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Abstract: In the linear response eigenvalue problem arising from quantum chemistry and physics,
one needs to compute several positive eigenvalues together with the corresponding eigenvectors.
For such a task, in this paper, we present a FEAST algorithm based on complex contour integration
for the linear response eigenvalue problem. By simply dividing the spectrum into a collection
of disjoint regions, the algorithm is able to parallelize the process of solving the linear response
eigenvalue problem. The associated convergence results are established to reveal the accuracy of the
approximated eigenspace. Numerical examples are presented to demonstrate the effectiveness of our
proposed algorithm.
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1. Introduction

In computational quantum chemistry and physics, the random phase approximation (RPA) or the
Bethe–Salpeter (BS) equation describe the excitation states and absorption spectra for molecules
or the surfaces of solids [1,2]. One important question in the RPA or BS equation is how to
compute a few eigenpairs associated with several of the smallest positive eigenvalues of the following
eigenvalue problem:

H w =

[
A B
−B −A

] [
u
v

]
= λ

[
u
v

]
= λw, (1)

where A, B ∈ RN×N are both symmetric matrices and

[
A B
B A

]
is positive definite [3–5]. Through a

similarity transformation, the eigenvalue problem (1) can be equivalently transformed into:

Hz =

[
0 K
M 0

] [
y
x

]
= λ

[
y
x

]
= λz, (2)

where K = A − B and M = A + B. The eigenvalue problem (2) was still referred to as the linear
response eigenvalue problem (LREP) [3,6] and will be so in this paper, as well. The condition imposed
upon A and B in (1) implies that both K and M are N × N real symmetric positive definite matrices.
However, there are cases where one of them may be indefinite [7]. Therefore, to be consistence
with [8–10], throughout the rest of the paper, we relax the condition on K and M to that they are
symmetric and one of them is positive definite, while the other may be indefinite. There has been
immense recent interest in developing new theories, efficient numerical algorithms of LREP, and the
associated excitation response calculations of molecules for materials’ design in energy science [11–15].
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From (2), we have Kx = λy and My = λx, and they together lead to:

KMy = λ2y,

MKx = λ2x.

Since KM = KM1/2M1/2 has the same eigenvalues as M1/2KM1/2, which is symmetric, all eigenvalues
of KM are real. Denote these eigenvalues by ωi (1 ≤ i ≤ N) in ascending order, i.e.,

ω1 ≤ ω2 ≤ · · · ≤ ωN . (3)

The eigenvalues of MK are ωi (1 ≤ i ≤ N), as well. Let ι =
√
−1, the imaginary unit, and:

λi =

{√
ωi, if ωi ≥ 0,

ι
√
−ωi, if ωi < 0.

(4)

The eigenvalues of H are:
±λi for i = 1, 2, . . . , N.

This practice of enumerating the eigenvalues of H will be used later for the much smaller projection of
H, as well.

Since the dimension N is usually very large for systems of practical interest, solving LREP (2)
is a very challenging problem. The iterative methods are recent efforts for computing the partial
spectrum of (2), such as the locally-optimal block preconditioned 4D conjugate gradient method
(LOBP4DCG) [6] and its space-extended variation [16], the block Chebyshev–Davidson method [10],
as well as the generalized Lanczos-type methods [8,9]. These algorithms are all based on the so-called
pair of deflating subspaces, which is a generalization of the concept of the invariant subspace in the
standard eigenvalue problems. Thus, these methods can be regarded as extensions of the associated
classical methods for the standard eigenvalue problem. Recently, in [17], a density-matrix-based
algorithm, called FEAST, was proposed by Polizzi for the calculation of a segment of eigenvalues
and their associated eigenvectors of a real symmetric or Hermitian matrix. The algorithm promises
high potential for parallelism by dividing the spectrum of a matrix into an arbitrary number of
nonintersecting intervals. The eigenvalues in each interval and the associated eigenvectors can be
solved independently of those in the other intervals. As a result, one can compute a large number of
eigenpairs at once on modern computing architectures, while typical Krylov- or Davidson-type solvers
fail in this respect because they require orthogonalization of any new basis vector with respect to the
previously-converged ones.

The basic idea of the FEAST algorithm is based on the contour integral function:

f (α) =
1

2πι

∮
C
(µ− α)−1dµ

to construct bases of particular subspaces and obtain the corresponding approximate eigenpairs by
the Rayleigh–Ritz procedure where C is any contour enclosing the set of wanted eigenvalues. The
corresponding theoretical analysis was established in [18]. In particular, it was shown that the FEAST
algorithm can be understood as an accelerated subspace iteration algorithm. Due to the advantage of
the FEAST algorithm in parallelism, it has been well received in the electronic structure calculations
community. Additionally, the improvements and generalizations of FEAST algorithm have been active
research subjects in eigenvalue problems for nearly a decade. For example, in [19], Kestyn, Polizzi,
and Tang presented the FEAST eigensolver for non-Hermitian problems by using the dual subspaces
for computing the left and right eigenvectors. In [20], the FEAST algorithm was developed to solve
nonlinear eigenvalue problems for eigenvalues that lie in a user-defined region. Some other work for
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the FEAST method can be found in [21–24]. Motivated by these facts, in this paper, we will continue
the effort by extending the FEAST algorithm to LREP.

