
algorithms

Article

A Novel Blind Restoration and Reconstruction
Approach for CT Images Based on Sparse
Representation and Hierarchical Bayesian-MAP

Yunshan Sun 1, Liyi Zhang 2, Yanqin Li 1,* and Juan Meng 1

1 School of Information Engineering, Tianjin University of Commerce, Tianjin 300134, China
2 School of Electrical Automation and Information Engineering, Tianjin University, Tianjin 300072, China
* Correspondence: liyanqin-2190@126.com

Received: 29 May 2019; Accepted: 14 August 2019; Published: 16 August 2019
����������
�������

Abstract: Computed tomography (CT) image reconstruction and restoration are very important in
medical image processing, and are associated together to be an inverse problem. Image iterative
reconstruction is a key tool to increase the applicability of CT imaging and reduce radiation dose.
Nevertheless, traditional image iterative reconstruction methods are limited by the sampling theorem
and also the blurring of projection data will propagate unhampered artifact in the reconstructed
image. To overcome these problems, image restoration techniques should be developed to accurately
correct a wide variety of image degrading effects in order to effectively improve image reconstruction.
In this paper, a blind image restoration technique is embedded in the compressive sensing CT image
reconstruction, which can result in a high-quality reconstruction image using fewer projection data.
Because a small amount of data can be obtained by radiation in a shorter time, high-quality image
reconstruction with less data is equivalent to reducing radiation dose. Technically, both the blurring
process and the sparse representation of the sharp CT image are first modeled as a serial of parameters.
The sharp CT image will be obtained from the estimated sparse representation. Then, the model
parameters are estimated by a hierarchical Bayesian maximum posteriori formulation. Finally, the
estimated model parameters are optimized to obtain the final image reconstruction. We demonstrate
the effectiveness of the proposed method with the simulation experiments in terms of the peak signal
to noise ratio (PSNR), and structural similarity index (SSIM).
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1. Introduction

CT (computed tomography) images are widely used in clinical diagnosis [1]. However, radiation
exposure and the associated risk of cancer for patients in CT scans have already been one of the
focusing concerns for medical and scientific research. To reduce radiation dose in CT scans, the iterative
reconstruction methods were concerned in CT reconstruction because the iterative reconstruction
methods can reconstruct CT images with few numbers of measured projection. Furthermore, the
fewer numbers of measured projection can be acquired by fast scanning, and thus, the radiation
dose delivered to the patients can be decreased [2]. SART (simultaneous algebraic reconstruction
technique) is an iterative image reconstruction method [3] and plays a significant role in the quality of
CT image reconstruction. However, the SART reconstruction method is limited by Nyquist sampling
theorem [4], and CT images cannot be reconstructed by the measured projection data that does not
satisfy sampling conditions. To further reduce radiation dose and perform CT image reconstruction
with fewer measured projection data, the compressed sensing (CS) theory has been used recently.
Compressive sensing (CS) converts the images, embedded in a high dimensional space, into a sparse
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representation that lie in the space of significantly smaller dimensions [5]. Sparse representations
can be obtained with fewer data. Then, the reconstructed image is obtained by sparse representation.
Compressive sensing theory guarantees that CT image reconstruction can be implemented by fewer
measured projection that does not satisfy the sampling theorem [6–10].

On the other hand, it is apparent that the measured projection data has been degraded not
only by noise but also by a point spread function [11]. The degradation of the measured projection
data will propagate unhampered artifact in reconstructed images. Nevertheless, in the case of fewer
projection data or serious degradation, SART reconstruction will be ineffective or seriously affect
the result of the diagnosis. Image restoration method, a mechanism for eliminating the influence
of the point spread function, was inserted into the iterative CT image reconstruction technique to
form an optimization problem [12]. This method is appropriate in certain settings when the point
spread function is known, and the measured noisy projection data satisfies the Nyquist sampling
theorem. As a rapidly developing iterative algorithm, the CS reconstruction algorithm can complete
CT reconstruction with fewer data. TV (total variation) transform [13], and wavelet transform [14] are
the two most commonly used sparse representation methods. However, these CS algorithms have not
considered for the point spread function, and the degradation caused by the point spread function can
seriously affect the quality of the reconstruction image. Blind image restoration [15,16] is a method
that estimates images and eliminates the influence of the point spread function when the point spread
function is unknown. To solve the CT reconstruction problem based on CS when the point spread
function is unknown, a blind image restoration technique was embedded into the iterative process of
compressive sensing CT image reconstruction. At each iteration, the iterative output image is improved
because blind image restoration is introduced into the algorithm. Correspondingly, the input of the
next iteration will be improved, and the convergence of the whole algorithm will be accelerated.

