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Abstract: The automatic train operation system is a significant component of the intelligent railway
transportation. As a fundamental problem, the construction of the train dynamic model has been
extensively researched using parametric approaches. The parametric based models may have
poor performances due to unrealistic assumptions and changeable environments. In this paper,
a long short-term memory network is carefully developed to build the train dynamic model in a
nonparametric way. By optimizing the hyperparameters of the proposed model, more accurate
outputs can be obtained with the same inputs of the parametric approaches. The proposed model
was compared with two parametric methods using actual data. Experimental results suggest that
the model performance is better than those of traditional models due to the strong learning ability.
By exploring a detailed feature engineering process, the proposed long short-term memory network
based algorithm was extended to predict train speed for multiple steps ahead.

Keywords: train dynamic model; train speed prediction; long short-term memory neural network

1. Introduction

Railway transportation, an effective means to increase the efficiency of energy consumption
and relieve the traffic congestion problem, has been stressed as an ideal transport mode in large
cities [1]. To achieve safe and efficient operation, train control algorithms remain a key technical
issue in the process of the development of railway systems [2]. Traditionally, with the help of signal
devices, the train operation is accomplished by skilled drivers. However, this human-based train
operation method lacks precise consideration, which may lead to a poor performance of energy
consumption, service quality and safety [3]. Recently, with the combination of communication and
computer technologies, the automatic train operation has become a research hotspot [4–6], which also
has been used in many newly-built railway systems.

Different from the manual labor based method, an automatic train operation system can provide a
better operation performance by optimizing train control decisions. Many indicators that describe the
running state of the train such as punctuality, riding comfort and energy efficiency can be remarkably
improved by automatically adjusting the commands of train accelerating, coasting and braking
process. The automatic train operation system mainly solves three arduous tasks: train dynamic model
construction [7], speed profile optimization [8] and train speed control [9].

Establishing train dynamic model is regarded as a fundamental and significant problem among
these tasks, since all the subsequent studies such as speed profile optimization and train speed
control are built on it. Many methods have been proposed to obtain a precise dynamic model [10–13].
These methods that build upon the Davis formula can be classified into two categories, i.e., single-point

Algorithms 2019, 12, 173; doi:10.3390/a12080173 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
http://www.mdpi.com/1999-4893/12/8/173?type=check_update&version=1
http://dx.doi.org/10.3390/a12080173
http://www.mdpi.com/journal/algorithms


Algorithms 2019, 12, 173 2 of 21

train control models and multi-point train control models [10]. In the first one, which has been
investigated for many years, the train, consisting of a locomotive and many carriages, is treated as
a single-mass model. Although the inner characteristics produced by the coupled system cannot be
accurately expressed, this type of model has the advantages of deployment feasibility and calculation
simplicity [11]. In the second class, a more complicated model is rigorously designed, which takes the
impacts of adjacent carriages into consideration [12]. All of these methods belong to the parametric
approaches, where the structure of the model is determined under certain theoretical assumptions
and the values of parameters are calculated based on analytical equations, such as Newton’s law and
the Davis formula. Nevertheless, a precise train dynamic model is hard to acquire due to unrealistic
assumptions and changeable environments [13]. How to obtain an appropriate dynamic model that
can reflect the actual condition of train operation remains a crucial task.

