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Abstract: This paper deals with the consensus tracking problem of heterogeneous linear multiagent
systems under the repeatable operation environment, and adopts a proportional differential (PD)-type
iterative learning control (ILC) algorithm based on the fractional-power tracking error. According to
graph theory and operator theory, convergence condition is obtained for the systems under
the interconnection topology that contains a spanning tree rooted at the reference trajectory named
as the leader. Our algorithm based on fractional-power tracking error achieves a faster convergence
rate than the usual PD-type ILC algorithm based on the integer-order tracking error. Simulation
examples illustrate the correctness of our proposed algorithm.

Keywords: heterogeneous linear multiagent systems; consensus tracking; fractional-power tracking
error; PD type iterative learning control

1. Introduction

In the past decades, the cooperative control problem of multiagent systems [1,2] has been
extensively studied due to its wide applications in many engineering fields, e.g., multirobot cooperative
control, formation control of unmanned aerial vehicles, traffic control, smart grid, and so on. As a
fundamental problem of distributed cooperative control, consensus problem requires all agents to reach
an agreement on the states of interest, and various consensus problems have been thoroughly studied,
such as leader-following consensus [3], group consensus [4], finite-time consensus [5], and so on.

Iterative learning control (ILC), a classic learning control strategy, is designed to improve tracking
performance by applying information obtained from the past control experiment [6–8]. The current
input signal is usually generated by the previous input signal plus the tracking error (either the
derivative of tracking error or the integral of the tracking error). ILC is used to accomplish control
tasks that repeat on finite-time intervals, and it does not require an accurate system model. Due to
this attractive feature of ILC, it has been widely used in practical systems and engineering practice,
for example, industrial robots that perform repetitive tasks such as welding and handling [9], servo
systems whose command signals are periodic functions [10], etc.

Many industry issues require repeated execution and coordination among several subsystems,
for example, cooperative control of several robotic arms on an industrial production line.
Recently, the consensus tracking problem of multiagent systems by ILC strategy has attracted the
attention of researchers, since many industry issues can be solved under the ILC algorithm [11–14].
Unfortunately, existing results on consensus problems by ILC algorithm are mostly given for
homogeneous multiagent systems, of which all the agents have the same dynamics. In some
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real engineering applications subjected to various restrictions or to reach the goals with lowest
costs, the dynamics of cooperating agents are required to be distinct, e.g., coordination control
of unmanned aerial vehicles and unmanned ground vehicles, so the study on heterogeneous
multiagent systems is more practical and meaningful. Yang et al. [15] proposed an ILC algorithm to
solve the consensus tracking problems of homogeneous and heterogeneous multiagent systems,
respectively, and the output consensus conditions have been obtained based on the concept of
graph-dependent matrix norm. Li [16] considered a heterogeneous multiagent system composed
of first- and second-order dynamics, and the leader was assumed to have second-order dynamics.
Different protocols have been designed for the heterogeneous following agents, so that all the following
agents tracked the state of the leader asymptotically [16].

As an important evaluation index of the ILC algorithm, the convergence rate refers to the speed
at which the multiagent systems approach the reference trajectory, and has stimulated research interest
for a long time. In order to accelerate the convergence rate of the ILC algorithm, taking the proportional
differential (PD)-type learning law as an example, an acceleration correction algorithm with variable
gain and adjustment of learning interval was designed for the linear time-invariant system [17].
Tao et al. proposed an interpolating algorithm to regulate the reference trajectory in order to achieve
faster convergence rate [18]. The convergence rate of closed-loop ILC algorithm is obviously faster
than that of open-loop ILC algorithm, due to real-time performance of closed-loop ILC algorithm [19].
The convergence rate was greatly improved by introducing adaptive gains into the ILC algorithm [20].
Sun et al. used the terminal converging strategy for ILC algorithm, and reached the finite-time
convergence [21]. For the consensus tracking problem of multiagent systems, Yang et al. proposed
an ILC algorithm with input sharing, i.e., each agent exchanged its input information to the neighbors,
and obtained a faster convergence rate [22].