CT reconstruction problem based on CS with blind image restoration is an ill-posed problem [17].
Bayesian methods were used to solve the ill-posed problem. Bayesian methods can provide a variety
of probability distribution prediction to estimate the parameters, which can achieve the estimation
of uncertainties in the CT blind restoration reconstruction with good anti-noise performance. The
probability distributions are adopted as regularization terms to constrain the solution space. The
constrained solution space can accelerate the convergence of the algorithm and obtain a reliable solution.
Some prior distributions for some parameters were widely used as the regularization terms, such as
total-variation (TV) priors [18], Student-t priors [19], Laplacian priors [20]. The stronger the sparse
prior knowledge is, the better the image reconstruction ability is. TV prior is often used in CT image
reconstruction [13]; however, TV prior causes over smoothing or blocky artifacts in the reconstructed
images. Therefore, a compound Gaussian distribution and a multivariate Gaussian distribution can be
chosen as priors for modeling two unknown parameters, the sparse representation and the point spread
function, respectively. In this paper, we utilized a hierarchical Bayesian Maximum-a-Posteriori (MAP)
formulation to estimate the sparse representation and the point spread function, respectively. The
hierarchical Bayesian-MAP formulation is a statistical model written in multiple levels that can estimate
the parameters of the posterior distribution using the Bayesian-MAP method [21]. The hierarchical
model for the inverse problem was introduced into the problem of CT image reconstruction with blind
image restoration in this paper. The problem of CT reconstruction with the blind restoration was
transformed into the estimation of some specific parameters. All of the parameters were estimated
by the hierarchical Bayesian MAP. Experiments simulate the fewer data environment by sampling
complete projection data.

This paper is organized as follows. Section 2 presents the basic problem of medical CT image
blind restoration and reconstruction with different parameters and derives the stochastic hierarchical
Bayesian maximum for solving the medical CT image reconstruction with blind restoration and
presents a proposed algorithm. Section 3 reports the experimental results of applying the proposed
algorithm to medical CT image blind restoration. Section 4 concludes this paper.



Algorithms 2019, 12, 174 3 of 15

2. Materials and Methods

2.1. CT Image Blind Restoration and Reconstruction

A standard formulation of the CT image blind restoration and reconstruction is given in the
following vector-matrix form:

P = AHψα+ n (1)

where P ∈ Rm×1 is the known noisy projection data; A ∈ Rm×m is the known measurement matrix of the
X-ray CT system; H ∈ Rm×m is the unknown blurring matrix constructed by the point spread function
(h ∈ Rm×1 denotes the point spread function (PSF) in vector form, H performs convolution with h);
ψ ∈ Rm×k (k << m) is a sparse representation transform matrix and is known. f denotes the CT image.
f ∈ Rm×1 can be changed into another form α ∈ Rk×1 by the sparse representation transform matrix,
f = ψα. α denotes the sparse representation vector because it can describe the image and include
fewer data. n ∈ Rm×1 is the additive noise vector, n ∼ N(0,

∑
n),

∑
n ∈ Rm×m is the covariance matrix.

For simplicity, we assume that
∑

n = σ2
nI. The problem in (1) is designed to estimate α and H when

the projection data P is as few as possible. Here, α is for the estimation of CT image. It doesn’t matter
what is H itself. The purpose of estimating H is to eliminate the degradation caused by PSF.

