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Abstract: A fast particle-locating method is proposed for the hybrid Euler–Lagrangian models on the
arbitrary polyhedral mesh, which is of essential importance to improve the computational efficiency
by searching the host cells for the tracked particles very efficiently. A background grid, i.e., a uniform
Cartesian grid with a grid spacing much smaller than computational mesh, is constructed over the
whole computational domain. The many-to-many mapping relation between the computational
mesh and the background grid is then specified through a recursive tetrahedron neighbor searching
procedure, after the tetrahedral decomposition of computational cells and a mapping inverse
operation. Finally, the host cell is straightforwardly identified by the point-in-cell test among the
optional elements determined based on the mapping relation. The proposed method is checked
on three meshes with different types of the cells and compared with the existing methods in the
literatures. The results reveal that the present method is highly efficient and easy to implement on the
arbitrary polyhedral mesh.
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1. Introduction

The hybrid Euler–Lagrangian models are widely used in simulating the flows in the dispersed
systems. In these models, the continuous phase is described through spatial field distribution in Eulerian
framework, while the dispersed phase is considered through tracking the movements of the dispersed
phase entities (particles, bubbles, or droplets, which we shall call particles collectively). During
simulations, the interactions between continuous and dispersed phases are realized by computing
the movements of the particles using the own parameters at the particle centers and evaluating the
effect of the particles (in terms of their volumes, velocities, and so on) on the dynamic behaviors
of the continuous phase. As a result, locating the host cell of each particle at every time step is
required. Although locating the host cell on a uniform Cartesian mesh is easy, it is not the case for
the unstructured meshes, especially for those with the arbitrary polyhedral cells, where the particle
locating is usually a time-consuming task and brings a heavy burden on the overall computational
efficiency. In previous studies [1,2], it was found a faster particle-locating method is necessary for
simulations within the complex geometries using the arbitrary polyhedral meshes.

Several methods have been proposed for the particle locating on irregular meshes. Existing
methods can be categorized into two types, i.e., the known vicinity face-to-face searching methods,
such as Chen and Pereira [3], Vaidya et al. [4], Haselbacher et al. [5], Macpherson et al. [6], Ke et al. [7],
Capodaglio [8], and Stuart et al. [9], among others, and the auxiliary grid methods, such as Seldner
and Westermann [10], Muradoglu and Kayaalp [11], Martin et al. [12], and Jin et al. [13], among others.
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Using the known vicinity face-to-face searching methods, a starting point along with its host cell as the
starting host cell is given for each tracked particle at first. The point-in-cell test is conducted in the
starting host cell at first and then carried out in one of its neighbor cells, determined by some prescribed
rules if the starting host cell does not contain the particle. This procedure continues until the host
cell is found [14]. The computational efficiency of the known vicinity face-to-face searching method
highly depends on the choice of the starting point. Unfortunately, it is difficult to find the optimal
starting point to lower the computational expense. The auxiliary grid methods construct a regular
background grid, e.g., a tree-type grid or a uniform Cartesian grid with a larger grid spacing than
that of the computational mesh, to efficiently locate the host cells for tracked particles. The mapping
relation between the background grid and computational mesh is specified before the simulation.
It stores, for each background cell, the indices of the several computational cells which are fully or
partially contained by the background cell are found. The particle is located within a background cell
at first, and then the point-in-cell tests are conducted within only several computational cells related to
that background cell to determine the host cell. Since locating the particle on a regular background
grid is considerably simple and the point-in-cell tests are only conducted in several most possible
cells, the computational efficiency of particle locating is significantly improved by using an auxiliary
regular grid.