This paper focuses on the output consensus tracking problem of heterogeneous linear multiagent
systems, in which the following agents are required to track the output trajectory of the leader.
It is worth noting that the state dimensions of agents may be different, but the output must have
the same dimension. In order to accelerate the consensus convergence rate of multiagent systems,
a novel PD-type ILC consensus algorithm is proposed by using the fractional-power tracking error.
Sufficient consensus condition, which depends on the control parameters, is obtained based on
the operator theory.

2. Preliminaries

2.1. Digraph

In this paper, we study the consensus tracking problem via leader-following coordination control
structure. The information flow among following agents forms a digraph G [23], and the leader is
denoted by vertex 0.

The digraph G = (V, E,A) composed of the following agents contains the vertex set V =

{1, · · · , n}, the edge set E ⊆ V × V, and the adjacent matrix A =
[
aij
]
∈ Rn×n. A directed edge

from i to j in G is denoted by ei,j = (i, j) ∈ E, meaning that the node j can obtain information
from the node i. Assume aj,i > 0 ⇔ ei,j ∈ E and ai,i = 0 for all i ∈ V. The set of neighbors
of node i is denoted by Ni = {j ∈ V : (j, i) ∈ E}. The Laplacian matrix of the digraph G is

defined as L = D−A = [li,j] ∈ Rn×n, where D = diag{∑n
j=1 ai,j, i = 1, · · · , n} is the degree matrix.

In the digraph G, a directed path from node i1 to node is is a sequence of ordered edges of the form
(i1, i2), · · · , (is−1, is), where ij ∈ V. A digraph is said to have a spanning tree if there exists a node that
forms a directed path from this node to every other node.

Then, the interconnection among all agents is characterized by a compound digraph Ḡ = {0∪ G},
and the coupling weight of the ith following agent to the leader is denoted by si. si > 0 if agent i can
obtain information from the leader; otherwise si = 0. Besides, let S = diag{si, i ∈ V}.

Through this paper, we take into account the following topology.
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Assumption 1. The interconnection topology of the following agents and the leader contains a spanning tree
with the leader being its root.

Under Assumption 1, the eigenvalues of L + S all have positive real parts [24].

2.2. Critical Definitions

Definition 1. For a given vector q = [q1, q2, · · · qn]T ∈ Rn, ‖q‖ is any vector norm. For any matrix
W= [wij]m×l ∈ Rm×l , ‖W‖ is the matrix norm induced by the vector norm. In particular, ‖W‖∞ =

max
1≤i≤m

l
∑

j=1

∣∣wij
∣∣, ‖W‖1 = max

1≤j≤l

m
∑

i=1

∣∣wij
∣∣, and ‖W‖2 =

√
ρ (WTW), where ρ (·) is the spectral radius. For all

matrices W ∈ Rm×l , Z ∈ Rl×n, and F = WZ ∈ Rm×n, the following property is satisfied.

‖WZ‖m×n ≤ ‖W‖m×l‖Z‖l×n. (1)

Definition 2. [21] If a function f (x) : Rn → Rn, ∃D ⊂ Rn, L > 0, 0 < α ≤ 1, s.t.

‖ f (x1)− f (x2)‖ ≤ L‖x1 − x2‖α,

where ∀x1, x2 ∈ D, then f (x) is Hölder continuous in region D.

2.3. Consensus Tracking Problem

The consensus tracking problem analyzed in this paper requires that spatially separative agents
track a desired reference trajectory via cooperative control, and we take the ILC strategies for
each agent. Additionally, we take into account a class of linear heterogeneous multiagent systems,
and the dynamics of agent i are in the following form at the kth iteration.{

ẋi,k(t) = Aixi,k(t) + Biui,k(t)
yi,k(t) = Cixi,k(t)

, i = 1, 2, · · · , n, (2)

where xi,k(t) ∈ Rpi , ui,k(t) ∈ Rri , and yi,k (t) ∈ Rm are the state and control input and output,
respectively, of the agent i, Ai ∈ Rpi×pi , Bi ∈ Rpi×ri , and Ci ∈ Rm×pi are matrices with proper
dimension. The states of agents are different, because this paper studies the consensus problem of
heterogeneous multiagent systems, which were mentioned in the article [15]. Since this paper deal with
the output tracking problem, the output dimensions of all agents must be consistent with the reference
trajectory in order to facilitate comparison with the reference trajectory.