As to estimate α ∈ Rk×1 with the assumption, the problem is to solve the following problem

α̂ = argmax
α

log p(α|P) (2)

By applying the Bayesian formula, p(x
∣∣∣y) =

p(y|x)p(x)
p(y) , (2) can be written as

α̂ = argmax
α

{
log p(P|α) + log p(α)

}
(3)

where p(α) is the prior probability distribution of α. p(α) provides the prior statistical information of
the sparse representation. The closer the estimated prior distribution is to the actual distribution, the
more accurate the estimated value of αwill be. To this end, the statistical prior of αwas described by a
Gaussian compound distribution as did in [22]. In this case, the probability density is given by

p(α) =

+∞∫
0

1

(2π)
k
2
∣∣∣z2 ∑

v

∣∣∣ 1
2

exp

−αT ∑
−1
v α

2z2

φz(z)dz (4)

where the mixing variable z ≥ 0 is a random vector, z ∈ Rk×1. φz(z) defines the probability density of
the scale variable and results in the different distribution in different applications.

The Gaussian compound distribution α is not easy to solve directly, and the hierarchical Bayesian
strategy is applied to convert α into the synthesis of two variables with the following form.

α = z�V (5)

where � defines the Hadamard product. V ∼ N(0,
∑

v) denotes a Gaussian random vector, V ∈ Rk×1.∑
v ∈ Rk×k is the covariance matrix of V. For the sake of simplicity, we assume that z and V are

independent. Therefore, (1) results in

P = AHψ(z�V) + n (6)

To solve the problem conveniently, the mixing variable z can be described by a Gaussian variable
x ∈ Rk×1 and a nonlinear function g(·) [21], z = g(x). When g(x) is chosen as a candidate for z,
optimizing z is equal to optimizing x. (6) results in

P = AHψ(g(x) �V) + n (7)
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We choose g(x) as a non-linear function with the following form,

g(x) =
√

exp(x/β) (8)

where β is a controlling scale factor.
A compound Gaussian distribution can be used to fit an unknown variable by the combination

of the known distributions of two variables. As can be seen from (7), if H is known, the estimates of
variables x and V can be obtained by iteration as shown below, and then α can be obtained by (5).
Therefore, the hierarchical Bayesian MAP is designed to estimate x, V and H, respectively. In previous
methods, H is generally assumed to be the identity matrix. In other words, the effect of point spread
function is not considered. We will develop a new approach to approximate H in the next section.

2.2. The Hierarchical Bayesian MAP

The hierarchical Bayesian MAP is a statistical model written in multiple levels that estimates
the parameters of the posterior distribution using the MAP method. The estimation of the sparse
representation α can be decomposed into the estimation of two independent parameters x and V as
shown in (7).

x̂ = argmax
x

PTM−1(x)P + log detM(x) + xT
∑
−1

x
x (9)

where, det(M(x)) is the determinant of M(x) and

M(x) = AHψG(x)
∑

v
G(x)ψTHTAT +

∑
n
, M(x) ∈ Rm×m (10)

G(x) = diag(g(x)) ∈ Rk×k (11)

where diag(·) is a square diagonal. Assuming that x is known, we can obtain the following solution by
using the Bayesian formula

V̂ = argmax
V

{
log p(P|V) + log p(V)

}
(12)

Substituting (7) and (9) into (12), the following solution can be obtained

V̂ = argmax
V

(P−AHψG(x̂)V)T
∑
−1

n
(P−AHψG(x̂)V) + VT

∑
−1

v
V (13)

(12) is quadratic on the unknown variable V and its solution is given,

V̂ =
((

GT(x̂)ψTHTAT
)∑−1

n
(AHψG(x̂)) +

∑
−1

v

)−1
(AHψG(x̂))TP (14)

According to (7) and (14), the estimation of the sharp CT image is given by f̂ = ψα̂ = ψ
(
ẑ� V̂

)
.