The rest of the paper is organized as follows. In Section 2, some notations and preliminaries
including the canonical angles of two subspaces and basic results for LREP are collected for use later.
Section 3 contains our main algorithm, the implementation issue, and the corresponding convergence
analysis. In Section 4, we present some numerical examples to show the numerical behavior of our
algorithm. Finally, conclusions are drawn in Section 5.

2. Preliminaries

Rm×n is the set of all m × n real matrices. For X ⊆ Rn, dim(X ) is the dimension of X . For
X ∈ Rm×n, XT is its transpose andR(X) the column space of X, and the submatrix X(:,i:j) of X consists
of column i to column j. In is the n × n identity matrix or simply I if its dimension is clear from
the context. For matrices or scalars Xi, diag(X1, X2, . . . , Xk) denotes the block diagonal matrix with
diagonal block X1, X2, . . . , Xk.

For any given symmetric and positive definite matrix W ∈ RN×N , the W-inner product and its
induced W-norm are defined by:

〈x, y〉W = yTWx, ‖x‖W =
√
〈x, x〉W .

If 〈x, y〉W = 0, then we say x ⊥W y or y ⊥W x. The projector ΠW is said to the W-orthogonal projector
onto X if for any vector x ∈ RN ,

ΠW x ∈ X and (I −ΠW)x ⊥W X .

For two subspaces X , Y ⊆ RN with k = dim(X ) ≤ dim(Y) = `, let X and Y be the
W-orthonormal basis matrices of subspaces X and Y , respectively, i.e.,

XTWX = Ik, R(X) = X , and YTWY = I`, R(Y) = Y .

Denote the singular values of XTWY by σj for 1 ≤ j ≤ k in ascending order, i.e., σ1 ≤ · · · ≤ σk. The
diagonal matrix of W-canonical angles from (If ` = k, we may say that these angles are between X and
Y [25].) X to Y in descending order is defined by:

ΘW(X ,Y) = diag(θ(1)
W (X ,Y), . . . , θ(k)

W (X ,Y)),

where θ(1)
W (X ,Y) ≥ · · · ≥ θ(k)

W (X ,Y) and:

0 ≤ θ(j)
W(X ,Y) = arccos σj ≤

π

2
, for 1 ≤ j ≤ k.

In what follows, we sometimes place a vector or matrix in one or both arguments of ΘW(., .) with
the understanding that it is about the subspace spanned by the vector or the columns of the
matrix argument.

Several theoretical properties of the canonical angle and LREP have been established in [25]
and [3], respectively. In particular, the following lemmas are necessary for our later developments.

Lemma 1 ([9] Lemma 3.2). LetX andY be two subspaces in RN with equal dimension dim(X ) = dim(Y) =
k. Suppose θ(1)

W (X ,Y) < π/2. Then, for any set {y1, y2, . . . , yk1} of the basis vectors in Y where 1 ≤ k1 ≤ k,
there is a set {x1, x2, . . . , xk1} of linear independent vectors in X such that ΠW xj = yj for 1 ≤ j ≤ k1, where
ΠW is the W-orthogonal projector onto Y .
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Lemma 2 ([3] Theorem 2.3). The following statements hold for any symmetric matrices K, M ∈ RN×N with
M being positive definite.

(a) There exists a nonsingular Ψ ∈ RN×N such that:

K = ΨΛ2ΨT and M = ΦΦT,

where Λ = diag(λ1, λ2, . . . , λN), λ2
1 ≤ λ2

2 ≤ · · · ≤ λ2
N and Φ = Ψ−T.

(b) If K is also definite, then all λi > 0, and H is diagonalizable:

H

[
ΨΛ ΨΛ

Φ −Φ

]
=

[
ΨΛ ΨΛ

Φ −Φ

] [
Λ

Λ

]
.

(c) The eigen-decomposition of KM and MK is:

(KM)Ψ = ΨΛ2 and (MK)Φ = ΦΛ2,

respectively.

Lemma 3 ([10] Lemma 2.2). Let Z be an invariant subspace of H and Z = [VT, UT]T be the basis matrix of
Z with both V and U having N rows, thenR(MV) = R(U).

Lemma 4 ([25] Lemma 2.1). Let A and B be two symmetric matrices and λ(A) and λ(B) be the set of the
eigenvalues of A and B, respectively. For the Sylvester equation AY−YB = S, if λ(A) ∩ λ(B) = ∅, then the
equation has a unique solution Y, and moreover:

‖Y‖F ≤
1
η
‖S‖F,

where η = min|µ−ω| over all µ ∈ λ(A) and ω ∈ λ(B).

3. The FEAST Algorithm for LREP

3.1. The Main Algorithm

For LREP, suppose λ`i
for i = 1, . . . , s are all the wanted eigenvalues whose square are inside the

circle C with center at c and radius r on the complex plane, as illustrated in the following Figure 1.

λ2
1 λ2

`1
λ2
`s

λ2
`1−1 λ2

`s+1 λ2
N

c r

Figure 1. Schematic representation of the wanted eigenvalues.

Given a random matrix Y ∈ RN×s, for any filter function f (·) that serves the purpose of filtering
out the unwanted eigen-directions, we have, by Lemma 2,

f (KM)Y = Ψ f (Λ2)ΦTY.

