There were (360/10)2 = 1296
instances and six features, resulting in a dataset of size 1296× 6 for each of the pendulums X and Y.

In the case of the 2D-3D motion, instances were sampled at angular increments of 30◦ at three
angles θ1, θy′ and θz′ of the corresponding joints. As a result, the number of instances was (360/30)3 =

1728, and with the nine features, the size of the two datasets, X and Y, was 1728× 9.
In the 3D-3D case, instances were sampled at angular increments of 30◦ in the rotational angles θy,

θz, θy′ and θz′ at the corresponding joints. As a result, the number of instances was (360/30)4 = 20,736,
and with the 11 features, the size for each of the two datasets X and Y was 20,736 × 11.

In order to challenge the robustness of the different alignment methods and to simulate potential
real-world scenarios, two different types of noise were added in separate experiments to the clean
datasets X and Y. The first type of noise we refer to as “actuator noise”, and it was added to the
joint angles to imitate the noise at actuator joints in a real-world system. The range of actuator
noise was incremented from 0◦ to [−10◦, 10◦] in steps of 2◦. The second type of noise was added
to the end-effector coordinates, and we refer to it as “coordinate noise”. This noise could simulate,
for example, the jittery motion of robot limbs. In the experiments, the coordinate noise range was
increased from 0.0 to [−1.0, 1.0] in steps of size 0.2.

5.2.2. PDAE Architecture

The deep autoencoders that were used as part of PDAE had six neurons in the input layer for
2D-2D motion alignment where the data matrix had six features. Similarly, for the 2D-3D data, the
input layer had nine neurons, and for the 3D-3D motion, the input layer had 11 neurons. Then,
the number of neurons was reduced by one in each of the consecutive hidden layers until it reached
three at the code layer of the deep autoencoders. The decoder had the same layer architecture as the
encoder, but in reverse order. In summary, the architectures of the deep autoencoders were:

2D-2D: 6-5-4-3-4-5-6
2D-3D: 9-8-7-6-5-4-3-4-5-6-7-8-9
3D-3D: 11-10-9-8-7-6-5-4-3-4-5-6-7-8-9-10-11

The weights of the autoencoders were randomly initialised within [−1, 1] using a normal
distribution. We plotted the network error for learning rates in the range [0.0001, 0.05] for 500 epochs
to find the best performing learning rate using the Adam optimiser, which was 0.01 for the 2D-2D
case and 0.001 for the 2D-3D and 3D-3D cases. Then, PDAEs were trained for 10,000 epochs with a
stopping criterion of Etotal ≤ 0.001 and tanh as the activation function.

5.2.3. Results of 2-Manifold Alignment

In the case of the 2D-2D motion data, limb ul rotated around joint J1 in a circle and limb u2

rotated in another circle around joint J2. In three-dimensional space, this motion can be represented
as a torus S1 × S1, that is a 2-manifold. In the first row of Figure 5, we can see that for zero noise,
the visualisations of the results for MAPA-inst, MALG and PDAE resulted in objects that resembled
the expected torus-shaped surfaces, while the other methods produced cylinder-like deformations of
torus-shaped surfaces. With increasing levels of noise (only three representative levels are displayed),
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the instance-level alignments were less stable than the feature-level alignments. The addition of noise
led all traditional methods to fail by collapsing the resulting manifolds or misaligning the two sets.
Visually, the best outcomes were achieved by PDAE where for all levels of noise, an object resembling
a torus-like surface with minor deformations was obtained.