In (9) and (14), the blurring matrix H is usually unknown, so the degradation matrix H must
be estimated. Generally, H is a circular matrix, and it can be obtained by a cyclic shift of any row
h j, ( j = 1, 2, · · · , m). Therefore, we can obtain the blurring matrix H by estimating the point spread

function. Here, the Fourier transform was implemented before we estimate h, h̃ and h̃0 are the Fourier
transform of h and h0, respectively. h0 is an initial estimation of h. A multivariate Gaussian distribution
is chosen for the prior of the point spread function h̃ [23].

p
(
h̃
)
=

1

(2π)
m
2 |Σh|

1
2

exp
(
−

1
2

(
h̃− h̃0

)T
Σ−1

h̃

(
h̃− h̃0

))
(15)
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where Σh̃ is the covariance matrix of the variable h̃. Next, we solve h̃ in Fourier domain,

p
(
P̃
∣∣∣̃f, Σn, h̃

)
=

1

(2π)
m
2 |Σn|

1
2

exp
(
−

1
2

(
P̃− ΣA f h̃

)T
Σ−1

n

(
P̃− ΣA f h̃

))
(16)

where y = Af ∈ Rm×1, ỹ is the Fourier transform of y with ΣA f= diag(̃y). By calculating by (15) and

(16), the conditional distribution h̃ is followed as

p
(

h̃
∣∣∣∣̃f, P̃, Σn

)
∝ exp

(
−

1
2

(
P̃− ΣA f h̃

)T
Σ−1

n

(
P̃− ΣA f h̃

))
exp

(
−

1
2

(
h̃− h̃0

)T
Σ−1

h

(
h̃− h̃0

))
(17)

According to (17), the conditional distribution h̃ can be described by a multivariate Gaussian
distribution. For simplicity, we assume that

∑
n = σ2

nI. Since H is circular, it holds Σh = σ2
hI. The

mean vector and covariance matrix of the multivariate Gaussian distribution is given respectively,

m̃ =

 I
σ2

h

+

∣∣∣ΣA f
∣∣∣2

σ2
n


−1 h̃0

σ2
h

+
ΣT

A f P̃

σ2
n

 (18)

C̃ =
I
σ2

h

+

∣∣∣ΣA f
∣∣∣2

σ2
n

(19)

The multivariate Gaussian distribution is easy to sample, and the conditional distribution h̃ can
be obtained. The inverse Fourier transform of the conditional distribution of h̃ was implemented to
obtain the point spread function h. Furthermore, the cyclic shift h was implemented to obtain the
degradation matrix H. The proposed algorithm is described in the Table 1.

Table 1. The flow of the proposed algorithm.

The Proposed Algorithm

1: Initialize parameters, tol = 10−6, A as the known CT system matrix, ψ as the known sparse
representation matrix,
2: Set h0 is a Dirac delta function
3: Input the known noisy projection data P
4: for each iteration do
5: while ‖h(l + 1) − h(l)‖/‖h(l)‖ > tol do
6: Calculating x̂ according to (9)
7: Calculating V̂ according to (14)
8: Calculating f̂ according to f̂ = g(x̂) � V̂
9: Sampling h̃ according to (18) and (19) with a Gibbs method [24]
10: end while
11: end for
12: return

To reconstruct CT image with far fewer projection data, a compressed sensing image reconstruction
algorithm including a blind image restoration process was proposed. Image reconstruction is achieved
by estimating a sparse coefficient vector. We utilized the hierarchical Bayesian model and transformed
the image estimation into two independent variables estimation. The hierarchical Bayesian MAP
method solved the problem of parameter estimation. The introduction of blind image restoration
mechanism improves the quality of the output image in each iteration and improves the quality of
the final reconstructed image. Therefore, under the same image quality requirements, the proposed
method can effectively reduce the radiation dose.
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3. Results