As we known in [10], the ideal filter for computing λ`i
for i = 1, . . . , s should map all s wanted

eigenvalues to one and all unwanted ones to zero. For such a purpose, we also consider the filter
function applied in [17], i.e.,
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f (α) =
1

2πι

∮
C
(µ− α)−1dµ.

By Cauchy’s residue theorem [26] in complex analysis, we have:

f (KM)Y = Ψ f (Λ2)ΦTY

= Ψ

(
1

2πι

∮
C
(µI −Λ2)−1dµ

)
ΦTY

= Ψ(:,`1:`s )Φ
T
(:,`1:`s )Y. (5)

As stated in [24] [Lemma 1], the matrix ΦT
(:,`1:`s )Y, with probability one, is nonsingular if the entries of

Y are random numbers from a continuous distribution and they are independent and identically
distributed. Therefore, naturally, the columns of f (KM)Y span the invariant subspace of KM
corresponding to λ2

`i
for i = 1, . . . , s. However, it needs to calculate the contour integral. In practice,

this is done by using numerical quadratures to compute this filter f (KM) approximately. It is noted
that λ2

`i
for i = 1, . . . , s are all real. Let µ = c + reιt for 0 ≤ t ≤ 2π. Then, we have:

1
2πι

∮
C
(µI −Λ2)−1dµ =

r
2π

∫ 2π

0
eιt
(
(c + reιt)I −Λ2

)−1
dt

=
r

2π

(∫ π

0
eιt(µI −Λ2)−1dt +

∫ 2π

π
eιt(µI −Λ2)−1dt

)
=

r
2π

∫ π

0

(
eιt(µI −Λ2)−1 + eιt(µI −Λ2)−1

)
dt

=
r
π

∫ π

0
Re
(

eιt(µI −Λ2)−1
)

dt,

where Re() stands for the real part. A q-point interpolatory quadrature rule, such as the trapezoidal
rule or Gauss–Legendre quadrature, leads to:

f (KM)Y ≈ r
π

q

∑
i=1

ωi Re
(

eιti (µi I − KM)−1Y
)

, (6)

where ti and ωi are the quadrature nodes and weights, respectively, and µi = c + reιti for 1 ≤ i ≤ q.
Let V = f̃ (KM)Y = r

π ∑
q
i=1 ωi Re

(
eιti (µi I − KM)−1Y

)
. Then, by (6), V is computed by solving shifted

linear systems of the form:

(µi I − KM)Xi = Y, i = 1, 2, . . . , q. (7)

Furthermore, for any interpolatory quadrature rule, we have by [18] that:

f̃ (α) >
1
2

for |α− c| < r. (8)

It follows by Lemma 3 that if the columns of V span the y-component of an approximate invariant
subspace of H, then the columns of U = MV should span the x-component of the same approximate
invariant subspace. Therefore, {R(U), R(V)} is a pair of approximated deflating subspaces of H.
By [3], the best approximations of λ`i

for i = 1, . . . , s with the pair of approximate deflating subspaces
{R(U),R(V)} are eigenvalues of:



Algorithms 2019, 12, 181 6 of 15

HSR =

[
0 W−T

1 UTKUW−1
1

W−T
2 VTMVW−1

2 0

]
,

where W1 and W2 are two nonsingular factors of VTU = WT
1 W2. In particular, we choose W1 = W2 = R

where RTR is VTU’s Cholesky decomposition. This leads to:

HSR =

[
0 G
I 0

]
, where G = R−TUTKUR−1.

Let the eigenvalues of G be ρ2
j in ascending order and the associated eigenvectors be qj, i.e., Gqj = ρ2

j qj
for 1 ≤ j ≤ s. Then,

HSR ẑj = ρj ẑj, ẑj =

[
ρjqj
qj

]
.

Approximating eigenpairs of H is then taken to be (ρj, z̃j) where:

z̃j =

[
ρjψ̃j
φ̃j

]
, φ̃j = UR−1qj and ψ̃j = VR−1qj. (9)

We summarize the pseudo-code of the FEAST algorithm for LREP in Algorithm 1. A few remarks
regarding Algorithm 1 are in order:

Remark 1.
(a) In practice, we do not need to save V(i), U(i) and G(i) for every i in Algorithm 1. In fact, the subscript “(i)” is
just convenience for the convergence analysis in the next subsection.
(b) Since the trapezoidal rule yields much faster decay outside C than the Gauss–Legendre quadrature [23], our
numerical examples use the trapezoidal rule to evaluate f (KM)Y, i.e., in (6),

µi = c + reιπti , ti =
i− 1
q− 1

, for 1 ≤ i ≤ q,

ω1 =
π

2(q− 1)
, ωq =

π

2(q− 1)
, ωi =

π

q− 1
, for 2 ≤ i ≤ q− 1.

(c) In Algorithm 1, it usually is required to know the eigenvalue counts s inside the contour C in advance. In
practice, s is unknown a priori, and an estimator has to be used instead. Some available methods have been
proposed in [27,28] to estimate eigenvalue counts, based on stochastic evaluations of:

1
2πι

∮
C

trace
(
(µI − KM)−1

)
dµ.