To find an innovative way to deal with the above-mentioned task, different from the parametric
approaches, we propose to apply deep learning algorithms to solve the problem of train dynamic
model construction. This kind of data-driven method has been widely investigated in highway
trajectory prediction and traffic speed prediction to replace the traditional parametric approach [14–16].
Data-driven methods also have been introduced for train trajectory tracking [17], train station
parking [18] and train operation modeling [19]. Inspired by these studies, in this paper, a long
short-term memory (LSTM) neural network is carefully developed to build the train dynamic model
in a nonparametric way. LSTM networks [20] are called advanced recurrent neural networks with
additional features, which can keep a memory of previous inputs, resulting in a good performance of
handling time series problems such as the train dynamic model and the speed prediction. Using the
same algorithm inputs as traditional parametric approaches (analog output, traction brake, rail slope
and train speed), we explore a detailed feature engineering process, where lagged features of the
actual data can be captured. By deliberately tuning the parameters of the proposed LSTM based
model, more accurate outputs can be obtained. We compared the proposed approach with two
other algorithms: (i) a parametric approach in which the parameters are optimized using the fruit
fly optimization algorithm; and (ii) a traditional train dynamic model that is currently being used in
real train control systems. The proposed model was validated against the actual data from Shenzhen
Metro Line No. 7 in China and Beijing Yanfang Metro Line in China. Experimental results demonstrate
that the output accuracy was remarkably enhanced compared to these algorithms. Furthermore,
by combining lagged features and statistical features, we captured the long-term pattern of the data
and extended the proposed LSTM based algorithm to predict train speed for a longer period of time.

2. Related Work

As mentioned above, parametric approaches of the train dynamic model can be divided into
two classes. For the first class, Howlett [21] pioneered a single-mass model, where the train is
controlled using a finite sequence of traction phases and a final brake phase. The Lagrangian
multiplier method is applied to search fuel-efficient driving solutions in this work. To minimize
energy consumption, in [22], the authors presented an analytical solution to obtain the sequence of
optimal controls. In this calculation algorithm, the in-train force is ignored. With the purpose of
shortening the computation time, Wang et al. [23] formulated the single-mass dynamic model as a
mixed-integer linear programming (MILP) problem. By approximating and relaxing the high-order
nonlinear terms, the global optimal solution can be found in polynomial time. Single-point train control
models have also been studied [24,25]. For the second category, to describe the internal relationship
among the adjacent cars, Gruber et al. [26] first put forward a multi-point train control model, where
a switching policy and linear suboptimal controllers are designed to model this large-scale system.
In [27], a multi-point based longitudinal train model was proposed, where the model parameters are
tuned according to the experimental environment. This model was validated against actual data from
Spoornet. In [28], the authors established a cascade-mass-point model to simplify the multi-point
model. Taking simplicity, cost-effectiveness and implementation convenience into consideration,
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the issue of output regulation with measurement feedbacks is well solved in this model. Besides,
many researchers pay attention to building an appropriate multi-point dynamic model in high-speed
railways [10,29,30].

It is worth mentioning that some data-driven algorithms have been introduced in the area of train
operation systems. The work in [18,31–33] attempted to solve the train automatic stop control problem
using machine learning methods. Specifically, Chen et al. [33] employed a regression neural network to
estimate the train station parking error. The algorithm parameters are deliberately adjusted to reduce
parking errors. In [32], the authors proposed adopting regression algorithms to analyze the train
stopping accuracy. By extracting relevant features through feature engineering, the ridge regression
and the elastic net regression are employed to build models to reflect the relationship between the
features and the stopping accuracy. These studies only consider the train stop control problem that
occurs when the train stops at stations. In [17], coordinated iterative learning control schemes were
designed for train trajectory tracking. This method can learn to improve control performances from
previous executions, which requires less system model knowledge. The speed tracking errors are
reduced via repeated operations of the train. Three data-driven train operation models were proposed
in [19]. By summarizing an expert system from the domain driving experience, K-nearest neighbor,
Bagging-CART and Adaboost are employed for train operation. Then, these models are improved via a
heuristic train parking algorithm to ensure the parking accuracy. Compared to the methods in [32,33],
the whole operation process is analyzed in this paper. Reinforcement learning based algorithms were
employed to solve optimal control problems in [34]. An adaptive actor-critic learning framework is
carefully designed with the virtual reference feedback tuning. This approach was validated to learn
nonlinear state-feedback control for linear output reference model tracking, which is innovative and
can be applied to the train control system. Besides, data-driven methods also have been used for fault
detection and diagnosis in the area of rail transit [35]. These inspiring studies give us a new angle to
view the problem of building the train dynamic model.