Noise
Level

MAPA MALG MAGG PDAE
feat inst feat inst feat inst

0

Actuator noise

±2◦

±6◦

±10◦

Coordinate noise

±0.2

±0.6

±1.0

Figure 5. Manifold alignments of 2D motion data under the influence of noise: The graphs visualise
the outcomes of aligning datasets X (red) and Y (blue) using the seven methods mentioned at the
top. Each row shows the results obtained under the influence of a different level of actuator noise
(Rows 2–4) and coordinate noise (Rows 5–7). The expected result is a torus S1 × S1. However, the
outcomes of MAPA, MALG and MAGG tend to collapse into a cylinder or for noise ranges ≥±2◦

misalign or otherwise disintegrate, particularly at the instance level. The only exception seems to
be MALG-feat at the highest level of actuator noise. Otherwise, the graphs in the rightmost column
demonstrate that of all methods tested, PDAE has the best ability to produce the expected torus-like
manifold at all levels of noise.
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The alignment errors ∆ in Table 2 indicate that MALG-feat resulted in the closest alignment
among the conventional methods. The ∆ of the autoencoder was lower than that of MALG-feat for
higher levels of noise. Table 2 also shows that PDAE had the lowest standard deviation (in parentheses)
at high levels of noise. This indicates that PDAE more smoothly aligned than the other methods.
It should be noted that low values for ∆ or σ can also occur when a torus manifold cannot correctly be
established and uniformly collapses or projects into a simpler form as, for example, a cylinder in some
cases of MALG-feat. We trained and tested PDAE with five different sets of initial random weights,
and the standard deviation of the mean of the resulting alignment errors was about 0.0005 at zero
noise. This indicates that the autoencoder results do not depend in a notable way on the selection of
the initial random weights.

Table 2. 2D-2D manifold alignment: Shown are the alignment errors ∆ for the different alignment
methods under different levels of noise. The standard deviation σ as defined as a measure of smoothness
of the alignment in (5) is provided in parenthesis. The best results are highlighted in bold.

Noise
MAPA MALG MAGG PDAE

feat inst feat inst feat inst

0 0.186 (0.070) 0.112 (0.041) 0.003 (0.001) 0.013 (0.012) 0.054 (0.015) 0.089 (0.038) 0.007 (0.003)

Actuator noise

±2◦ 0.090 (0.030) 0.090 (0.037) 0.016 (0.009) 0.034 (0.026) 0.053 (0.017) 0.097 (0.043) 0.015 (0.009)
±6◦ 0.377 (0.157) 0.485 (0.205) 0.047 (0.027) 0.101 (0.092) 0.072 (0.031) 0.098 (0.051) 0.011 (0.028)
±10◦ 0.365 (0.154) 0.713 (0.304) 0.078 (0.043) 0.180 (0.135) 0.119 (0.055) 0.101 (0.056) 0.007 (0.039)

Coordinate noise

±0.2 0.105 (0.035) 0.150 (0.067) 0.039 (0.018) 0.061 (0.042) 0.078 (0.029) 0.117 (0.052) 0.048 (0.022)
±0.6 0.125 (0.056) 0.184 (0.093) 0.124 (0.056) 0.145 (0.096) 0.139 (0.060) 0.161 (0.076) 0.085 (0.043)
±1.0 0.203 (0.078) 0.271 (0.145) 0.135 (0.063) 0.218 (0.144) 0.204 (0.086) 0.190 (0.083) 0.128 (0.048)

5.2.4. Results of 3-Manifold Alignment

In the case of the 2D-3D motion data, limb u1 rotated around joint J1 in a circle and limb u2 rotated
on a two-dimensional sphere around joint J2. In 3D space, this motion is represented by a manifold
homeomorphic to S1 × S2 and can be visualised by a circle of spheres. For clearer visualisation of
the quality of the alignments, we plotted only six of the aligned spheres equally distributed along
the circle in Figure 6. The figures indicate visually (best if enlarged) that already for zero noise, the
visualisations of the results of all methods had alignment issues except PDAE, which produced a
near-perfect alignment. The alignment errors ∆ and σ in Table 3 corroborate the visual assessment and
show that PDAE was the best-performing method in the experiments using the 2D-3D data.
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Noise
Level