(d) In our numerical implementation of Algorithm 1, we monitor the convergence of a computed eigenpair (ρj, z̃j)

by its normalized relative residual norm:

r(ρj) =
‖Hz̃j − ρj z̃j‖1

(‖H‖1 + |ρj|)‖z̃j‖1
. (10)

The approximate eigenpair (ρj, z̃j) is considered as converged when:
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ρj ∈ (ω, ω) and r(ρj) < ε,

where ω = c− r, ω = c + r, and ε is a preset tolerance.

Algorithm 1 The FEAST algorithm for LREP.

Input: Given an initial block Y(0) ∈ RN×s.
Output: Converged approximated eigenpairs (ρj, z̃j).

1: for i = 1, 2, . . . , until convergence do
2: Compute V(i) = f̃ (KM)Y(i-1) by (6), and U(i) = MV(i).
3: Compute VT

(i) U(i) = RT
(i)R(i), Ũ(i) = U(i)R−1

(i) , Ṽ(i) = V(i)R−1
(i) , and G(i) = ŨT

(i) KŨ(i).
4: Compute the spectral decomposition G(i) = Q(i)Ω(i)QT

(i) and approximate eigenpairs (ρj (i)
, z̃j (i)

)

where z̃j (i)
=
[
ρj (i)

ψ̃j
T
(i)

, φ̃j
T
(i)

]T
by (9) for j = 1, . . . , s.

5: If convergence is not reached then go to Step 2, with Y(i) = Ṽ(i)Q(i).
6: end for

3.2. Convergence Analysis

Without loss of generality, we suppose in this subsection:

| f̃ (λ2
`1
)| ≥ · · · ≥ | f̃ (λ2

`s
)| > | f̃ (λ2

`(s+1)
)| ≥ · · · ≥ | f̃ (λ2

`N
)|,

and use the following simplifying notation:

Ψ1 = Ψ(:,`1:`s ), Ψ2 = Ψ(:,`(s+1) :`N ),
Φ1 = Φ(:,`1:`s ), Φ2 = Φ(:,`(s+1) :`N ),
Λ1 = Λ(`1:`s ,`1:`s ), Λ2 = Λ(`(s+1) :`N ,`(s+1) :`N ),
Ψ̃(k) = [ψ̃1 (k), . . . , ψ̃s (k)], Φ̃(k) = [φ̃1 (k), . . . , φ̃s (k)].

In Algorithm 1, for a given scalar k, naturally, we would use Ψ̃(k) as approximations to Ψ1 and Φ̃(k)

as approximations to Φ1. In this subsection, we will investigate how good such approximations may
be. Notice that f̃ (Λ2

1) is invertible since f̃ (λ2
`i
) > 1/2 for i = 1, . . . , s by (8).

Lemma 5. Suppose ΨT
1 MY(0) is nonsingular. Then, Y(i) is full column rank for all i in Algorithm 1.

Proof. We prove this statement by induction. If ΨT
1 MY(j) is invertible for some j, then:

V(j+1) = f̃ (KM)Y(j) = f̃ (KM)ΨΦTY(j)

= f̃ (KM)(Ψ1ΦT
1 + Ψ2ΦT

2 )Y(j)

=
(

Ψ1 f̃ (Λ2
1)Φ

T
1 + Ψ2 f̃ (Λ2

2)Φ
T
2

)
Y(j)

=
(

Ψ1 + Ψ2 f̃ (Λ2
2)Φ

T
2 Y(j)E−1

(j)

)
E(j),

where E(j) = f̃ (Λ2
1)Φ

T
1 Y(j) = f̃ (Λ2

1)Ψ
T
1 MY(j) is nonsingular. Thus, V(j+1) has full column rank. This leads to

R(j+1) and Q(j+1) both being invertible. By Step 5 of Algorithm 1, we have Y(j+1) = Ṽ(j+1)Q(j+1) = V(j+1)R−1
(j+1)Q(j+1),

which is also full column rank. Furthermore,

ΨT
1 MY(j+1) = ΨT

1 MV(j+1)R−1
(j+1)Q(j+1)

= ΨT
1 M

(
Ψ1 + Ψ2 f̃ (Λ2

2)Φ
T
2 Y(j)E−1

(j)

)
E(j)R−1

(j+1)Q(j+1)

= E(j)R−1
(j+1)Q(j+1)
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is nonsingular. We conclude by induction that Y(i) is full column rank for i = 1, 2, . . . .

Theorem 1. Suppose the condition of Lemma 5 holds. For 1 ≤ k1 ≤ k2 ≤ s, there exist Ŷ ∈ RN×(`k2
−`k1

+1)

whereR(Ŷ) ⊆ R(Y(0)) and X̂ = MŶ such that, for any k,

‖ tan ΘM(Ψ(:,`k1
:`k2

), V(k))‖F ≤

 | f̃ (λ2
`(s+1)

)|

| f̃ (λ2
`k2

)|

k

× ‖ tan ΘM(Ψ(:,`k1
:`k2

), Ŷ)‖F, (11)

‖ tan ΘM−1(Φ(:,`k1
:`k2

), U(k))‖F ≤

 | f̃ (λ2
`(s+1)

)|

| f̃ (λ2
`k2

)|

k

× ‖ tan ΘM−1(Φ(:,`k1
:`k2

), X̂)‖F. (12)

Proof. We first prove:

R(V(i)) = R
(
( f̃ (KM))i Y(0)

)
, for 1 ≤ i ≤ k, (13)

by induction. It is obviously true for i = 1. Suppose that (13) holds for i = j− 1. Then, there exists a
nonsingular matrix F ∈ Rs×s such that:

V(j-1) =
(

f̃ (KM)
)j−1 Y(0)F.