Data-driven algorithms have been widely used in intelligent transportation systems [16,36,37].
In the area of traffic forecasting and trajectory prediction, data-driven approaches tend to outperform
the parametric approaches. In [38], a fuzzy neural network is employed to increase the prediction
accuracy of the traffic flow. The support vector machine [39] also has been introduced for trajectory
prediction. The machine learning algorithms have the advantage of dealing with high dimensional
and nonlinear relationships, which is especially suitable for establishing train dynamic model and
train speed prediction on account of the dynamic and nonlinear nature [40]. Among the machine
learning algorithms, the recurrent neural network (such as the LSTM network) is designed to seize
the features of the temporal and spatial evolution process. Several studies [41–43] focused on the
use of LSTM neural networks for traffic forecasting and demonstrated the advantages of this kind of
algorithm. Encouraged by the successful applications of LSTM based algorithms in the domain of
transportation, we propose to employ LSTM networks for train dynamic model construction and train
speed prediction, since the train operation process can be regarded as a time sequence problem.

3. Methodology

3.1. Parametric Based Train Dynamic Model

To facilitate understanding, in this subsection, we briefly introduce a classical single-point train
dynamic model. Other types of dynamic models (such as multi-point models) can be considered as
optimized or expanded versions of this model. By ignoring the in-train force and assuming continuous
control rates, the model can be formulated as [44]

Mv̇(t) = αa
vF(t)− αb

vB(t)− w(v)− g(x) (1)

w(v) = M(c0 + c1v + c2v2) (2)
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ẋ(t) = v (3)

where x, v and t denote the train displacement, velocity and time, respectively. M = ∑ mi represents
the total mass of the train, where mi is the mass of the ith carriage. F(t) is the train traction force
while B(t) denotes the train braking force. αa

v and αb
v represent the relative accelerating and braking

coefficients, respectively. Given a certain train position x, g(x) describes the impacts of the gradient
resistances and curve resistances. w(v) = M(c0 + c1v + c2v2) is the Davis formula, which expresses
the relationship between the train speed and the aerodynamic drag, where c0, c1 and c2 indicate the
resistance parameters.

In this model, let S = {S1, S2, · · · , Sm} denote the set of train positions in a certain operation area.
The location data can be obtained by locating devices, i.e., balises, which are extensively deployed in
the European Train Control System and the Chinese Train Control System [45]. With low time delay,
a balise transmits the position data to the passing train. The velocity of the train can be similarly
captured by track-side and on-board devices. Given the fixed parameters of the dynamic model
(αa

v, αb
v, c0, c1, c2 and g(·)), the inputs and the outputs of the model are shown in Figure 1. As can be

seen in Figure 1, when a certain train passes Sm, the inputs of the dynamic model are xm, vm, Fm and
Bm. Using Equations (1) and (2), the model output vm+1 can be calculated.

model parameters:
𝛼𝑣
𝑎, 𝛼𝑣

𝑏 , 𝑐0, 𝑐1 , 𝑐2, 𝑔 ∙

𝑆1
𝐼n𝑝𝑢𝑡: 𝑣1, 𝐹1, 𝐵1
𝑂𝑢𝑡𝑝𝑢𝑡: 𝑣2

…
𝑆2

𝐼n𝑝𝑢𝑡: 𝑣2, 𝐹2, 𝐵2
𝑂𝑢𝑡𝑝𝑢𝑡: 𝑣3

𝑆𝑚
𝐼n𝑝𝑢𝑡: 𝑣𝑚, 𝐹𝑚, 𝐵𝑚
𝑂𝑢𝑡𝑝𝑢𝑡: 𝑣𝑚+1

Figure 1. Parametric based train dynamic model.

Since some of the model parameters are difficult to acquire in real-world scenarios, their values
are arbitrarily assigned, resulting in a poor performance of this parametric approach. Furthermore,
the velocity of the train varies in a wide range during the operation process. By adjusting the control
commands, the operation process can be divided into four phases: train acceleration, train coasting,
train cruising and train braking. At different operation phases, the parameters and disturbance factors
have different influences of the model outputs. Thus, Equations (1) and (2) may change into various
complicated multivariate nonlinear functions, which increases the difficulty of system modeling.