In the experiments, four true CT images and simulated projections were used to study the
performance of our algorithm under degraded conditions. The experimental setting is as follows: The
image size is set to be 512 × 512. The known projection data are obtained by convolution of the CT
system matrix A and the true CT image. The size of the CT system matrix is different according to
different image sizes. The system matrix of the fan beam scanning mode [25] is used in the experiment.
The point spread function of the CT image is approximated as a standard Gauss function process with
different sizes, 20 × 20, 27 × 27, 18 × 18, 15 × 15, respectively and the same variance, σ2 = 1. The
white Gaussian noise is added to the known projection data to obtain the known noisy projection
data with signal-to-noise ratio (SNR) 20 dB and 40 dB. All known measurement projection data is
acquired through binary matrices to verify the applicability of the method. The sampling ratio varies
from 40%–100%. To simulate fewer data and make a comparative analysis, a few data were obtained
by random sampling of complete data. The sampling ratio rate represents the amount of sample data.
The lower the sampling rate, the fewer the data used in the experiment. In other words, fewer data
represent lower radiation doses. One can initialize the point spread function to a Dirac delta function.
ψ is a sparse representation matrix and represents wavelet sparse transform in this paper [14]. Here
the Haar basis was chosen as wavelet transformation basis.

The stopping criterion of the iteration is accomplished by relative error. That is
‖h(l + 1) − h(l)‖/‖h(l)‖ ≤ tol and tol is a relatively small constant. In the simulation experiment,
tol = 10−6.

When the relative error is less than tol, the algorithm terminates. Figures 1–4 present CT image
blind restoration and reconstruction results using the proposed approach for four different images
degraded with different Gaussian PSF. Good results were obtained in terms of clarity contrast, detail
retention, and so on. Although the image quality decreases with the decrease in the sampling ratio, it
is acceptable in general.

From Figures 1–4, it is clear that the proposed algorithm has good reconstruction performance in
the case of high sampling ratio. With the decrease of sampling ratio, the image quality also decreases.
Moreover, until a lower sampling ratio of 0.4, an intuitive and acceptable image can be reconstructed
for medical diagnosis services. In the case of high signal-to-noise ratio, the proposed method can
obtain better reconstruction results at a sampling rate of 40%. Other methods cannot achieve good
reconstruction at this sampling rate. With the decrease of the signal-to-noise ratio, the reconstruction
results can be obtained at the sampling rate of 40%, but the quality will decrease significantly. The
reconstruction results of the other three methods can be obtained in the Supplementary Materials.