The reference trajectory yd(t) ∈ Rm is defined on a time interval t ∈ [0, T], which is regarded
as the leader’s output trajectory. In the distributed coordination control framework, the leader’s
output trajectory yd(t) is only accessed by a subset of the following agents, and the left agents reach
the leader’s trajectory indirectly. The control objective is to design a new ILC algorithm so that
the output signals of all following agents converge to the reference trajectory yd(t) asymptotically, i.e.,

lim
k→∞

[yd(t)− yi,k(t)] = 0, i ∈ V, t ∈ [0, T].

Remark 1. The leader in this paper is a virtual leader, i.e., the reference trajectory is generated by the virtual
leader, but the leader does not actually exist, so there will be no collision between the leader and the following
agents. Moreover, we assume that there will be no collision between all followers, and we avoid collision by
placing all followers in a reasonable position. For example, system (2) formulates the dynamics of a robot in
industrial production lines, the output denotes the angle of the robot’s joints, and the robots will not have collision
problems due to their judicious distance.
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3. Design And Analysis of ILC Consensus Algorithm

Firstly, we define the tracking error of each agent as

ei,k (t) = yd(t)− yi,k(t), (3)

and
eij,k (t) = yj,k(t)− yi,k(t), j ∈ Ni, (4)

where ei,k (t) and eij,k (t) are the tracking errors with the leader and neighboring agents, respectively,
of agent i at the kth iteration.

Let ξi,k (t) denotes the information received or measured of the agent i at the kth iteration,
and we get

ξi,k (t) = ∑
j∈Ni

aijeij,k(t) + siei,k (t), (5)

where aij is the adjacency elements associated with the edges of the digraph, and si is the coupling
weight of the ith following agent to the leader.

In terms of ILC algorithm, the tracking error continues to decrease with increasing iteration
number, and the convergence rate will be slow when the tracking error is small. Hence, we are
encouraged to appropriately amplifying the tracking error when the tracking error is small;
the following agents can track the leader’s trajectory more quickly.

In this paper, we adopt the PD type ILC consensus algorithm and introduce a fractional-power
proportional part as follows,

ui,k+1(t) (6)

= ui,k(t) + Γi ξ̇i,k (t) + Kisign (ξi,k (t))
∣∣ξi,k (t)

∣∣α,

where Γi ∈ Rri×m, Ki ∈ Rri×m are the learning gains, 0 < α < 1, and the sign function sign (ξi,k (t)) is
defined as

sign (ξi,k (t)) =


1 ξi,k (t) > 0,
0 ξi,k (t) = 0,
−1 ξi,k (t) < 0.

Moreover, the concrete steps of the algorithm (6) are shown in Algorithm 1.

Algorithm 1 Iterative learning control (ILC) consensus algorithm based on fractional-power error
signals
Parameters: agent i, iteration index k, aij, si, Γi,Ki, α
Input: the reference trajectory yd(t)
Output: the control input ui,k(t)
1: initialize the iteration index k=1
2: while (ei,k(t)! = 0, i ∈ V, t ∈ [0, T])
3: initialize the initial state xi,k(0) = 0
4: calculate the output yi,k(t) by the Equation (2),
5: calculate the tracking errors of each agent ei,k(t) by the Equation (3),
6: calculate the tracking errors with the neighboring agents eij,k(t) by the Equation (4),
7: calculate ξi,k(t) by the Equation (5)
8: if k=1 ui,k(t) = 0
9: else ui,k(t) = ui,k−1(t) + Γi ξ̇i,k−1 (t) + Kisign (ξi,k−1 (t))

∣∣ξi,k−1 (t)
∣∣α

10: end if
11: set k=k+1
12: end while
13: print the control input ui,k(t)
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Remark 2. Mishra et al. [23] used the sliding mode control to solve the finite-time consensus problem, where
the sign function is used to force the state trajectories onto the sliding surface from any arbitrary initial location
in the phase plane. However, the sign function in this paper is to extract the sign of the tracking errors, and then
take fractional-power of the absolute value of the tracking errors. Fractional-power tracking errors can accelerate
the convergence rate when the tracking errors are small.