Now, for i = j ≤ k, we have:

Y(j) = V(j-1)R−1
(j-1) Q(j-1)

=
(

f̃ (KM)
)j−1 Y(0)FR−1

(j-1) Q(j-1),

where R(j-1) and Q(j-1) are both invertible by Lemma 5. Then,

V(j) = f̃ (KM)Y(j) = f̃ (KM)
(

f̃ (KM)
)j−1 Y(0)FR−1

(j-1) Q(j-1)

=
(

f̃ (KM)
)j Y(0)FR−1

(j-1) Q(j-1).

Thus, we haveR(V(j)) = R(( f̃ (KM))j Y(0)). This completes the proof of (13).
By Lemma 1, there exists Ŷ ∈ RN×(`k2

−`k1
+1) whereR(Ŷ) ⊆ R(Y(0)) such that:

ΠMŶ = Ψ1ΨT
1 MŶ = Ψ(:,`k1

:`k2
), (14)

where ΠM is the M-orthogonal projector ontoR(Ψ1). Let Λ̂2
1 = diag(λ2

`k1
, . . . , λ2

`k2
) and Ψ̂1 = Ψ(:,`k1

:`k2
).

Consider:

Ẑ =
(

f̃ (KM)
)k Ŷ = Ψ1

(
f̃ (Λ2

1)
)k

ΦT
1 Ŷ + Ψ2

(
f̃ (Λ2

2)
)k

ΦT
2 Ŷ

= Ψ̂1

(
f̃ (Λ̂2

1)
)k

+ Ψ2

(
f̃ (Λ2

2)
)k

ΦT
2 Ŷ.

It follows by (13) thatR(Ẑ) ⊆ R(V(k)). Therefore, we have:
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‖ tan ΘM(Ψ(:,`k1
:`k2

), V(k))‖F ≤ ‖ tan ΘM(Ψ(:,`k1
:`k2

), Ẑ)‖F

=

∥∥∥∥ΨT
2 MẐ(ẐTMẐ)−1/2

[
Ψ̂T

1 MẐ(ẐTMẐ)−1/2
]−1
∥∥∥∥

F

=

∥∥∥∥ΨT
2 MẐ

(
Ψ̂T

1 MẐ
)−1

∥∥∥∥
F

=

∥∥∥∥( f̃ (Λ2
2)
)k

ΦT
2 Ŷ
(

f̃ (Λ̂2
1)
)−k

(Ψ̂T
1 MŶ)−1

∥∥∥∥
F

=

∥∥∥∥( f̃ (Λ2
2)
)k

ΨT
2 MŶ

(
f̃ (Λ̂2

1)
)−k

(Ψ̂T
1 MŶ)−1

∥∥∥∥
F

≤ max
`(s+1)≤j≤N

| f̃ (λ2
j )|k × max

`k1
≤j≤`k2

1
| f̃ (λ2

j )|k
× ‖ tan ΘM(Ψ̂1, Ŷ)‖F

≤

 | f̃ (λ2
`(s+1)

)|

| f̃ (λ2
`k2

)|

k

× ‖ tan ΘM(Ψ̂1, Ŷ)‖F,

which gives (11). Similarly we can prove (12).

As we know in [29], an important quantity for the convergence properties of projection methods
is the distance of the exact eigenspace from the search subspace. Theorem 1 establishes bounds on
M-canonical angles from Ψ(:,`k1

:`k2
) to the search subspace V(k) and M−1-canonical angles from Φ(:,`k1

:`k2
)

to the search subspace U(k), respectively, to illustrate the effectiveness of the FEAST algorithm for
LREP. As stated in [18], if the spectrum of KM is distributed somewhat uniformly, then we would
expect | f̃ (λ2

`(s+1)
)/ f̃ (λ2

`k2
)| to be as small as 10−3. That means ‖ tan ΘM(Ψ(:,`k1

:`k2
), V(k))‖F → 0 and

‖ tan ΘM−1(Φ(:,`k1
:`k2

), U(k))‖F → 0 at a rate of 10−3k. Based on Theorem 1, the following theorem is

obtained to bound the M-canonical angles between Ψ(:,`k1
:`k2

) and Ψ̃(k)(:,k1 :k2)
and the M−1-canonical

angles between Φ(:,`k1
:`k2

) and Φ̃(k)(:,k1 :k2)
, respectively.