3.2. LSTM Based Train Dynamic Model: Problem Statement

To overcome the aforementioned disadvantages of the parametric approach, we propose a
data-driven approach to address the issue of train dynamic model construction, where the LSTM
network is applied. Besides, by deliberately designing the lagged features and statistical features,
we extend the proposed LSTM based algorithm to predict train speed for multi-step ahead. To be more
specific, the train dynamic model can be considered as an approach to get the train speed of the next
time step. Since LSTM networks have the capacity to model long-term dependencies, our proposed
model can obtain the train speeds for next n time steps.



Algorithms 2019, 12, 173 5 of 21

For clarity, in this subsection, we review the problem of the train dynamic model. Note that
the model inputs are exactly the same as the aforementioned parametric approach. Formally, let I
and O denote the sets of observable features and target outputs, respectively. Similar to Section 3.1,
all features (model inputs) can be instantly seized at any time step. Tprev represents the set of previous
time steps, which can be written as Tprev = {−Kprev, · · · , 0}. For x ∈ I and k ∈ Tprev, we express the
feature vector xk = (xk,1, xk,2, · · · , xk,n) as the values of features seized at |k|th previous time step,
where n denotes the number of features. The feature matrix can be formulated as

X =


x−Kprev

x−Kprev−1
...

x0

 =


xprev,1 xprev,2 · · · xprev,n

xprev−1,1 xprev−1,2 · · · xprev−1,n
...

...
. . .

...
x0,1 x0,2 · · · x0,n

 (4)

where xi,j means the jth feature captured at ith time step.
In addition, we denote Tpost = {0, · · · , Qpost}. For ŷ ∈ O and q ∈ Tpost, ŷq is defined as the value

of model output at qth time step in the future. ŷ = (ŷ1, ŷ2, · · · , ŷq)ŷ∈O,q∈Tpost is defined as the output
vector. Using a deep learning method, a regression function h is trained, which can be written as

ŷ = h(X; Θ) (5)

where Θ = {θ1, θ2, · · · , θn} represents the set of algorithm parameters.
With the purpose of reducing the gap between the predicted outputs and the actual values,

the loss function L(Θ) should be minimized

min
Θ

L(Θ) =
1
l

l

∑
i=1

L(h(X; Θ), y) (6)

where l represents the number of samples. y = (y1, y2, · · · , yq) denotes the vector of actual values.
In our scenario, according to Figure 1, using feature matrix X generated by xm, vm, Fm and Bm,
the proposed approach is capable of getting the predicted train speeds ŷ.

3.3. LSTM Network Structure

The LSTM network is a variant of deep neural networks, which was first introduced by
Hochreiter [20]. Distinguished from traditional neural networks, there exists an internal hidden
state in the units that constitutes the LSTM network. Generally, an LSTM network is made up of one
input layer, one recurrent hidden layer and one output layer. The unit in the recurrent hidden layer
is termed as the memory block, which consists of memory cells and adaptive, multiplicative gating
units. In the memory cell, the state vector is saved to aggregate the previous input data. By tuning the
parameters of gating units, the input data, the output data and the state data are mixed to update the
current state. The control mechanism is summarized as follows. Note that all the symbol definitions
can be found in Table 1.

Without ambiguity, at each time iteration t, let xt denote the hidden layer input feature which is
directly fed to the LSTM cell through the input gate. The input gate can be written as [46]

it = σi(Wi · [ht−1, xt] + bi). (7)

Assuming the dimensions of xt and ht are dx and dh, respectively, the dimension of Wi is
dc × (dh + dx). dc is defined as the dimension of the state vector. σi(·), Wi and bi are decided to
control the effects of the layer input xt and the layer output of previous time step ht−1 on the output of
input gate it.
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To deal with the gradient diffusion and the gradient explosion problems [47], in LSTM networks,
the forget gate is deliberately designed

ft = σf (W f · [ht−1, xt] + b f ). (8)

According to Equation (8), once the contents of the LSTM cell are out of date, the forget gate helps
to update parameters by resetting the memory block. Similarly, the dimension of W f is dc × (dh + dx).