Then, it is obtained from (3) and (4) that

eij,k(t) = ei,k(t)− ej,k(t), (7)

and then (5) turns to be

ξi,k (t) = ∑
j∈Ni

aij

(
ei,k (t)− ej,k (t)

)
+ siei,k (t). (8)

Remark 3. It should be pointed out that, in order to ensure the convergence of the multiagent systems, α is in
the range of 0 to 1 and cannot be too small.

Let xk(t) = [xT
1,k(t), xT

2,k(t), · · · , xT
n,k(t)]

T , uk(t) = [uT
1,k(t), uT

2,k(t), · · · , uT
n,k(t)]

T , and the
systems (2) are written in the compact-vector form as{

ẋk(t) = Axk(t) + Buk(t),
yk(t) = Cxk(t),

(9)

where A = diag{A1, A2, · · · , An}, B = diag{B1, B2, · · · , Bn} and C = diag{C1, C2, · · · , Cn}. Defining

ek(t) = [eT
1,k(t), eT

2,k(t), · · · , eT
n,k(t)]

T and ξk(t) = [ξT
1,k(t), ξT

2,k(t), · · · , ξT
n,k(t)]

T , and Equation (8) can be
written as

ξk (t) = ((L + S)⊗ Im) ek (t) , (10)

where S = diag{s1, s2, · · · , sn}, and L is the Laplacian matrix of G.
Next, we define the following operators sign (ξk (t)) : Cr[0, T] → Cr[0, T] and f α (ξk (t)) :

Cr[0, T]→ Cr[0, T],

sign (ξk (t))

= diag
{

sign (ξ1,k (t)) , · · · , sign (ξn,k (t))
}

, (11)

and

f α (ξk (t))

=
[∣∣ξ1,k (t)

∣∣α,
∣∣ξ2,k (t)

∣∣α, · · · ,
∣∣ξn,k (t)

∣∣α]T
. (12)

Consequently, the compact-vector version of algorithm (6) is

uk+1(t) (13)

= uk(t) + Γξ̇k (t) + Ksign (ξk (t)) f α (ξk (t)) ,

where Γ = diag{Γ1, Γ2, · · · , Γn}, and K = diag{K1, K2, · · · , Kn}.
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Substituting (10) into (13), we have

uk+1(t)

= uk(t) + Γ ((L + S)⊗ Im) ėk (t) (14)

+Ksign (ξk (t)) f α (((L + S)⊗ Im) ek (t)) .

To realize the consensus tracking, we need the following assumption on the initial states of agents.

Assumption 2. The initial tracking error resetting condition is satisfied for all agents, i.e., ξi,k (0) = 0.

Now, we go to the main result, and some important lemmas are listed first.

Lemma 1. [25] Let x (t), c (t), and a (t) be a real valued continuous function on [0, T], and a(t) ≥ 0, if

x (t) ≤ c (t) +
∫ t

0
a (τ)x (τ) dτ, t ∈ [0, T],

then,

x (t) ≤ c (t) +
∫ t

0
a (τ)c (t) e

∫ t
τ a(σ)dσdτ, t ∈ [0, T].

Lemma 2. [25] Let {bk}k≥0(bk ≥ 0) be a constant sequence that converges to zero. Define an operator:
Qk : Cr[0, T]→ Cr[0, T] satisfying

‖Qk(u)(t)‖ ≤ M(bk +
∫ t

0
‖u(s)‖ds),

where M ≥ 1 is a constant, and the norm of r dimensional vector Cr[0, T] takes the maximum value. Suppose
that P(t) is a continuous function matrix of r× r dimension, and let P : Cr[0, T]→ Cr[0, T] satisfy

P(u)(t) = P(t)u(t).