Theorem 2. Suppose the condition of Lemma 5 holds. Using the notations of Theorem 1, we have:

‖ sin ΘM(Ψ(:,`k1
:`k2

), Ψ̃(k)(:,k1 :k2)
)‖F ≤ γ‖ tan ΘM(Ψ(:,`k1

:`k2
), Ŷ)‖F, (15)

‖ sin ΘM−1(Φ(:,`k1
:`k2

), Φ̃(k)(:,k1 :k2)
)‖F ≤ γ‖ tan ΘM−1(Ψ(:,`k1

:`k2
), X̂)‖F, (16)

where:

γ =

√
1 +

1
η2 ‖ΠV

MKM(I −ΠV
M)‖2

2

 | f̃ (λ2
`(s+1)

)|

| f̃ (λ2
`k2

)|

k

, η = min
`k1
≤i≤`k2

j<k1or j>k2

|λ2
i − ρ2

j |,

and ΠV
M is the M-orthogonal projector ontoR(V(k)).

Proof. Let Q̃(k) = [Q(k)(:,1:k1)
, Q(k)(:,k2 :s)], Ω̃(k) = diag(Ω(k)(1:k1,1:k1)

, Ω(k)(k2 :s,k2 :s)) and Ṽ⊥(k) ∈ RN×(N−s) such

that [Ṽ(k), Ṽ⊥(k) ] is M-orthogonal matrix, i.e.,

[Ṽ(k), Ṽ⊥(k) ]
TM[Ṽ(k), Ṽ⊥(k) ] = IN .

Then, we can write Ψ(:,`k1
:`k2

) = Ṽ(k)C + Ṽ⊥(k) C⊥, where C = ṼT
(k) MΨ(:,`k1

:`k2
) and C⊥ = (Ṽ⊥(k) )

TMΨ(:,`k1
:`k2

).
Furthermore, we have:
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‖ sin ΘM(Ψ(:,`k1
:`k2

), V(k))‖F = ‖ sin ΘM(Ψ(:,`k1
:`k2

), Ṽ(k))‖F = ‖C⊥‖F, (17)

‖ sin ΘM(Ψ(:,`k1
:`k2

), Ψ̃(k)(:,k1 :k2)
)‖F =

∥∥∥∥[Ṽ(k)Q̃(k), Ṽ⊥(k)
]T

MΨ(:,`k1
:`k2

)

∥∥∥∥
F

=
√
‖Q̃T

(k)C‖2
F + ‖C⊥‖2

F. (18)

Now, we turn to bound the term ‖Q̃T
(k)C‖F. Notice that [Ṽ(k), Ṽ⊥(k) ][Ṽ(k), Ṽ⊥(k) ]

TM = IN . It follows by
Lemma 2 that:

KM[Ṽ(k), Ṽ⊥(k) ][Ṽ(k), Ṽ⊥(k) ]
TMΨ(:,`k1

:`k2
) = Ψ(:,`k1

:`k2
)Λ

2
(:,`k1

:`k2
). (19)

Multiply (19) by ṼT
(k)M from the left to get:

ṼT
(k)MKM[Ṽ(k), Ṽ⊥(k) ][Ṽ(k), Ṽ⊥(k) ]

TMΨ(:,`k1
:`k2

) = ṼT
(k)MΨ(:,`k1

:`k2
)Λ

2
(:,`k1

:`k2
)

⇒ G(k)C + ṼT
(k)MKMṼ⊥(k) C⊥ = CΛ2

(:,`k1
:`k2

)

⇒ G(k)C− CΛ2
(:,`k1

:`k2
) = −ṼT

(k)MKMṼ⊥(k) C⊥.

Furthermore, we have:

Q̃T
(k)G(k)C− Q̃T

(k)CΛ2
(:,`k1

:`k2
) = −Q̃T

(k)Ṽ
T
(k)MKMṼ⊥(k) C⊥

⇒ Ω̃(k)Q̃T
(k)C− Q̃T

(k)CΛ2
(:,`k1

:`k2
) = −Q̃T

(k)Ṽ
T
(k)MKMṼ⊥(k) C⊥.

By Lemma 4, we conclude that:

‖Q̃T
(k)C‖F ≤

1
η
‖ − Q̃T

(k)Ṽ
T
(k)MKMṼ⊥(k) C⊥‖F

≤ 1
η
‖ṼT

(k)MKMṼ⊥(k) C⊥‖F ≤
1
η
‖ṼT

(k)MKMṼ⊥(k) ‖2 ‖C⊥‖F

=
1
η
‖M1/2Ṽ(k)ṼT

(k)MKMṼ⊥(k) (V
⊥
(k) )

TM1/2‖2 ‖C⊥‖F

=
1
η
‖Ṽ(k)ṼT

(k)MKMṼ⊥(k) (V
⊥
(k) )

TM‖2 ‖C⊥‖F

=
1
η
‖ΠV

MKM(I −ΠV
M)‖2 ‖C⊥‖F. (20)

The inequality (15) is now a consequence of (17), (18), (20), and Theorem 1. Similarly we can
prove (16).

4. Numerical Examples

In this section, we present some numerical examples to illustrate the effectiveness of Algorithm 1
and the upper bounds in Theorem 1.

Example 1. We first examine the upper bounds of Theorem 1. For simplicity, we consider diagonal matrices for
K and M. Take M = K = diag(λ1, . . . , λN) with N = 100 where:

λ1 = 1 + η, λ2 = 1, λ3 = 1− η, λj =
N + 4− j

2N
, for j = 4, . . . , N.