The output gate is defined as

ot = σo(Wo · [ht−1, xt] + bo). (9)

The definitions of ot, σo(·), W0 and b0 are listed in Table 1.
To update the cell statement, c̃t is defined as the state update vector ,which is calculated as

c̃t = tanh(Wc · [ht−1, xt] + bc). (10)

In Equation (10), tanh(·) represents the hyperbolic tangent function. The reason for using this
particular function is that other activation functions (e.g., the rectified linear unit) may have very
large outputs and cause the gradient explosion problem [48]. The hyperbolic tangent function can be
written as

tanh(x) =
ex − e−x

ex + e−x . (11)

Based on the results of Equations (7) and (11), at a certain time step t, the current cell state is
updated by

ct = ft ◦ ct−1 + it ◦ c̃t (12)

where ◦ represents the scalar product of two vectors. By observing Equation (12), thanks to the control
of the input gate and the forget gate, one can find that the current input and long-term memories are
combined to form a new cell state.

At last, the hidden layer output is decided by the output of the output gate and the current
cell state

ht = ot ◦ tanh(ct). (13)

The internal structure of an LSTM cell is shown in Figure 2.

Figure 2. The internal structure of an LSTM cell.
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Table 1. Illustration of parameters in the LSTM network structure.

Variable Name Explanation Type

it output of input gate at tth time step vector
Wi weight matrix of input gate matrix
ht output of the recurrent hidden layer at tth time step vector
bi bias vector of the input gate vector

σ(·)i activation function of input gate function
dx dimension of the recurrent hidden layer input integer
dh dimension of the recurrent hidden layer output integer
dc dimension of the state vector integer
ft output of forget gate at tth time step vector

W f weight matrix of forget gate matrix
b f bias vector of forget gate vector

σ(·) f activation function of forget gate function
ot output of output gate at tth time step vector

Wo weight matrix of output gate matrix
bo bias vector of output gate vector

σ(·)o activation function of output gate function
c̃t state update vector at tth time step vector

Wc weight matrix of state update vector matrix
bc bias vector of state update vector vector
ct current cell state vector at tth time step vector

The training process can be regarded as a supervised learning process and many objective
functions are designed to minimize the average differences between the outputs of the LSTM network
and the actual values. In the training process, the parameters (such as the weight matrices and the
biases vectors) are optimized. Errors are intercepted at the LSTM cells and are vanished thanks to
the forget gate. The gradient descent optimization algorithm is adopted to obtain the gradient of the
objective function, and then the Back Propagation Through Time (BPTT) [49] algorithm is used to
train and update all the parameters to increase the prediction accuracy. The derivations of the training
process are not covered in this paper due to space restrictions. One can refer to the work in [46] for
detailed execution steps.

Through multiple iterations, ideally, the parameters will gradually converge to the global
optimum while the training process is finished. However, due to the substantial number of
hyperparameters and the deep network structure, the gradient descent algorithm may be trapped to
the local optimum, resulting in the degradation of output accuracy and the prolongation of training
time. To cope with this problem, in this paper, the Adaptive Moment estimation (Adam) optimization
algorithm [50] is employed to avoid low efficiency and local optimum.

Note that, even though only one hidden layer exits in the network, the LSTM network is
considered as a deep learning algorithm due to the recurrent nature. Similar to convolutional
neural networks, more hidden layers can be stacked to seize high-dimensional characteristics.
However, previous studies show that adding hidden layers may not significantly improve the
algorithm performance over a single layer [51,52]. Thus, in this paper, the aforementioned standard
LSTM network structure is adopted where one hidden layer is deployed to save storage and
computing resource.
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3.4. Algorithm Implementation

3.4.1. Data Preparation

In this study, to prove the practicality of the proposed LSTM network based algorithm, we used
actual runtime data as the network inputs. The actual in-field data were gathered by the Vehicle
On Board Controller (VOBC) from Shenzhen Metro Line No. 7 in China and Beijing Yanfang Metro
Line in China. The dataset of Shenzhen Metro Line consists of three subsets, which separately record
the train operation data of a certain train on three days, i.e., 7 April 2018, 8 April 2018 and 11 July
2018. The dataset of Beijing Yanfang Metro Line includes the operation data collected on 13 May 2019.
For example, the subset on 7 April 2018 contains 381,637 records which describe the driving process
through the whole day. The relevant information of one record is listed in Table 2.