Then, lim
n→∞

(P + Qn) · · · (P + Q0)(u)(t) = 0 holds uniformly with t, if ρ(P) < 1.

Theorem 1. Consider the heterogeneous multiagent systems (2) with the novel PD-type ILC consensus
algorithm (6). With Assumptions 1 and 2, the following agents track the leader’s trajectory as k → ∞,
i.e., limk→∞ek(t) = 0, t ∈ [0, T], if the following inequality holds,

ρ (Imn − CBΓ((L + S)⊗ Im)) < 1. (15)

Proof. Available from Assumption 2, we have xk+1(0) − xk(0) = 0. Take integral operation
of dynamical system (9) with (14), and we get

xk+1(t)− xk(t)

= xk+1(0)− xk(0) +
∫ t

0
A (xk+1(τ)− xk(τ)) dτ

+
∫ t

0
B (uk+1(τ)− uk(τ))dτ (16)

= A
∫ t

0
(xk+1(τ)− xk(τ))dτ + BΓ((L + S)⊗ Im)ek(t)

+BK
∫ t

0
sign (ξk (τ)) f α (((L + S)⊗ Im) ek (τ))dτ.
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Then, taking norms on two sides of (16) yields

‖xk+1(t)− xk(t)‖

≤ ‖A‖
∫ t

0
‖xk+1(τ)− xk(τ)‖dτ + ‖BΓ((L + S)⊗ Im)‖ ‖ek(t)‖

+ ‖BK‖
∫ t

0

∥∥sign (ξk (τ))
∥∥ ‖ f α (((L + S)⊗ Im) ek (τ))‖dτ (17)

≤ ‖A‖
∫ t

0
‖xk+1(τ)− xk(τ)‖dτ + ‖BΓ((L + S)⊗ Im)‖ ‖ek(t)‖

+ ‖BK‖
∫ t

0
‖ f α (((L + S)⊗ Im) ek (τ))‖dτ.

With Lemma 1 , Equation (17) becomes

‖xk+1(t)− xk(t)‖

≤ ‖BΓ((L + S)⊗ Im)‖ ‖ek(t)‖+ ‖BK‖
∫ t

0
‖ f α (((L + S)⊗ Im) ek (τ))‖dτ (18)

+ ‖A‖
∫ t

0
[‖BΓ((L + S)⊗ Im)‖ ‖ek(τ)‖+ ‖BK‖

∫ τ

0
‖ f α (((L + S)⊗ Im) ek (s))‖ds]e

∫ t
τ‖A‖dσdτ

where f α (((L + S)⊗ Im) ek (t)) is a continuous vector function.
According to the Hölder continuity of the vector function, there is a constant f0 such that

the following formulation holds,

∫ t

0
‖ f α (((L + S)⊗ Im) ek (τ))‖dτ

≤
∫ t

0
f0 ‖((L + S)⊗ Im) ek (τ)‖dτ. (19)

Deduce from (19) and (18) that

‖xk+1(t)− xk(t)‖

≤ ‖BΓ((L + S)⊗ Im)‖ ‖ek(t)‖ + f0 ‖BK‖
∫ t

0
‖((L + S)⊗ Im) ek (τ)‖dτ

+ ‖A‖
∫ t

0
[‖BΓ((L + S)⊗ Im)‖ ‖ek(τ)‖+ f0 ‖BK‖

∫ τ

0
‖((L + S)⊗ Im) ek (s)‖ds]e

∫ t
τ‖A‖dσdτ

≤ ‖BΓ((L + S)⊗ Im)‖ ‖ek(t)‖ (20)

+[ f0 ‖BK‖ ‖(L + S)⊗ Im‖+ ‖A‖ e‖A‖T ‖BΓ((L + S)⊗ Im)‖+ f0 ‖A‖ Te‖A‖T ‖BK‖ ‖(L + S)⊗ Im‖]

×
∫ t

0
‖ek(τ)‖dτ

= M1 ‖ek (τ)‖+ M2

∫ t

0
‖ek (τ)‖dτ,

where M1 = ‖BΓ((L + S)⊗ Im)‖ , M2 = f0 ‖BK‖ ‖(L + S)⊗ Im‖ + ‖A‖ e‖A‖T ‖BΓ((L + S)⊗ Im)‖ +
f0 ‖A‖ Te‖A‖T ‖BK‖ ‖(L + S)⊗ Im‖ .