So far, the auxiliary grid method with a uniform background grid has been used for particle locating
on two-dimensional curvilinear mesh [11,12]. In this study, we extend the auxiliary grid method to the
three-dimensional arbitrary polyhedral mesh, which is a practical choice for numerical simulations in
complex geometries and more challenging for particle-locating methods. Furthermore, we study the
influence of the resolution of the background grid on the performance of the particle-locating method.
Different from the existing studies, we introduce a uniform Cartesian background grid with much
smaller grid spacing than that of the computational mesh. As a result, many background cells are
related to just one computational cell, and the point-in-cell test is unnecessary if the particle is located
within one of those background cells. This new algorithm is named as PLUG (an abbreviation of Point
Locating with Uniform Grid) method.

The rest of this paper is organized as follows. A detailed description of PLUG method is given in
Section 2. A numerical test is carried out in Section 3 to check the performance of the proposed method
and make comparison with the existing particle-locating methods. Finally, a short summary is given in
Section 4.

2. PLUG Method

The procedure to determine the host cells for the particles using the PLUG method includes three
steps as follows:

Step one: building a regular background grid, which is a uniform Cartesian grid with the
prescribed resolution over the whole computational domain.

Step two: specifying the mapping relation between the background cells and the computational
cells which store, for each background cell, the indices of the computational cells containing or partially
overlapping with it.

Step three: locating the particle on the background grid and conducting the point-in-cell test to
determine the host cell if necessary.

2.1. Background Grid

A uniform Cartesian grid is adopted in the present study to be the background grid.
The background grid should cover the whole computational domain as

D = [xmin − δ, xmax + δ] × [ymin − δ, ymax + δ] × [zmin − δ, zmax + δ], (1)
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where xmin, ymin, and zmin are minimal values of x, y, and z coordinates of the computational domain,
xmax, ymax, and zmax are corresponding maximal values, and δ is a small positive number to assure that
the background grid completely covers the whole computational domain.

A uniform grid is constructed by prescribing the number of elements in three directions, i.e., nx,
ny, and nz. As a result, the grid spacings in different directions are

∆x =
xmax − xmin

nx
, ∆y =

ymax − ymin

ny
and ∆z =

zmax − zmin

nz
(2)

For a particle centered at point P (xp, yp, zp), the index of background cell containing the point P
(C̃i jk, the host cell on the background grid) is easily determined as

(i, j, k) =
[
int

(
xp − xmin, ∆x

)
, int

(
yp − ymin, ∆y

)
, int

(
zp − zmin, ∆z

)]
, (3)

where the function int (x, y) gives the maximal integer smaller than x/y.
For sake of brevity, this three-dimensional index (i, j, k) can be replaced by a one-dimensional

index I as
I = nynzi + nz j + k, (4)

and the inverse transformation is accomplished by

i = int[int(I, nz), ny], j = mod
[
int(I, nz), ny

]
and z = mod(I, nz), (5)

where the function mod (a, b) is the remainder operator for two integers a and b.

2.2. Mapping Relation Between Background Cells and Computational Cells

As shown in (3), the particle locating on the background grid is straightforward. Thus, the key
task in the present study is to find the mapping relation between the background cubes and the
computational cells. Please note the term “cube” will be used to denote the cells on background grid
hereafter to distinguish from computational cells. As mentioned above, the mapping relation should
give a integer array [aI1, aI2, . . . , aIs] for any background cube C̃I, which are the indices of a set of the
computational cells [CaI1, CaI2, . . . , CaIs] containing or partially overlapping with the corresponding
background cube, i.e., satisfying

SaIq ∩ S̃I , 0(q = 0 to s), (6)

where SaIq is the volume covered by the computational cell CIq and S̃I is the volume covered by
background cube C̃I. For some background cells, there is a computational cell overlapping with them.
Thus, the q should start from zero in Equation (6).

Considering all the background cubes, a list cube2cell can be obtained, with each component being
the above array for the corresponding background cube. The length of the list cube2cell equals the total
number of the background cubes, and parameter s is different for different background cube.