MAPA MALG MAGG PDAE
feat inst feat inst feat inst

0

Actuator noise

±2◦

±6◦

±10◦

Coordinate noise

±0.2

±0.6

±1.0

Figure 6. Manifold alignments of 2D-3D motion data under the influence of noise: The graphs visualise
the outcomes of aligning datasets X (red) and Y (blue) using the seven methods mentioned at the top.
Each row shows the results obtained under the influence of a different level of noise. The expected
outcome is S1 × S2, that is a ring of spheres where, for clarity, our visualisations showed a section
comprising six spheres S2 at equally-distributed positions on the circle S1. Of all methods tested, the
PDAE shows the best performance with almost perfectly-aligned manifolds shown at the right end of
the top row. With the addition of noise, the results deteriorate.
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Table 3. 2D-3D manifold alignment: Alignment errors with standard deviations as explained in Table 2.

Noise
MAPA MALG MAGG PDAE

feat inst feat inst feat inst

0 0.079 (0.032) 0.157 (0.073) 0.025 (0.012) 0.124 (0.055) 0.023 (0.012) 0.062 (0.025) 0.007 (0.004)

Actuator noise

±2◦ 0.065 (0.027) 0.427 (0.17) 0.025 (0.012) 0.092 (0.063) 0.026 (0.013) 0.037 (0.018) 0.012 (0.006)
±4◦ 0.073 (0.031) 0.379 (0.153) 0.035 (0.017) 0.109 (0.06) 0.029 (0.016) 0.048 (0.025) 0.026 (0.012)
±6◦ 0.065 (0.3) 0.115 (0.049) 0.039 (0.021) 0.273 (0.228) 0.048 (0.023) 0.074 (0.038) 0.051 (0.026)
±8◦ 0.150 (0.071) 0.082 (0.04) 0.052 (0.031) 0.207 (0.244) 0.047 (0.027) 0.086 (0.047) 0.062 (0.026)
±10◦ 0.120 (0.056) 0.169 (0.08) 0.089 (0.045) 0.361 (0.164) 0.078 (0.042) 0.117 (0.062) 0.049 (0.023)

Coordinate noise

±0.2 0.073 (0.031) 0.143 (0.075) 0.066 (0.025) 0.131 (0.066) 0.08 (0.031) 0.092 (0.044) 0.075 (0.033)
±0.4 0.113 (0.047) 0.428 (0.169) 0.101 (0.041) 0.163 (0.095) 0.122 (0.05) 0.141 (0.071) 0.082 (0.035)
±0.6 0.149 (0.061) 0.182 (0.095) 0.131 (0.053) 0.197 (0.121) 0.171 (0.069) 0.185 (0.09) 0.139 (0.059)
±0.8 0.215 (0.088) 0.384 (0.139) 0.159 (0.065) 0.237 (0.139) 0.238 (0.098) 0.230 (0.113) 0.088 (0.038)
±1 0.264 (0.104) 0.438 (0.148) 0.196 (0.079) 0.297 (0.167) 0.297 (0.122) 0.315 (0.154) 0.119 (0.05)

5.2.5. Results of 4-Manifold Alignment

The 11-dimensional data of the two 3D double pendulums were described in Section 5.2.1. Each of
the two datasets X and Y was represented by a 20,736 × 11 data matrix. In the 3D pendulum motion,
the rotation of limb u2 described a sphere S2, and the motion of the other limb u1 described another
sphere S2, so that the 3D pendulum motion resembled S2 × S2, which is a 4-manifold. As this was
too complex to visualise in full, we took snapshots of the motion around J1 at 90◦ steps and for the
motion around J2 at 30◦ steps. This way, the rotation of u2 resulted in six spherical shapes that were
uniformly distributed on a bigger sphere, which represented the motion of u1. The visualisations in
Figure 7 show that the instance-level methods were not successful in aligning the high-dimensional
nonlinear motion data. The manifolds of the instance-level alignments collapsed even without any
noise. Only MAGG-feat and PDAE produced the expected visualisation, comprising six spheres that
represented the snapshots we selected in the motion data on S2 × S2. The outcome of MAGG-feat was
also supported by our case study [47].