Thus, ∫ t

0
‖xk+1(s)− xk(s)‖ds

≤ M1

∫ t

0
‖ek(s)‖ds + M2

∫ t

0

∫ s

0
‖ek(τ)‖dτds (21)

≤ (M1 + M2T)
∫ t

0
‖ek(s)‖ds.
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Next, we analyze the tracking error, and it follows from (3) that

ei,k+1 (t)

= yd(t)− yi,k+1(t) (22)

= ei,k (t)− (yi,k+1(t)− yi,k(t)).

Recursively, following (16) yields

ek+1 (t)− ek (t)

= C(xk(t)− xk+1(t))

= CA
∫ t

0
(xk(τ)− xk+1(τ))dτ − CBΓ((L + S)⊗ Im)ek(t) (23)

−CBK
∫ t

0
sign (ξk (τ)) f α (((L + S)⊗ Im) ek (τ))dτ.

Evidently, we get

ek+1 (t)

= (Imn − CBΓ((L + S)⊗ Im))ek(t) + CA
∫ t

0
(xk(τ)− xk+1(τ))dτ (24)

−CBK
∫ t

0
sign (ξk (τ)) f α (((L + S)⊗ Im) ek (τ))dτ.

To recall Lemma 2, we define the following operators; P : Cr[0, T]→ Cr[0, T] and Qk : Cr[0, T]→
Cr[0, T],

P(ek)(t) = (Imn − CBΓ((L + S)⊗ Im))ek(t), (25)

and

Qk(ek)(t) = CA
∫ t

0
(xk(τ)− xk+1(τ))dτ − CBK

∫ t

0
sign (ξk (τ)) f α (((L + S)⊗ Im) ek (τ))dτ. (26)

It is obvious that P and Qk satisfy the definitions in Lemma 2.
Referring to Equations (25) and (26), Equation (24) becomes

ek+1 (t)

= P(ek)(t) + Qk(ek)(t)

= (P + Qk)(ek)(t) (27)

= (P + Qk)(P + Qk−1)(ek−1)(t)

= (P + Qk)(P + Qk−1) · · · (P + Q0)(e0)(t).
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Take the norm of both sides of Equation (26), and we substitute Equations (19) and (21) into it.
Then, we get

‖Qk(ek)(t)‖

≤ ‖CA‖
∫ t

0
‖xk(τ)− xk+1(τ)‖dτ

+ ‖CBK‖
∫ t

0

∥∥sign (ξk (τ))
∥∥ ‖ f α (((L + S)⊗ Im) ek (τ))‖dτ

≤ ‖CA‖
∫ t

0
‖xk(τ)− xk+1(τ)‖dτ (28)

+ f0 ‖CBK‖
∫ t

0
‖((L + S)⊗ Im) ek (τ)‖dτ

≤ (‖CA‖ (M1 + M2T) + f0 ‖CBK‖ ‖(L + S)⊗ Im‖)
∫ t

0
‖ek(τ)‖dτ

≤ M
∫ t

0
‖ek(τ)‖dτ,

where M = max(1, ‖CA‖ (M1 + M2T) + f0 ‖CBK‖ ‖(L + S)⊗ Im‖). Consequently, operator Qk
satisfies the condition of the operator defined in Lemma 2.

Based on Lemma 2, we can conclude from (27) and (29) that

lim
k→∞

ek+1(t) = 0, (29)

if ρ (Imn − CBΓ((L + S)⊗ Im)) < 1. Hence, we complete the proof of Theorem 1.

In the following, we consider two simple special cases for the heterogeneous multiagent
systems (2) and ILC consensus algorithm (6).