In such a case, there are two eigenvalue clusters: {±λ1,±λ2,±λ3} and {±λ4, . . . ,±λN}, and Ψ = K−1/2.
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We seek the approximations associated with the first cluster {±λ1,±λ2,±λ3} and vary the parameter
η > 0 to control the tightness among eigenvalues. To make the numerical example repeatable, the initial block
Y(0) is chosen to be:

Y(0) =



1 0 0
0 1 0
0 0 1
1
N sin 1 cos 1
...

...
...

N−3
N sin(N − 3) cos(N − 3)


.

In such a way, Y(0) satisfies the condition that YT
(0)MΨ(:,1:3) is nonsingular. We run Algorithm 1 and check the

bound for ‖ tan ΘM(Ψ(:,1:3), V(k))‖F given by (11) with k = 1 and k = 2, respectively. In Algorithm 1, the
trapezoidal rule is applied to calculate f̃ (KM)Y(0) with the parameters c = 1 and r = 0.2. We compute the
following factors:

ε1 = ‖ tan ΘM(Ψ(:,1:3), V(k))‖F, (21a)

ε2 =

(
| f̃ (λ2

4)|
| f̃ (λ2

3)|

)k

× ‖ tan ΘM(Ψ(:,1:3), Ŷ)‖F, (21b)

in Table 1. From Table 1, we can see that, as η goes to zero, the bounds ε2 for k = 1, 2 are sharp and insensitive
to η.

Table 1. ε1 together with their corresponding upper bounds ε2 of Example 1.

η ε1 (for k = 1) ε2 (k = 1) ε1(k = 2) ε2 (k = 2)
10−1 4.4772× 10−5 3.6089× 10−3 7.9793× 10−10 2.4574× 10−6

10−2 5.9244× 10−5 3.5685× 10−3 1.0762× 10−9 2.3402× 10−6

10−3 5.9128× 10−5 3.5639× 10−3 1.0740× 10−9 2.3372× 10−6

10−4 5.9116× 10−5 3.5635× 10−3 1.0738× 10−9 2.3369× 10−6

10−5 5.9115× 10−5 3.5635× 10−3 1.0738× 10−9 2.3369× 10−6

Example 2. To test the effectiveness of Algorithm 1, we chose three test problems, i.e., TEST 1 to TEST 3 in
Table 2, which come from the linear response analysis for Na2, Na4, and silane (SiH4) compounds, respectively [9].
The matrices K and M of TEST 1, TEST 2, and TEST 3 are both symmetric positive definite with order N = 1862,
2834, and 5660, respectively. We compute the eigenvalues whose square lies in the interval (ωt, ωt) for
t = 1, 2, 3 and the associated eigenvectors by using the MATLAB parallel pool. The interval (ωt, ωt) and their
corresponding eigenvalue counts st for t = 1, 2, 3 are detailed in Table 2. All our experiments were performed on
a Windows 10 (64 bit) PC-Intel(R) Core(TM) i7-6700 CPU 3.40 GHz, 16 GB of RAM using MATLAB Version
8.5 (R2015a) with machine epsilon 2.22× 10−16 in double precision floating point arithmetic. In demonstrating
the quality of computed approximations, we calculated the normalized residual norms r(ρj) defined in (10) and
relative eigenvalues errors:

e(ρj) =
|ρj − λj|

λj

for the jth approximation eigenvalue (ρj, z̃j) where λj were computed by MATLAB’s function eig on H, and
considered to be the “exact” eigenvalues for testing purposes.

In this example, we first investigated how the maximal relative eigenvalue errors and normalized residual
norms, i.e., max e(ρj) and max r(ρj) in Table 3, respectively, changed for an increase in the number of quadrature
points q in (6). We used the direct methods, such as Gaussian elimination, to solve the shifted linear systems (7)
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in this example. The numerical results of Algorithm 1 by running four FEAST iterations with q varying from
four to nine are presented in Table 3. It is shown by Table 3 that the trapezoidal rule with 6, 7, or 8 quadrature
nodes already achieved satisfactory results.

Notice that the wanted eigenvalues are inside the intervals presented in Table 2. The shift and invert
strategy is usually not available for LREP since the traditional algorithms to calculate the partial spectrum of
LREP, such as the methods proposed in [6,8], combined with the shift and invert strategy will lose the structure
of (2).

In addition, as stated in [17], the FEAST algorithm can be cast as a direct technique in comparison to
iterative Krylov subspace-type methods, because it is based on an exact mathematical derivation (5). Therefore,
by dividing the whole spectrum of LREP into a number of disjoint intervals, the FEAST algorithm is able to
compute all eigenvalues simultaneously on the parallel architectures. From this aspect, as [24], we compared
Algorithm 1 with the MATLAB built-in function eig, which was used to compute all eigenvalues of H, and
then, the target eigenvalues were selected in this example. Let the number of quadrature nodes q = 7 and the
convergence tolerance ε = 10−8. Table 4 reports the total required CPU time in seconds of Algorithm 1 and eig
for TEST 1, TEST 2, and TEST3, respectively. It is clear from Table 4 that Algorithm 1 was much faster than the
MATLAB built-in function eig in this example. A similar comparison between the FEAST-type algorithms and
the MATLAB built-in function eig in terms of timing can be found in [30,31].