In the existing auxiliary grid methods, the size of the background cube is usually larger than
that of the computational cell, as shown in Figure 1a. If a cube overlaps with n (n = 11 in Figure 1a)
computational cells, the particle-in-cell tests should be conducted for at least n – 1 (10 in this case) times
to find the its host cell. In PLUG method, the background grid adopts a much smaller grid spacing
than that of the computational mesh, as shown in Figure 1b. As a result, the cube-to-cell mapping
relation is simplified, i.e. the number of the cells related to a given cube is reduced. An internal cube
is completely contained by a computational cell, e.g., cube A contained by cell a. For the particles
inside an internal cube, the particle-in-cell test is avoided. A boundary cube, which overlaps with the
boundary of the computational cell, is related to only a few nearby cells, e.g., cube B is only related to
cells a and b. The time-consuming particle-in-cell tests are also reduced.
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Figure 1. An illustration of different background grid configurations. (a) large-spacing grid; (b)small-
spacing grid. 
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spacing is used on background grid. However, in cube2cell list, many small background cubes are 
related to just one computational cell, i.e., s = 1, and the point-in-cell test is avoided. The overall 
computational overheads will be greatly reduced, since the procedure to specify the mapping relation 
is conducted only once for a fixed computational mesh, whereas the point-in-cell test is carried out 
at every time step and it is a time-consuming operation during the simulation, especially in cases 
with polyhedral mesh.  

The procedures adopted to create lists cell2cube and cube2cell are described as follows. 

2.2.1. Creating the Cell2cube List 

In this part, we describe the procedure to create the cell2cube list. An illustration of a such list is 
shown in Figure 2. 

In existing auxiliary grid methods, a minimum cuboid (bound box) encapsulating a 
computational cell is used to construct the mapping relation. As shown in Figure 3, the bound box of 
computational cell a is marked in grey. Using the boundary box, the cubes related to a cell are those 
which intersect with its boundary box. Since the background cubes are much smaller than the 
computational cells in the present study, boundary box method would introduce many useless cubes. 
For example, cube A in Figure 3 intersects with the boundary box of cell a, whereas it doesn't intersect 
with cell a. To improve the computational efficiency, a new method based on characteristic points is 
developed in this study.  

Figure 1. An illustration of different background grid configurations. (a) large-spacing grid;
(b)small-spacing grid.

A resulted side effect with the small-spacing background grid is that it is not easy to derive cube2cell
directly. However, an inverse mapping relation can be constructed much more easily, i.e., by finding the
background cubes which are fully or partially covered by a certain computational cell. This mapping
relation is represented by a list named as cell2cube, with the length being the total number of the
computational cell. Each component of this list is still an integer array consisting of the indices of a set
of background cubes. For example, considering the computational cell CJ, a set of background cubes
is

[
C̃bJ1,C̃bJ2,...,C̃bJt

]
, which are the background cubes fully or partially covered by the corresponding

computational cell, i.e., satisfying
SbJq ∩ S̃J , 0(q = 1 to t), (7)

where S̃bJq is the volume covered by background cube C̃bJq and SJ is the volume covered by computational
cell CJ.

The list cube2cell is then obtained by applying an inversion operation of the list cell2cube.
Using the proposed method for the particle locating, the procedure to specify the mapping relation

becomes more complicated compared with the existing methods, where a much larger grid spacing
is used on background grid. However, in cube2cell list, many small background cubes are related to
just one computational cell, i.e., s = 1, and the point-in-cell test is avoided. The overall computational
overheads will be greatly reduced, since the procedure to specify the mapping relation is conducted
only once for a fixed computational mesh, whereas the point-in-cell test is carried out at every time step
and it is a time-consuming operation during the simulation, especially in cases with polyhedral mesh.

The procedures adopted to create lists cell2cube and cube2cell are described as follows.

2.2.1. Creating the Cell2cube List

In this part, we describe the procedure to create the cell2cube list. An illustration of a such list is
shown in Figure 2.