Table 2. Train operation information saved by Vehicle On Board Controller.

Time System Number Data Integrity Driving Condition Offset Train Speed

20:20:57 4646 332,071 True 2 1292 1037

Number of current station Number of
next station Link Distance Run

level Slope

35 36 177 11,659 3 0

Analog output Speed limit Traction braking Network voltage Network
flow Load

134 1054 1 868 303 23

As can be seen in Table 2, the information of the train operation state was meticulously recorded.
The vast amounts of data offer the advantageous support to apply data-driven algorithms. To keep
consistent with the inputs of the traditional dynamic model presented in Section 3.1, we chose four
raw features as the inputs of the proposed algorithm: analog output, traction brake, train speed and
slope. These four features for a certain operation process are shown in Figure 3.
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Figure 3. Raw features.



Algorithms 2019, 12, 173 9 of 21

• Analog output: Analog output is a continuous variable, which is outputted by electric motors.
This feature is used to control the train to accelerate or decelerate. It reflects the absolute value of
the train braking force B(t) and the train traction force F(t).

• Traction brake: Traction brake is a categorical variable, which implies the direction of analog
output and gives the signs of B(t) and F(t).

• Train speed: At each time iteration t, the train speed is accurately recorded by VOBC.
• Slope: Slope represents the track gradient which impacts the gradient resistances.

One can find that extra information is not added to our algorithm compared to the traditional
method. The purpose is to prove that the performance improvement of the proposed approach
depends on the algorithm itself rather than the extension of inputs.

3.4.2. Data Preprocessing

In reality, operation data are collected by many on-board sensors and trackside equipments.
Considering the practical working environment, the sensors and actuators may fail to generate data
due to line fault, equipment failure, communication quality, etc. This situation further leads to the
problem of missing values. Missing values of the dataset reduce the fitting effect and increase the
model bias, resulting in a poor performance of regression and prediction. For LSTM based algorithms,
the effect of missing values is more serious. LSTM networks fail to run since null values cannot be
calculated during the error propagation process. The missing values can be arbitrarily set to zero or
other statistical values (such as the most frequent non-missing value). However, this treatment causes
a great disturbance when handling time series problems. In this paper, similar to Cui [43], a masking
mechanism is proposed to solve the problem of missing values.

In the masking mechanism, we predefine a mask value φ and the missing values are directly set
as φ. At each iteration t, if one of the raw features is invalid, all the raw features, i.e., analog outputt,
traction braket, train speedt and slopet, are set to φ. In this paper, the mask value φ is assigned as null.
For a feature matrix X = (x−Kprev , x−Kprev−1 , · · · , x0), if there exists a missing element in xk, the element
equals φ and the training process at the kth step will be skipped. Thus, the state vector ck−1 is directly
fed to the (k + 1)th time step. Note that the issue of continuous missing values can also be solved using
this masking mechanism.

3.4.3. Feature Engineering

Feature engineering is a vital part of data analysis. The quality of results of deep learning
algorithms heavily relies on the quality of the input features. For the traditional train dynamic model,
as can be seen in Figure 1, with the inputs of vm−1, Fm−1 and Bm−1, the current speed vm can be
calculated. To be consistent with the previous model, in the proposed dynamic model, the raw features,
i.e., analog outputt−1, traction braket−1, train speedt−1 and slopet−1, are directly fed into the LSTM
cells after removing the missing values. To facilitate understanding, in this paper, we do not use
abbreviations for these features.