For quantitative comparison, the peak signal-to-noise ratio (PSNR) and structural similarity index
metric (SSIM) are used to evaluate the algorithm performance at SNR = 40 dB. About these two metrics,
the ideal value of PSNR is +∞, the ideal values of SSIM are 1. These two metrics can only be used in the
simulated experiments because they require a referred image. The above two metrics tabulated for each
experiment are the average values over 10 times repetitions. The results are shown in Tables 2 and 3.
The reported values are the average and standard deviation of the 10 runs. The less standard deviation
judges the robustness of the proposed approach method. Because the compound Gaussian distribution
provides better prior information, the reconstruction method based on hierarchical Bayesian structure
has better performance in the case of high sampling rate.
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Figure 1. Experimental images and results of the first CT image. The 1st row shows the sharp CT
image (left) and the CT noisy projection for 100% of measurements (middle) as well as the 20 × 20 point
spread function; the 2nd row shows the blind restoration reconstruction results for 40%, 60%, 80% and
100% of measurements, respectively, from left to right (SNR = 40 dB); the 3rd row shows the blind
restoration reconstruction results for 40%, 60%, 80% and 100% of measurements, respectively, from
left to right (SNR = 20 dB). (a) the sharp CT image; (b) the measured noisy projection (SNR = 40 dB);
(c) the measured noisy projection (SNR = 20 dB); (d) the point spread function; (e) the reconstruction
result (SNR = 40 dB, Sampling ratio = 40%); (e) the reconstruction result (SNR = 40 dB, Sampling
ratio = 60%); (f) the reconstruction result (SNR = 40 dB, Sampling ratio = 80%); (g) the reconstruction
result (SNR = 40 dB, Sampling ratio = 100%); (h) the reconstruction result (SNR = 20 dB, Sampling
ratio = 40%); (i) the reconstruction result (SNR = 20dB, Sampling ratio = 60%); (j) the reconstruction
result (SNR = 20 dB, Sampling ratio = 80%); (k) the reconstruction result (SNR = 40 dB, Sampling
ratio = 40%); (l) the reconstruction result (SNR = 20 dB, Sampling ratio = 100%).
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Figure 2. Experimental images and results of the second CT image. The 1st row shows the sharp CT
image (left) and the CT noisy projection for 100% of measurements (middle) as well as the 27 × 27 point
spread function; the 2nd row shows the blind restoration reconstruction results for 40%, 60%, 80% and
100% of measurements, respectively, from left to right (SNR = 40 dB); the 3rd row shows the blind
restoration reconstruction results for 40%, 60%, 80% and 100% of measurements, respectively, from
left to right (SNR = 20 dB). (a) the sharp CT image; (b) the measured noisy projection (SNR = 40 dB);
(c) the measured noisy projection (SNR = 20 dB); (d) the point spread function; (e) the reconstruction
result (SNR = 40 dB, Sampling ratio = 40%); (e) the reconstruction result (SNR = 40 dB, Sampling
ratio = 60%); (f) the reconstruction result (SNR = 40dB, Sampling ratio = 80%); (g) the reconstruction
result (SNR = 40 dB, Sampling ratio = 100%); (h) the reconstruction result (SNR = 20 dB, Sampling
ratio = 40%); (i) the reconstruction result (SNR = 20 dB, Sampling ratio = 60%); (j) the reconstruction
result (SNR = 20 dB, Sampling ratio = 80%); (k) the reconstruction result (SNR = 40 dB, Sampling
ratio = 40%); (l) the reconstruction result (SNR = 20 dB, Sampling ratio = 100%).
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Figure 4. Experimental images and results of the fourth CT image. The 1st row shows the sharp CT
image (left) and the CT noisy projection for 100% of measurements (middle) as well as the 15 × 15 point
spread function; the 2nd row shows the blind restoration reconstruction results for 40%, 60%, 80% and
100% of measurements, respectively, from left to right (SNR = 40 dB); the 3rd row shows the blind
restoration reconstruction results for 40%, 60%, 80% and 100% of measurements, respectively, from
left to right (SNR = 20 dB). (a) the sharp CT image; (b) the measured noisy projection (SNR = 40 dB);
(c) the measured noisy projection (SNR = 20 dB); (d) the point spread function; (e) the reconstruction
result (SNR = 40 dB, Sampling ratio = 40%); (e) the reconstruction result (SNR = 40 dB, Sampling
ratio = 60%); (f) the reconstruction result (SNR = 40 dB, Sampling ratio = 80%); (g) the reconstruction
result (SNR = 40 dB, Sampling ratio = 100%); (h) the reconstruction result (SNR = 20 dB, Sampling
ratio = 40%); (i) the reconstruction result (SNR = 20dB, Sampling ratio = 60%); (j) the reconstruction
result (SNR = 20 dB, Sampling ratio = 80%); (k) the reconstruction result (SNR = 40 dB, Sampling
ratio = 40%); (l) the reconstruction result (SNR = 20 dB, Sampling ratio = 100%).
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Table 2. Peak signal-to-noise ratio (PSNR) average performance comparison of the proposed algorithm with a series of algorithms, namely, SART [3], SART + TV [13],
Patch + ordering Wavelet [14] (SNR = 40 dB).

Sampling Ratio 0.4 0.6 0.8 1

Figure 1

SART —– 50.4383 ± 0.1456 52.1108 ± 0.1543 54.5095 ± 0.1456
SART + TV —– 51.3425 ± 0.1278 54.8435 ± 0.1435 56.8108 ± 0.1376
Wavelet —– 52.8898 ± 0.1212 57.1615 ± 0.1324 58.9218 ± 0.1214
Proposed approach 55.1612 ± 0.1231 60.1005 ± 0.1109 63.0505 ± 0.1302 63.5126 ± 0.1087