In existing auxiliary grid methods, a minimum cuboid (bound box) encapsulating a computational
cell is used to construct the mapping relation. As shown in Figure 3, the bound box of computational
cell a is marked in grey. Using the boundary box, the cubes related to a cell are those which intersect
with its boundary box. Since the background cubes are much smaller than the computational cells in
the present study, boundary box method would introduce many useless cubes. For example, cube A in
Figure 3 intersects with the boundary box of cell a, whereas it doesn’t intersect with cell a. To improve
the computational efficiency, a new method based on characteristic points is developed in this study.
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Figure 3. Overlap relation determination in existing auxiliary grid method.

The characteristic point method is developed to check the intersection of a tetrahedron and a cube.
We first apply the tetrahedral decomposition on all polyhedral computational cells [15]. Then we use
the characteristic point method to find all background cubes which are fully or partially covered by a
certain tetrahedron. To create the cell2cube list, each component corresponding to CJ will be a union set
of indices of background cubes fully or partially covered by several tetrahedrons decomposed from
CJ. Therefore, the procedure described hereafter can be applied on the arbitrary polyhedral mesh.
In order to find all the background cubes covered by a given tetrahedron, several characteristic points
are defined for the tetrahedron. As shown Figure 4, two types of the characteristic points are adopted
in this study, i.e., the interior points shown in panel (a) and the boundary points shown in panel (b).
Within each tetrahedron (panel (a) of Figure 4), the characteristic points are the centroid (point O) and
the centers of lines OA, OB, OC, and OD. On each boundary surface (triangle ABC in panel (b) of
Figure 2), the characteristic points are the centroid (point O′), the centers of edges AB, BC, and CA, and
the centers of the lines O′A, O′B, and O′C.



Algorithms 2019, 12, 179 6 of 16Algorithms 2019, 12, 179 6 of 16 

  
(a) (b) 

Figure 4. Characteristic points for a tetrahedrom. (a) Interior points; (b) Boundary points. 

In this study, we adopt the background cubes containing the characteristic points and their 
neighbors as the background cubes fully or partially covered by the tetrahedron. The neighbors of a 
given background cube are defined as those background cubes that share at least one vertex with it. 
Apparently, if a tetrahedron is small enough compared with the background cube, the background 
cubes found using this rule will completely cover this tetrahedron. For a tetrahedron far larger than 
the background cube, a subdivision will be applied, as shown in Figure 5. Panel (a) shows the original 
tetrahedron, and panel (b) shows the initial subdivision. The black points in the figure are the centers 
of the boundary edges. It should be noted that, after initial subdivision, four tetrahedrons and an 
octahedron are formed. The octahedron is given in panel (c). This octahedron is further decomposed 
into four tetrahedrons through a line passing through its two opposite vertices, as shown in panel (d). 
After a subdivision, the above searching scheme will be conducted again to find the background 
cubes fully or partially covered by the computational cells. For a certain computational cell, searching 
is completed if no new background cube is found. Otherwise, the subdivision will continue until no 
new background cube is found to have intersection with corresponding computational cells. 

The above process is carried out for each computational cell, and the cell2cube is obtained. 
 

Figure 4. Characteristic points for a tetrahedrom. (a) Interior points; (b) Boundary points.

In this study, we adopt the background cubes containing the characteristic points and their
neighbors as the background cubes fully or partially covered by the tetrahedron. The neighbors of a
given background cube are defined as those background cubes that share at least one vertex with it.
Apparently, if a tetrahedron is small enough compared with the background cube, the background
cubes found using this rule will completely cover this tetrahedron. For a tetrahedron far larger than
the background cube, a subdivision will be applied, as shown in Figure 5. Panel (a) shows the original
tetrahedron, and panel (b) shows the initial subdivision. The black points in the figure are the centers
of the boundary edges. It should be noted that, after initial subdivision, four tetrahedrons and an
octahedron are formed. The octahedron is given in panel (c). This octahedron is further decomposed
into four tetrahedrons through a line passing through its two opposite vertices, as shown in panel (d).
After a subdivision, the above searching scheme will be conducted again to find the background cubes
fully or partially covered by the computational cells. For a certain computational cell, searching is
completed if no new background cube is found. Otherwise, the subdivision will continue until no new
background cube is found to have intersection with corresponding computational cells.