Considering the problem of train speed prediction, since we expect to obtain the train speeds
for next n time steps, more delicate descriptions of the features should be made to capture more
information from previous data. For this reason, we establish a different set of features as inputs for
train speed prediction. The set contains three types of features, i.e., lagged features, crossed features
and statistical features. All features are produced by analog output, traction brake, train speed and
slope, which are listed above.

The lagged features imply the instantaneous values of the previous time steps, which are
defined as:

• At time iteration t, the train speed of kth step earlier: train speedt−k, where
k ∈ {1 ∼ 10, 20, 30, 50, 80}.
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• At time iteration t, the analog output of kth step earlier: analog outputt−k, where
k ∈ {1, 3, 5, 20, 60}.

The statistical features capture the changes of the input values in the previous period:

• The average value of train speed of past k steps: train speedmean
k , where k ∈ {5, 10, 20}.

• The standard deviation of train speed of past k steps: train speedstd
k , where k ∈ {5, 10, 20}.

• The difference of train speed between the previous kth step and the current step: train speeddi f f
k ,

where k ∈ {5, 10, 20}.
• The average value of analog output of past k steps: analog outputmean

k , where k ∈ {5, 10, 20}.
• The standard deviation of analog output of past k steps: analog outputstd

k , where k ∈ {5, 10, 20}.
• The difference of analog output between the previous kth step and the current step:

analog outputdi f f
k , where k ∈ {5, 10, 20}.

Since recent data play a more important role for a time series problem, the crossed features are
designed as:

• The product of train speed of past k steps: train speed⊗k , where k ∈ {1, 2, 3, 4, 5}. For example,
train speed⊗4 = train speedt × train speedt−1 × train speedt−2 × train speedt−3 × train speedt−4.

In total, 43 features are extracted for the train speed prediction task.

3.4.4. Offline Training and Online Predicting

When the feature engineering process is done, the features are fed to the input layer. To eliminate
the effect of index dimension and quantity of data, all features are normalized using the Min-Max
Normalization method shown in Equation (14).

xnorm =
x− xmin

xmax − xmin
(14)

where xmin and xmax represent the minimum and maximum of a certain feature, respectively.
Each neuron in the input layer is connected to each LSTM cell in the hidden layer. Note that its

number should match the dimension of the input data. In this paper, the activation functions of the
input gate, the output gate and the forget gate are selected as the standard logistics sigmoid function
shown in Equation (15)

σi(x) = σf (x) = σo(x) =
1

1 + e−x . (15)

In the recurrent hidden layer, as described in Section 3.3, the “meaningful parts” are abstracted
from the input time series. The parameters are updated using the Adam optimization algorithm and
the BPTT algorithm. These “higher-level features” are then combined in the output layer. The output
layer is also termed as the dense layer to produce the predicted train speeds of future time steps. As a
regression problem, the output layer has only one neuron. In this paper, the optimization of the dense
layer can be considered as a linear regression problem, i.e., the activation function of the output layer
is set as a linear function. The loss function in this paper adopts the Mean Absolute Error (MAE) loss

L(y, ŷ) =
1
l

l

∑
i=1
|yi − ŷi|. (16)

The offline training phase ends when the error of the algorithm outputs meets the preset
threshold. The set of parameters (such as the weight matrices and the biases vectors) can be obtained,
which approximately describes the regression function h(·) in Equation (5).

In the online predicting phase, the actual data gathered by VOBC are fed to the trained LSTM
network. After extracting the raw features, the proposed data-driven algorithm can output the
prediction of the next time step, whose functionality can serve as the train dynamic model. In addition,
with the feature engineering process, the train speeds for next n time steps can be obtained.
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4. Experiment