Figure 2

SART —– 51.4795 ± 0.2561 53.4909 ± 0.2143 55.7349 ± 0.2469
SART + TV —– 53.9238 ± 0.1812 55.8124 ± 0.2452 56.7012 ± 0.2376
Wavelet —– 59.8122 ± 0.1316 59.5905 ± 0.1243 59.1375 ± 0.1412
Proposed approach 62.5796 ± 0.1156 63.9229 ± 0.1294 63.6970 ± 0.1218 64.6231 ± 0.1123

Figure 3

SART —– 34.1959 ± 0.1048 40.2794 ± 0.1098 45.4973 ± 0.1239
SART + TV —– 36.4972 ± 0.1345 43.4084 ± 0.1324 47.8413 ± 0.1267
Wavelet —– 38.6082 ± 0.1367 45.1803 ± 0.1456 49.1661 ± 0.1489
Proposed approach 42.7369 ± 0.0976 43.1990 ± 0.0989 46.6093 ± 0.0902 50.8476 ± 0.0087

Figure 4

SART —– 42.4213 ± 0.2456 44.1773 ± 0.2312 45.1659 ± 0.3241
SART + TV —– 43.8746 ± 0.2891 45.4988 ± 0.2561 46.6102 ± 0.2134
Wavelet —– 45.8239 ± 0.2211 46.2769 ± 0.2341 48.4986 ± 0.2781
Proposed approach 45.2660 ± 0.1561 47.3095 ± 0.1861 48.3834 ± 0.1734 49.6093 ± 0.1709
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Table 3. Structural similarity index metric (SSIM) average performance comparison of the proposed algorithm with a series of algorithms, namely, SART [3],
SART + TV [13], Patch + ordering Wavelet [14].

Sampling Ratio 0.4 0.6 0.8 1

Figure 1

SART —– 0.9499 ± 0.0015 0.9615 ± 0.0018 0.9703 ± 0.0016
SART + TV —– 0.9661 ± 0.0012 0.9682 ± 0.0015 0.9841 ± 0.0026
Wavelet —– 0.9765 ± 0.0012 0.9771 ± 0.0011 0.9868 ± 0.0014
Proposed approach 0.9751 ± 0.013 0.9838 ± 0.0009 0.9858 ± 0.0012 0.9931 ± 0.0009

Figure 2

SART —– 0.9461 ± 0.0056 0.9607 ± 0.0038 0.9771 ± 0.0065
SART + TV —– 0.9553 ± 0.0078 0.9674 ± 0.0045 0.9833 ± 0.0076
Wavelet —– 0.9687 ± 0.0052 0.9763 ± 0.0060 0.9842 ± 0.0098
Proposed approach 0.9743 ± 0.0034 0.9830 ± 0.0045 0.9850 ± 0.0032 0.9923 ± 0.0026

Figure 3

SART —– 0.9254 ± 0.0089 0.9451 ± 0.0085 0.9583 ± 0.0090
SART + TV —– 0.9348 ± 0.0078 0.9682 ± 0.0091 0.9723 ± 0.0089
Wavelet —– 0.9578 ± 0.0052 0.9789 ± 0.0067 0.9815 ± 0.0064
Proposed approach 0.9451 ± 0.0031 0.9687 ± 0.0029 0.9812 ± 0.0032 0.9994 ± 0.0037

Figure 4

SART —– 0.9491 ± 0.0026 0.9707 ± 0.0034 0.9795 ± 0.0045
SART + TV —– 0.9553 ± 0.0045 0.9774 ± 0.0034 0.9833 ± 0.0044
Wavelet —– 0.96 07 ± 0.0022 0.9812 ± 0.023 0.9901 ± 0.0024
Proposed approach 0.9643 ± 0.0023 0.9730 ± 0.0021 0.9879 ± 0.0032 0.9952 ± 0.0027
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Figures 5–8 depict the estimated point spread function and compare it to the ground-truth
simulated one. The results show that a better estimation can be obtained. As a result of the better
estimation of PSF, the better reconstructed image can be obtained, as shown in Figures 1–4. Performance
evaluation is shown in Tables 2 and 3.
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Figure 8. Results of the point spread function in Figure 4 (SNR = 40 dB, Sampling Ratio = 0.8). (a) the
point spread function; (b) the estimated point spread function; (c) the difference between point spread
function and the estimated point spread function.