The above process is carried out for each computational cell, and the cell2cube is obtained.
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Figure 5. The sub-division of a tetrahedron. (a) Original tetrahedron; (b) Initial subdivision; (c) Central
octahedron; (d) Subdivision of central octahedron.

2.2.2. Creating the Cube2cell List

The cube2cell list stores the indices of the computational cells covering a certain background cube.
It can be immediately obtained through applying an inverse operation on the cell2cube, constructed in
the previous section. Figure 6 gives an illustration of the cube2cell corresponding to the cell2cube list
given in Figure 2. By searching the cell2cube list given in Figure 2, one can get that background cube 0
is covered by computational cell 0, 2, and 5, and as a result, the indices of computational cells stored in
the first component of the cube2cell list are 0, 2, and 5, as shown in Figure 4. The inverse operation is
easily achieved and implemented, and finally the cube2cell list is obtained.
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Figure 6. An illustration of a cube2cell list.

Once the host cell of a certain particle on background grid has been found, the computational
cells with their indices stored in corresponding component of the list cube2cell will be checked to finally
determine the host cell.

2.3. Particle Locating

PLUG uses different procedures to find the host cell for a given particle within different types
of host background cubes. In PLUG, background cubes are categorized into three different types
(as shown in Figure 7).
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• Exterior cubes. There are some background cubes which are not covered by any computational
cell, since the physical domain covered by background grid is a little larger than the computational
domain, as we have mentioned in Section 2.1. In this case, the corresponding component in the
cube2cell list is empty.

• Boundary cubes. The boundary elements are the cubes near the boundary surface of the
computational domain. One can find the background cubes for a given polygonal face on
boundary with the same method as that for finding those for a given computational cell. A general
polygon is decomposed into several triangles. The characteristic points for searching are shown in
Figure 4b, and the subdivision process for a triangle is the same as that for the boundary surface
of a tetrahedron, as shown in Figure 5b.

• Interior cubes. All the elements, excluding exterior cubes and boundary cubes belong to this type.

Similar to the cube2cell list, the element types are decided just once before the simulation with a
fixed computational mesh.

In order to find the host cell for a given particle, the host cells on background grid are determined
using (3). If the indices satisfy i ∈ [0, nx − 1], j ∈

[
0, ny − 1

]
and k ∈ [0, nz − 1], the point is inside the

domain of the background grid. Otherwise, the point is outside the background grid, and it will not be
inside any cell of the computational mesh. For the point inside the background grid, three situations
are considered, corresponding to the type of the host background cell as

• For particles inside an exterior cube, these particles are outside the computational domain and not
in any polyhedral computational cell.

• For particles inside a boundary cube, the point-in-cell test is adopted to check whether these
points are inside one of the computational cells stored in the corresponding component of the
cube2cell list. If a computational cell is found, it is the host cell. Otherwise, this particle is out of
the computational domain.

• For particles inside an interior cube, the point-in-cell test is carried out to find the host cell. It is
worth nothing that, in this case, some background cubes are contained by only one computational
cell, and only one index appears in the corresponding component of the cube2cell list. In this case,
the host cell can be determined without any point-in-cell test. This makes the PLUG method much
more efficient than existing point locating algorithms.
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For those problems where particles are always inside the solution domain, there is no need
to distinguish the types of the background cubes. However, for an open system, though there is
only one index stored in some components of the cube2cell list, the corresponding computational cell
may not be the host cell. If the background cube is a boundary cube, the particle may be out of the
computational domain.

So far, the remaining task is to check whether a point is inside a polyhedral cell or not,
i.e., the point-in-cell test. We first carry out a plane testing for each boundary surface of the
computational cell as

l = n ·
(
xp − xc

)
(8)

where n is the outward normal direction of a boundary surface, xp is the location of the tested point,
and xc is the location of centroid of the surface.