MAPA MALG MAGG PDAE
Feat Inst Feat Inst Feat Inst

Figure 7. Alignments of 3D-3D motion manifolds: Each graph visualises a different way of aligning
the manifolds underlying datasets X and Y, which are collected from snapshots of 90◦ steps at u1 and
30◦ steps at u2. All manifolds of the instance-level methods collapsed or misaligned. The outcome
of MAGG-feat and the deep autoencoder shows the expected results, that is six spheres representing
snapshots of the pendulum movements on a 4-manifold homeomorphic to S2 × S2.

For the remaining experiments, random noise was added to the data in several stages as
described in Section 5.2.1. The noisy datasets were aligned using MAPA-feat, MALG-feat and PDAE.
All manifolds collapsed after noise addition, and therefore, only visualisations for zero noise are
included in Figure 7. ∆ and σ were calculated as described in Section 4. The numerical results in
Table 4 together with the qualitative visual evaluations of Figure 7 showed that PDAE performed
better than MAGG-feat and the other methods.
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Table 4. 3D-3D manifold alignment: Shown is the alignment error ∆ with the standard deviation for
each level of the noise. The lowest ∆ or closest alignment of each row is highlighted in bold.

Noise
MAPA MALG MAGG PDAE

feat feat feat

0 0.106 (0.060) 0.019 (0.011) 0.045 (0.012) 0.037 (0.020)

Actuator noise

±2◦ 0.115 (0.067) 0.025 (0.011) 0.048 (0.015) 0.029 (0.20)
±4◦ 0.124 (0.072) 0.042 (0.021) 0.058 (0.022) 0.039 (0.019)
±6◦ 0.141 (0.077) 0.051 (0.025) 0.075 (0.032) 0.042 (0.013)
±8◦ 0.233 (0.118) 0.058 (0.033) 0.082 (0.036) 0.050 (0.037)
±10◦ 0.359 (0.225) 0.066 (0.030) 0.090 (0.041) 0.054 (0.016)

Coordinate noise

±0.2 0.135 (0.078) 0.032 (0.015) 0.071 (0.012) 0.023 (0.012)
±0.4 0.151 (0.083) 0.048 (0.028) 0.113 (0.042) 0.024 (0.013)
±0.6 0.170 (0.094) 0.057 (0.033) 0.158 (0.058) 0.022 (0.011)
±0.8 0.213 (0.121) 0.072 (0.041) 0.194 (0.069) 0.070 (0.033)
±1 0.227 (0.122) 0.083 (0.047) 0.225 (0.079) 0.069 (0.033)

The experiments were executed on the university’s high performance computing grid with 60 GB
RAM using two parallel k80 GPUs. The huge speed advantage of inference with the autoencoder
was representative of all our data and all comparative simulations we conducted (Table 6). However,
these speed results can only be indicative for precise benchmarking of a standalone high-performance
machine or a specialised setup would be required.

5.3. Cross-Modality Manifold Alignment

The following pilot case study was included to demonstrate the cross-modality ability of the
asymmetric PDAE concept. The 2D-2D kinematics dataset of double pendulum motion as described
in Section 5.2.1 was used as dataset X and image frames of a simulated video of the same motion
were used as dataset Y. Dataset X had 1296 instances, where each instance was a six-dimensional
feature vector. Dataset Y had the same number of instances where each instance was an image
with 128× 128 pixels. The datasets were generated and ordered so that each instance Xi of X had a
corresponding instance Yi in Y obtained from the same joint angles.

In the asymmetric PDAE, the structure of the fully-connected autoencoder was similar to the
autoencoder used to align the 2-manifolds described in Section 5.2.2. The structure of the Convolutional
Autoencoder (CAE) is given in Table 5. The asymmetric PDAE was trained for 10,000 epochs using the
Adam optimiser with a learning rate of 0.0001.