Table 2 presents an average performance comparison of the proposed approach with a set of
image reconstruction algorithms. SART [3] is a popular iterative image reconstruction method, and it
is effective in the case of high compressive sensing ratio. The other two methods are TV transform [13]
and wavelet transform [14]. The above average performance for four methods are the average values
over 10 times repetitions. They are suitable for low sampling ratio. Therefore, when the influence of
point spread function exists, the performance of the three methods can be compared.

As shown in Table 3, the structural similarity index is improved compared to the traditional
methods. All kinds of objective image quality metrics have been improved in different compressive
sensing ratio. In the case of very low sampling ratio, other algorithms cannot reconstruct images,
but the proposed algorithm can achieve relatively good performance. Of course, the quality of the
reconstructed image at low sampling ratio has decreased compared with that at high sampling ratio.
SSIM is a full reference metric that requires two images from the same image capture—a reference
image and a processed image. It actually measures the perceptual difference between two similar
images. It cannot judge which of the two is better. In other words, the closer the reconstructed image is
to the real image, the better the reconstructed image is.

The proposed method shows acceptable performance for sampling ratio greater than 0.4 and
exhibits similar fluctuations over increasing sampling ratio. On the other hand, other algorithms have
relatively good performance over high ratios. However, when the ratio is less than or equal to 0.4,
the image performance is unacceptable. The lower sampling ratio is, the fewer data used for image
reconstruction is. The fewer data for reconstructed images means less radiation dose for patients.
Experiments show that the proposed method can reduce the radiation impact on patients under the
same image quality requirements. Compared with the other three methods, the proposed method
consumes more computing time due to multi-parameter hierarchical iteration. In the future research,
improving the computational efficiency is the further research content.

Figure 9 and Table 4 present CT image blind restoration and reconstruction results using the
proposed approach and a reconstruction algorithm considering the influence of the point spread
function [12]. At high sampling ratio, both methods can achieve ideal results. However, when the
sampling ratio is low, the proposed method has a relatively stable performance. Due to the limitation
of Nyquist sampling law, the reconstruction algorithm considering the influence of the point spread
function cannot get an effective reconstruction image when the sampling ratio is too low. On the other
hand, although the quality of the reconstructed image has been reduced, the proposed method can
reconstruct the image with lower sampling ratio.
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Figure 9. The 1st row shows the image reconstruction method combined with image restoration [12]
(left) and the proposed approach (right) for 80% of measurements, respectively. The 2nd row shows
the results of the image reconstruction method combined with image restoration [12] (left) and the
proposed approach (right) for 60% of measurements, respectively.

Table 4. PSNR contrast among the image reconstruction method combined with image restoration [17]
and the proposed approach.

Sampling Ratio 0.4 0.6 0.8 1

the image reconstruction method
combined with image restoration [17] —– 44.8787 48.1225 49.3421

the proposed approach 45.2660 47.3095 48.3834 49.6093

4. Conclusions

This paper proposed a compressed sensing CT image blind restoration reconstruction method. A
compound Gaussian distribution was assigned to the global sparse coefficients, and a multivariate
Gaussian distribution was chosen for the PSF. In the Bayesian framework, the CT image blind restoration
reconstruction is transformed into an optimization problem, and the hierarchical Bayesian model
was used to solve the problem of parameter estimation and obtain the final reconstructed image.
Experiments show that the proposed algorithm is superior to other algorithms in subjective visual effect.
In the case that the projection data is far from satisfying the completeness condition, the algorithm
proposed can reconstruct the high-quality image. In the aspect of objective evaluation, the algorithm
proposed in this paper improves the objective image quality metrics such as PSNR, SSIM, and so on.
Future works include real CT data test, better sparse representation and new prior distributions for
sparse representation.
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