Equation (8) is tested for all boundary surfaces of a computational cell. If l > 0 for some surface,
the point will be outside the cell, otherwise, it is inside the cell. If the boundary surface is triangle, the
above test can be applied directly. With a polygon other than triangle, an efficient and reliable solution
is to decompose all the polygonal surfaces into triangles using vertex-based method or center-based
method at first [15], and then conducting testing in (8).

3. Tests and Results

Three different types of meshes shown in Figure 8 were adopted to test the efficiency of the
proposed PLUG method. All these meshes were generated for a cubic domain of 1 m × 1 m × 1 m.
In Figure 8, a part of the mesh is cut out to show the mesh cells inside. The hexahedral mesh shown
in Figure 8a includes 14,400 cells. The tetrahedral mesh, shown in Figure 8b, generated through
Delaunay method, includes 14,333 tetrahedral cells. The polyhedral mesh, shown in Figure 8c, includes
14,645 polyhedral cells. The particles for tests were generated using the following method

xp = xcJ + 0.5V
1
3
J [rand(−1, 1), rand(−1, 1), rand(−1, 1)] (9)

where, xp is the location of the generated point, J is the index of a randomly selected cell, xcJ and VJ are
the location of the center and the volume of the cell. Function rand (−1, 1) returns random real number
in the range of [−1, 1].

In this study, the binary search method (denoted by octree) and the face-to-face method [6]
(denoted by GNH) were adopted, to compare with the proposed PLUG method. The GNH method
was conducted with different choices of the starting point, and resulted algorithms are denoted by
GNH, GNHNC, and GNHHC. In GNH, the starting point is always located at the center of cell 0.
In GNHNC, the starting point for each particle is the center of one of neighbor cells of its host cell.
In GNHHC, the starting point is the center of the host cell of each particle. As a result, the operations
in GNHNC for each particle are point-in-cell test in starting host cell at first, followed by finding the
nearest neighbor cell, which is the correct host cell, and finally the point-in-cell test in the correct host
cell. In GNHHC, only the point-in-cell test is conducted, once for each particle, to find the host cell
which is exactly the starting host cell. Actually, for a practical computation, the starting point is usually
chosen as the center of the host cell at the last time step. GNH, GNHNC, and GNHHC are idealized
situations corresponding to worst, near optimal, and optimal choices of the starting point, respectively.
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Figure 8. Three different types of meshes used in numerical tests. (a) Hexahedral mesh; (b) Tetrahedral
mesh; (c) Polyhedral mesh.

Figure 9 shows CPU times consumed by different methods on three different types of
meshes, for locating 1 × 106 particles at randomly selected locations in the computational domain.
The computational efficiency of the proposed PLUG method depends on the resolution of the
background grid on tetrahedral and polyhedral meshes. Figure 9a shows the change of the CPU times
with the ratio of the total number of cubes on background grid (Nbc) and the computational cells (Ncc).
When Nbc/Ncc < 1000, the computational efficiency was significantly improved by refining background
grids. However, it was unworthy of further increasing the resolution of the background grid after that
point, because the CPU time decreased little in the cases with the polyhedral mesh and tetrahedral
mesh and increased in the case with hexahedral mesh. Moreover, more memory is required to store the
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cube2cell list. On the hexahedral grid, the CPU time was almost independent of the resolution of the
background grid because of the same topological structure on the background grid and computational
meshes. Comparing the CPU times consumed on the different meshes, particle locating was fastest on
the hexahedral meshes, followed by the tetrahedral mesh, which was a little faster than the polyhedral
mesh. With the refining background grid resolution, the CPU times finally arrived at the same values
with a very fine background grid on different meshes.