Corollary 1. Consider the heterogeneous multiagent systems (2) with algorithm (6), and suppose that CiBiΓi =

β× Im, where β ∈ R is a constant. With Assumptions 1 and 2, the following agents track the leader’s trajectory
with t ∈ [0, T] as k→ ∞, if there exists a positive constant β > 0 satisfying that

max
i=1,2,··· ,n

|1− βλi| < 1, (30)

where λi, i = 1, 2, · · · , n are eigenvalues of L + S.

Proof. When CiBiΓi = β× Im, the convergence condition in Theorem 1 becomes

ρ (Imn − β((L + S)⊗ Im)) < 1. (31)

Under Assumption 1, L + S a nonsingular matrix, and its eigenvalues have positive real
parts [24]. Therefore, the convergence condition of the spectral radius in Theorem 1 is simplified
as the convergence condition of the eigenvalues.

Condition (30) requires that βλi, i = 1, 2, · · · , n lie in the circle shown in Figure 1.
Additionally, we can get a more conservative distributed conditions when the topology is

symmetric, i.e., aij = aji.
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Corollary 2. For heterogeneous multiagent system (2) with algorithm (6), we suppose that CiBiΓi = β× Im,
where β ∈ R is a constant. Assume that the topology of agents (2) and leader is symmetric and has a spanning
tree rooted at the leader. With Assumption 2, if there exists a positive constant β > 0 satisfying that

∑
j∈Ni

aij + si <
2
β

, i = 1, 2, · · · , n, (32)

the following agents track the leader’s trajectory with t ∈ [0, T] as k→ ∞.

10

Figure 1. Location of βλi.

Proof. With Assumptions in Corollary 2, the condition (30) equals

βλi < 2, i = 1, 2, · · · , n. (33)

Using the Gershgorin disk theorem for matrix L + S to estimate the eigenvalue, we get
the condition (32).

4. Simulation And Discussion

In order to verify the efficiency of our proposed consensus algorithm, we consider a system
consisting of the six heterogeneous following agents, given by

ẋ1(t) =

[
0 2
−2 −3

]
x1(t) +

[
0
1

]
u1(t),

y1(t) =
[

0 0.1
]

x1(t),


ẋ2(t) =

[
0.4 −0.2
2 −1

]
x2(t) +

[
0

0.4

]
u2(t),

y2(t) =
[

0.2 1
]

x2(t),
ẋi(t) =

 1 −0.5 0
0.1 0 0.2
1 −2 −3

 xi(t) +

 0.1
0
1

 ui(t),

yi(t) =
[

0.1 0.2 0.4
]

xi(t), i = 3, 4,
ẋi(t) =


1 0.2 0.3 0.5

0.2 0.3 0 0
0.1 0 0.2 1
1 −4 −1 −3

 xi(t) +


0.5
0
0
1

 ui(t),

yi(t) =
[

0 0 0 0.2
]

xi(t), i = 5, 6.

The leader’s trajectory is chosen as yd(t) = 0.25t2(5− t), t ∈ [0, 5].
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The digraph formed by the six following agents and the leader is shown in Figure 2, where vertex
0 represents the leader and the vertices 1–6 represent the following agents.

2

1

3

4

0

1.5 2

1

5

6

1

1

1

1

1

1 1

Figure 2. The communication digraph.

The Laplacian for six following agents is

L =



2 0 −1 −1 0 0
−1 1 0 0 0 0
0 −1 1 0 0 0
0 0 0 1 −1 0
0 0 −1 0 2 −1
0 0 0 −1 0 1


,

and S = diag{1.5, 0, 0, 2, 0, 0}, so the eigenvalues of L + S are 2.6624 ± 0.5623j, 1.8774 ±
0.7449j, 0.3551, 0.6753.

The parameters of fractional-power ILC algorithm (14) are chosen as Γ = diag{4, 1, 1, 1, 2, 2}
and K = diag{6, 1.2, 1.5, 1.5, 3, 3}, and it is easy to verify that ρ (Imn − CBΓ((L + S)⊗ Im)) = 0.86 < 1,
i.e., these parameters chosen above satisfy the condition (15) of Theorem 1.