Table 2. Test matrices.

Problem N K M (ω1, ω1) s1 (ω2, ω2) s2 (ω3, ω3) s3

TEST 1 1862 Na2 Na2 (0.40,0.50) 3 (0.60,0.70) 3 (1.50,1.60) 3
TEST 2 2834 Na4 Na4 (0.03,0.04) 4 (0.05,0.06) 4 (0.32,0.33) 5
TEST 3 5660 SiH4 SiH4 (0.25,0.30) 3 (0.75,0.80) 6 (1.75,1.80) 8

Table 3. Changes of max e(ρj) and max r(ρj) with the number of quadrature nodes q varying from 4 to
9.

q TEST 1 TEST 2 TEST 3
max e(ρj) max r(ρj) max e(ρj) max r(ρj) max e(ρj) max r(ρj)

4 1.25× 10−5 7.54× 10−6 2.35× 10−7 6.82× 10−7 1.87× 10−11 7.48× 10−8

5 7.08× 10−8 5.69× 10−7 8.13× 10−10 3.99× 10−8 1.26× 10−13 1.07× 10−9

6 5.64× 10−10 5.08× 10−8 4.23× 10−12 2.72× 10−9 1.29× 10−13 1.68× 10−11

7 5.39× 10−12 4.97× 10−9 9.53× 10−13 2.01× 10−10 1.29× 10−13 2.71× 10−13

8 9.95× 10−14 5.10× 10−10 9.52× 10−13 1.54× 10−11 1.29× 10−13 4.29× 10−15

9 9.93× 10−14 5.37× 10−11 9.52× 10−13 1.21× 10−12 1.29× 10−13 4.00× 10−16

Table 4. Comparison of Algorithm 1 and eig for CPU time in seconds.

Problem eig Algorithm 1

TEST 1 45.82 15.88
TEST 2 159.77 37.08
TEST 3 1200.71 233.12

Example 3. As stated in Section 3, the implementation of Algorithm 1 involves solving several shifted linear
systems of the form:

(µi I − KM)Xi = Y, for i = 1, 2, . . . , q.

Direct solvers referring to O(N3) operations are prohibitively expensive in solving large-scale sparse linear
systems. Iterative methods, such as Krylov subspace-type methods [32], are usually preferred for large-scale
sparse linear systems. However, Krylov subspace solvers may need a large number of iterations to converge. A
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way to speed up the FEAST method for LREP is to terminate the iterative solvers for linear systems before full
convergence is reached. Therefore, in this example, we investigated the effect of the accuracy in the solution of
linear systems on the relative eigenvalues errors and normalized residual norms. The linear systems were solved
column-by-column by running GMRES [33] until:

‖Y(:,j) − (µi I − KM)Xi (:,j)‖2

‖Y(:,j)‖2
≤ ε lin.

Figure 2 plots the maximal relative eigenvalues errors and normalized residual norms of Algorithm 1 with
q = 7 in solving TEST 1, TEST 2, and TEST 3 with ε lin = 10−4, 10−6, and 10−8. It is revealed by Figure 2
that the accuracy from the solution of the linear systems translated to the accuracy of the eigenpairs obtained
by the FEAST algorithm for LREP; that is to say, higher accuracy in solving linear systems leads to better
numerical performance in Algorithm 1. In particular, for a rather large ε lin, such as ε lin = 10−4, it is hard to
obtain satisfactory normalized residual norms in this example.
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Figure 2. Convergence behavior of Algorithm 1 for TEST 1, TEST 2, and TEST 3 with ε lin = 10−4, 10−6,
and 10−8, respectively.
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5. Conclusions

In this paper, we proposed a FEAST algorithm, i.e., Algorithm 1, for the linear response eigenvalue
problem (LREP). The algorithm can effectively calculate the eigenvectors associated with eigenvalues
that are located inside some preset intervals. Compared with other methods for LREP, the attractive
computational advantage of Algorithm 1 is that it is easily parallelizable. We implemented numerical
examples by using the MATLAB parallel pool to compute the eigenpairs in each interval independently
of the eigenpairs in the other interval. The corresponding numerical results demonstrated that
Algorithm 1 was fast and could achieve high accuracy. In addition, theoretical convergence results for
eigenspace approximations of Algorithm 1 were established in Theorems 1 and 2. These theoretical
bounds revealed the accuracy of the approximations of eigenspace. Numerical examples showed that
the bounds provided by Theorem 1 were sharp.

Notice that the main computational tasks in Algorithm 1 consisted of solving q independent
shifted linear systems with s right-hand sides. Meanwhile, as described above, the relative residual
bounds in the solution of the inner shifted linear systems were translated almost one-to-one into
the residuals of the approximate eigenpairs. Therefore, the subjects of further study include the
acceleration of solving shifted linear systems on parallel architectures and theoretical analysis on how
the accuracy of the inexact solvers in solving shifted linear systems interacts with the convergence
behavior of the FEAST algorithm. In addition, while the algorithm in this paper is for real symmetric
K and M, it is also available for the case of Hermitian K and M, simply by replacing all R by C (the set
of complex numbers) and each matrix/vector transpose by the complex conjugate and transpose.
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