The CPU times consumed by GNH, GNHNC, GNHHC, and octree methods on different meshes are
shown in Figure 9b. GNH method was lowest. By choosing a much better initial guess of the host cell in
GHNNC and GNHHC, the computational efficiency was obviously improved. Thus, the computational
efficiency of face-to-face methods relies heavily on the starting host cell. With GNHHC method, only
the point-in-cell test was conducted. The computational efficiency of the point-in-cell test depended on
the types of the computational cell, i.e., fastest on tetrahedral mesh and slowest on the polyhedral
mesh. The reason is that cells with more boundary faces require more CPU time to conduct the
operation defined in (8). Octree method had similar computational overheads to the GNHNC methods.
The PLUG algorithm (with 4003 background cubes) was the fastest one among all methods and its
computational efficiency was independent of the types of the computational cells.
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Figure 9. CPU times consumed by different particle-locating methods on different grids. (a) CPU times
of PLUG method; (b) CPU times of other methods.

Shown in Figure 10 is the relative CPU times of octree, GNH, GNHNC, GNHHC methods
normalized by those of the PLUG method, with background grid of different resolutions. The horizontal
axis is the number of background cubes in one spatial direction. The total number of background
cubes is Nbc = n3

bc. The PLUG method was better than octree and GNH methods on all three meshes
with any background grids. On the hexahedral mesh, the PLUG method was always the best one,
which was about 17.8 times, 50.2 times, 984.9 times, 36.5 times faster than GNHHC, GNHNC, GNH,
and octree methods. With a coarse 1003 background grid, CPU time consumed by PLUG method was
about two times that of GNHHC and similar to that of GNHNC on the tetrahedral mesh. As the CPU
times of PLUG method reduced very quickly with the increasing resolution of the background grid,
the CPU time of the PLUG method was about 15% of that of the GNHRC method and 6.3% of that of
the GNHNC, using a 4003 background grid on the tetrahedral mesh. Similar results were observed on
the polyhedral mesh. The PLUG method had the similar computational overheads to the GNHHC
method and a little larger expenses than that of the GNHHC method, when using 1003 background
grid. Increasing the number of the background cubes to 4003, the PLUG method was about 38.7 times
faster than the GNHHC method.



Algorithms 2019, 12, 179 13 of 16
Algorithms 2019, 12, 179 13 of 16 

  

(a) (b) 

 
(c) 

Figure 10. Normalized CPU times. (a) Hexahedral mesh; (b) Tetrahedral mesh; (c) Polyhedral mesh. 

The proposed PLUG method is faster than GHNHC and independent of the types of meshes if a 
background grid with adequate cubes is adopted. As the method GNHHC has an optimal starting 
host cell and only one point-in-cell test is required, the reason for better computational efficiency of 
the PLUG method is that the point-in-cell test is not conducted for many particles during searching 
their host cells. In other words, there are many background cubes that are fully contained by a 
computational cell, since the background cubes are much smaller than computational cells on fine 
background grid. For clarifying this point of view, we conducted a count of the number of such 
background cubes during the numerical tests, and the results are shown in Figure 11. The horizontal 
axis is the given number of the computational cells. The vertical axis is the percentage of the cubes 
covered by a given number of cells. It should be pointed out that the percentage corresponding to 
number 5 means the percentage of the background cubes covered by more than four computational 
cells. The computational efficiency of the PLUG method can be explained by the percentages 
corresponding to the number 1 and 5 in Figure 11. It can be seen that, with a 1003 background grid, 
the percentage of the background cubes covered by more than four cells was about 18.5%, 99.99%, 
and 86.9% on the hexahedral mesh, tetrahedral mesh, and the polyhedral mesh, respectively. As a 
result, the CPU times consumed by the PLUG method on tetrahedral and polyhedral grid were much 
larger than that on the hexahedral mesh. With the increasing resolution of the background grid, the 
percentage of the cubes covered by more than four cells reduced on all meshes. With a 4003 

background grid, the percentage reduced to 20.47% on the tetrahedral mesh and 0.00058% on the 
polyhedral mesh. The computational efficiency was then highly improved. The percentage of the 
cubes covered by one computational cell increased on all three meshes with refined background grids. 

Figure 10. Normalized CPU times. (a) Hexahedral mesh; (b) Tetrahedral mesh; (c) Polyhedral mesh.