It is seen from Assumption 2 that the initial tracking errors are assumed to be zero, so all agents
are reset to the same initial position after each iteration. The control input signals for the first iteration
of all agents are set to 0.

We choose α as 0.7, and the tracking processes at the 10th and 70th iteration are represented by
Figures 3 and 4, respectively. Figure 5 shows the control input signals when the six following agents
fully track the leader’s trajectory. In addition, Figure 6 illustrates the evolution of each agent’s tracking
error ei,k(t). Set maxt∈[0,T]

∣∣ei,k (t)
∣∣ < 10−3 as the precision requirement, Figure 6 clearly shows that all

the following agents track the leader’s trajectory when the iteration reaches 70 times.
Then, we choose α = 0.85; other parameters remain unchanged. Figure 7 shows the tracking errors

of the six following agents, and the novel ILC consensus algorithm needs to iterate 80 times so that all
agents completely track the leader’s trajectory with α = 0.85. Obviously, selecting different control
parameters yields distinct consensus convergence rate, and how to get the best control parameters for
the algorithm could refer to the main idea of the agent-based simulator for tourist urban routes in the
work by the authors of [26].

In order to compare the tracking performance of the novel ILC consensus algorithm based on
fractional-power error signals with that of the traditional PD-type ILC algorithm, we choose α = 1,
so the algorithm (14) is converted into the traditional PD-type ILC algorithm. In Figure 8, all agents
with the traditional ILC algorithm completely track the leader’s trajectory after the 100th iteration,
but the convergence rate is slower than that of the ILC algorithm based on fractional-power error
signals with α ∈ [0.7, 1). As discussed above, it is discovered that fractional-power error signals show
beneficial influences on the convergence rate.
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Figure 3. Tracking process at 10th iteration.
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Figure 4. Tracking process at 70th iteration.
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Figure 5. The control input signals at 70th iteration.
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Figure 6. Tracking error of ILC algorithm based on fractional-power error signals with α = 0.7.
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Figure 7. Tracking error of ILC algorithm based on fractional-power error signals with α = 0.85.
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In order to consider the external environmental effects, as well as model uncertainties of
the multiagent systems, we use the following model to illustrate the robustness of the proposed
ILC algorithm.{

ẋi,k(t) = Aixi,k(t)+ fi (xi,k(t)) + Biui,k(t) + wi,k(t)
yi,k(t) = Cixi,k(t)

, i = 1, 2, 3, 4, 5, 6, (34)

where fi (xi,k(t)) represents unmodeled dynamics and wi,k(t) denotes repetitive disturbance. Choose
f1 (x1) = x1, f2 (x2) = sin x2, f3 (x3) = cos x3, f4 (x4) = x4, f5 (x5) = sin x5, f6 (x6) = cos x6,

w1,k(t) = w2,k(t) =

[
sin(10πt)
cos(10πt)

]
, w3,k(t) = w4,k(t) = 0.5

 cos(10πt)
2 sin(10πt)
3 sin(10πt)

, w5,k(t) = w6,k(t) =

0.5


sin(10πt)

2 sin(10πt)
3 cos(10πt)
4 cos(10πt)

; other parameters remain unchanged. Figure 9 shows that the proposed ILC

algorithm is sufficiently robust to model uncertainty and to repetitive disturbances.
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Figure 9. Tracking error of the model (34) with α = 0.85.

5. Conclusions

In this paper, we adopt a PD-type ILC consensus algorithm to solve the consensus tracking
problem of a class of linear heterogeneous multiagent systems. In the algorithm, we replace the normal
proportional tracking error part by a fractional-power tracking error. With the interconnection topology,
which contains a spanning tree rooted at the leader that denotes the desired trajectory, convergence
condition is obtained in the light of graph theory and operator theory. Fractional-power tracking error
feedback amplifies the tracking error appropriately when the tracking error is small, so it realizes
a faster convergence rate than the integer-power tracking error.
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