Manifold alignment experiments using the asymmetric PDAE were conducted in four different
ways, each using a differently-sized correspondence subset for the calculation of Ecorr. The sizes
of the correspondence subsets in the four experiments were 10%, 30%, 50% and 100% of the total
number of instances. The results using the four different correspondence subsets are shown in Figure 8.
The figures show that the more correspondence pairs were used, the better the alignment could
be performed.
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(a) 10%: 0.148 (3.9E−3) (b) 30%: 0.088 (3.2E−3) (c) 50%: 0.069 (1.9E−3) (d) 100%: 0.036 (2.4E−4)

Figure 8. The figures show cross-modality manifold alignment using the asymmetric PDAE using
four versions of the data with different percentages of correspondence pairs (10%, 30%, 50%, 100%).
The corresponding quantitative alignment errors ∆ and associated standard deviations σ in parentheses
are displayed in the subcaptions next to the correspondence percentage numbers.

Table 5. Shown is the structure of the convolutional autoencoder part of the asymmetric PDAE, which
was used to align our cross-modality pendulum data. The input layer is at the top.

Layer Type Kernel Channels Size Activation

Convolutional 5 × 5 3 128 × 128 lrelu

Max pool 2 × 2 56 × 56

Convolutional 5 × 5 10 56 × 56 lrelu

Max pool 2 × 2 28 × 28

Convolutional 5 × 5 20 28 × 28 lrelu

Max pool 2 × 2 14 × 14

Convolutional 5 × 5 30 14 × 14 lrelu

Max pool 2 × 2 7 × 7

Convolutional 3 × 3 40 7 × 7 lrelu

Max pool 2 × 2 4 × 4

Flatten 640

Fully-connected 200 tanh

Fully-connected 100 tanh

Fully-connected 3 tanh

Fully-connected 100 tanh

Fully-connected 200 tanh

Fully-connected 640 tanh

Reshape 4 × 4 × 40

Deconvolutional 3 × 3 40 4 × 4 lrelu

Upsampling 2 × 2 7 × 7

Convolutional 3 × 3 30 7 × 7 lrelu

Upsampling 2 × 2 14 × 14

Convolutional 5 × 5 20 14 × 14 lrelu

Upsampling 2 × 2 28 × 28

Convolutional 5 × 5 30 28 × 28 lrelu

Upsampling 2 × 2 56 × 56

Convolutional 5 × 5 40 56 × 56 lrelu

Upsampling 2 × 2 128 × 128

Convolutional 5 × 5 3 128 × 128 lrelu
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6. Discussion and Conclusions

While previous research had shown that deep autoencoders are capable of manifold learning,
this study introduced a parallel deep autoencoder model for manifold alignment. The present study
focused on semi-supervised approaches where parts of the data were labelled by correspondence
information. Future studies may address the general case of data without correspondence information
and a wider range of datasets.

In the new parallel model, two deep autoencoder networks were trained in parallel to minimise the
sum of their reconstruction errors and a correspondence error. The minimisation of the reconstruction
errors led the deep autoencoders to extract manifolds intrinsic to the datasets. The minimisation of the
correspondence error aligned the extracted manifolds at the code layer. The activations at the 3D code
layers allowed visualising the aligned manifolds or sections of them in three dimensions.

First, PDAE was evaluated on a well-known protein structure benchmark dataset, where it
performed comparably to traditional manifold alignment methods.

Then, in the main part of our study, PDAE was tested on a suite of new 6-dimensional,
9-dimensional, and 11-dimensional datasets that we generated by simulating the non-linear dynamics
of two double pendulums and adding various levels of noise. It should be noted that manifold learning
and manifold alignment can be computationally very expensive (Table 6). Hence, the experiments
of our comparative study were restricted to two pendulums with similar arm-length proportions.
With this data, the expected resulting manifolds were of sufficient complexity to challenge the methods,
but could still be visualised either in full as two-dimensional tori in three-dimensional space (Figure 5)
or using snapshots or sections of the resulting 3-manifolds (Figure 6) or 4-manifolds (Figure 7).