The proposed PLUG method is faster than GHNHC and independent of the types of meshes if a
background grid with adequate cubes is adopted. As the method GNHHC has an optimal starting
host cell and only one point-in-cell test is required, the reason for better computational efficiency of the
PLUG method is that the point-in-cell test is not conducted for many particles during searching their
host cells. In other words, there are many background cubes that are fully contained by a computational
cell, since the background cubes are much smaller than computational cells on fine background grid.
For clarifying this point of view, we conducted a count of the number of such background cubes
during the numerical tests, and the results are shown in Figure 11. The horizontal axis is the given
number of the computational cells. The vertical axis is the percentage of the cubes covered by a given
number of cells. It should be pointed out that the percentage corresponding to number 5 means the
percentage of the background cubes covered by more than four computational cells. The computational
efficiency of the PLUG method can be explained by the percentages corresponding to the number 1
and 5 in Figure 11. It can be seen that, with a 1003 background grid, the percentage of the background
cubes covered by more than four cells was about 18.5%, 99.99%, and 86.9% on the hexahedral mesh,
tetrahedral mesh, and the polyhedral mesh, respectively. As a result, the CPU times consumed by the
PLUG method on tetrahedral and polyhedral grid were much larger than that on the hexahedral mesh.
With the increasing resolution of the background grid, the percentage of the cubes covered by more
than four cells reduced on all meshes. With a 4003 background grid, the percentage reduced to 20.47%
on the tetrahedral mesh and 0.00058% on the polyhedral mesh. The computational efficiency was then
highly improved. The percentage of the cubes covered by one computational cell increased on all three
meshes with refined background grids. However, it increased much faster on the tetrahedral meshes
and the polyhedral meshes than on the hexahedral mesh. As a result, the PLUG method was much
more sensitive to the background grid resolution on the tetrahedral and polyhedral meshes, as shown
in Figure 9.
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Scalability analysis was conducted by checking the CPU time consumed by different methods
for locating the gradually increasing number of particles in the computational domain, which is
of essential importance to judge whether a particle locating algorithm can be used in a practical
application. The evolution of CPU time with the increasing number of particles is shown in Figure 12
for different meshes. The background grid used by the PLUG method adopted 4003 cubes. The PLUG
method was the best one of all adopted locating methods in all tests. And all methods had the similar
time complexity.
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4. Summary

In this work, a new, efficient, and robust method, namely PLUG, for particle locating is proposed.
Using the PLUG method, the auxiliary grid method is extended to three-dimensional arbitrary
polyhedral mesh. A uniform Cartesian grid is adopted as the background grid. By choosing a much
smaller grid spacing for the background grid compared with that of the computational mesh, the PLUG
method is highly efficient compared with the existing methods (GNH, GNHNC, GNHHC, and octree).
For the particles belonging to the background cubes which are covered by only one computational cell,
it is not necessary to conduct the point-in-cell test. With the fine background grid, the percentage of such
background cubes becomes high. This is the main reason for the high computational efficiency of the
PLUG method relative to the existing methods. Numerical tests were carried out for particle locating
of the random distributed particles on three different types of computational meshes, i.e., hexahedral
mesh, tetrahedral mesh, and polyhedral mesh. The results revealed that

(1) PLUG is much more efficient than the face-to-face searching method (GNH, GNHNC,
GNHHC) and the octree method on all three types of mesh with a relatively fine background grid.
The computational expense of the Octree method is the largest. For face-to-face searching methods,
the computational expense of GNH is the largest, GNHHC is the smallest, and GNHNC is between
GNH and GNHHC, depending on the distance between the starting point and the host cell.

(2) The efficiency of PLUG is relevant to the configuration of the background grid on the tetrahedral
and the polyhedral meshes. The background grid with finer resolution results in a higher computational
efficiency. On hexahedral mesh, PLUG is not sensitive to the resolution of the background grid due to
its same topological structure with the background grid.
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