Interestingly, the visualisation of the aligned manifold obtained from the two three-dimensional
pendulum motion datasets on the right in Figure 7 together with the numerical evaluation in Table 4
indicated that, even in this unexampled case of representing a latent 4-manifold, PDAE produced the
expected outcome and performed better than all other tested methods. In fact, all methods failed except
PDAE and MAGG-feat. The quantitative performance evaluation in Table 4 shows that the alignment
using PDAE was closer and more stable than that of MAGG. Moreover, due to the involvement of
high-dimensional matrix multiplication, MAGG required a significantly higher execution time than
the other methods (Table 6).

Table 6 summarises the execution times for all methods used in our study when applied to the
clean and complete versions of our simulated datasets. While training of the PDAE took a long time,
the inference, that is the execution time using the trained neural model, was significantly faster than
running the other methods. It is important to note that if new data points are included in the dataset,
the trained model of PDAE can still be executed while the other methods require recalculation.

Table 6. Shown are the execution times of the different manifold alignment methods when processing
our data. The dataset sizes were 1296× 6, 1728× 9, and 20,736 × 11 for the 2-, 3- and 4-manifold data,
respectively. The training times of the PDAE were recorded for 10,000 epochs and averaged over five
runs starting from different initial weights. Standard deviations are in parenthesis. The other methods
did not involve randomness, and their execution times remained the same in repeat experiments.

Methods Detail Execution Times

2-Manifold Alignment 3-Manifold Alignment 4-Manifold Alignment

MAPA feat 0.63 s 2.2 min 6.6 min
inst 0.71 s 4.2 min 13.9 min

MALG feat 0.32 s 1.6 min 5.3 min
inst 0.44 s 3.7 min 11.7 min

MAGG feat 3 s 9.5 min 11 h
inst 8 s 12.3 min 13 h

PDAE training 18 (3.88) min 22 (5.56) min 9.3 (5.22) h
inference 0.33 (0.04) s 0.61 (0.08) s 1.6 (0.12) s
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MAGG calculates the distances between the two datasets at the input, which have to be of
a common fixed dimension. In contrast, PDAE can be designed to take two datasets of different
dimensions as inputs. For example, in the experiments in Section 5.3, PDAE demonstrated successful
alignment of data of two different modalities and of different dimensions.

In summary, the results of the reported manifold alignment experiments showed that PDAE
performed competitively and in most cases better than the traditional methods MAPA, MALG
and MAGG. When synthetic random noise was added to the data at the actuator and the end-effector,
the alignment using the new PDAE was often still possible and more stable than that of all other
methods that were used for comparison.

The addition of noise is a critical contribution in this type of study using manifolds of dimension
larger than one, as in traditional manifold learning, there is a substantial risk that the topology of the
resulting manifolds cannot be established or collapses if there are not enough data or if there is any
disturbance or noise in the data [11,12].

It is due to these issues that traditional manifold alignment struggled to become popular in
applications and that the present study had to confine itself to simulated data to achieve expressive
comparative results. Nonetheless, the torus surface S1 × S1, the 3-manifold S1 × S2 and the 4-manifold
S2 × S2 were topologically more complex manifolds than the manifolds underlying the data of most
previous studies on manifold alignment. The experiments of our study showed that the concept of
PDAE allowed manifold alignment to result in manifolds of non-trivial topology.

We hope that the new PDAE model with its fast inference times, its robustness to noise and its
ability to process datasets of different dimensions and to extract manifolds of 2, 3, 4 or more dimensions
will open new opportunities for applications of semi-supervised manifold alignment.
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Abbreviations

The following abbreviations are used in this manuscript:

CAE Convolutional Autoencoder
DOF Degrees-Of-Freedom
FAE Fully-connected Autoencoder
MAGG Manifold Alignment preserving Global Geometry
MALG Manifold Alignment preserving Local Geometry
MAPA Manifold Alignment using Procrustes Analysis
PAE Parallel Autoencoders
PCA Principal Component Analysis
PDAE Parallel Deep Autoencoder
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