We conducted comprehensive experiments to verify the effectiveness of the proposed algorithm.
The data from Shenzhen Metro Line No. 7 in China constitute the training set and the validation set
while the data from Beijing Yanfang Metro Line in China form the test set. The number of samples of
Shenzhen Metro Line is 644,272 and the time series split method in Scikit-learn was employed to split
the training set and the validation set. Different from the classical cross-validation techniques such as
k-fold and shuffle split, time series split can prevent the data leakage problem. The core idea of this
method is to return first k folds as the training set and the (k + 1)th fold as the validation set. One may
refer to Swami [53] for more information. The number of samples of Yanfang Metro Line is 71,638.
The sample interval of VOBC is 200 ms. For example, the time length of the samples of Yanfang Metro
Line is 71,638×0.2

60×60 ≈ 4 h. The proposed algorithm was trained using the Keras framework. The training
process was accelerated by the CUDA acceleration technology. The standard LSTM network structure
with one hidden layer was adopted unless otherwise stated. The mini-batch gradient descent method
and the BPTT algorithm were used during the parameter update process. For the Adam optimization
algorithm, the hyperparameters β1, β2 and ε were set to 0.9, 0.999 and 10−8, respectively. Besides,
the early stopping mechanism was used to limit the overfitting problem. In Sections 4.1 and 4.2,
the experimental results of the proposed train dynamic model and the n steps speed prediction are
provided, respectively.

4.1. The Proposed Train Dynamic Model

We first studied the impact of hyperparameters on the algorithm performance. After the parameter
adjustment, the proposed model was validated against the data of Beijing Yanfang Metro Line. With the
intention of demonstrating that the proposed algorithm has a superior performance, we compared
the proposed algorithm with parametric-based train dynamic models. To measure the effectiveness of
different algorithms and analyze the influence of hyperparameters, in addition to the MAE, the Mean
Squared Error (MSE) and the R-Square (R2) were calculated.

The MSE is defined as:

MSE =
1
l

l

∑
i=1

(yi − ŷi)
2. (17)

The R2 is defined as:

R2 = 1− ∑l
i=1(yi − ŷi)

2

∑l
i=1(yi − ȳi)2

(18)

where ȳi denotes the mean of the actual value.

4.1.1. Influence of Hyperparameters

The raw features (analog output, traction brake, train speed and slope) were extracted from
the training data and the missing values were removed using the masking mechanism. After the
feature engineering process, the designed features were fed to the LSTM network sequentially.
The hyperparameters have a great influence on the output accuracy and should be carefully tuned.
The influences of the hidden size, the batch size, the learning rate and the number of hidden layers
were studied (see Section 4.1.1). The hyperparameter with the best performance is marked in bold in
the following tables. Note that the experimental results shown in these tables were obtained on the
validation data.

Table 3a reports the impact of the hidden size on the MAE, MSE and R2. The batch size and the
learning rate were set to 128 and 0.001, respectively. The hidden size represents the dimension of ht

and implies the number of the LSTM cells. One can notice that, when the hidden size is especially
small, the MSE and the MAE have very large values. This can be explained that the small hidden
size indicates a small number of parameters (such as the weight matrices and the biases vectors),
which causes the underfitting problem. When the hidden size equals 10, 14 and 18, the values of
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MAE and MSE are relatively small, which means the proposed method has a preferable performance.
The best MAE and MSE of 6.07 and 71.75 were achieved when the hidden size equals 18. When the
hidden size further increases, the values of MSE and MAE trend to rise. The overfitting phenomenon
occurs since the increase of the hidden size leads to the rapid growth of the number of dimensions
of the parameter space. For instance, the number of parameters is 1675 with the hidden size equal to
18. When the hidden size equals 30, the number of the parameters increases to 4321. Instead of the
overfitting problem, numerous parameters caused by the increment of the hidden size may result in
slower convergence time when the number of training examples becomes very large. One can also
notice that large values of the R2 can be acquired (the best possible score is 1.0) with different hidden
sizes. It indicates that there exists a strong correlation between the features and the train speed.

Table 3b shows the experimental results of different batch sizes by setting hidden size = 18 and
learning rate = 0.001. In this study, the mini-batch gradient descent algorithm was employed and one
can see the prediction accuracy was greatly influenced by the batch size. When the batch size equals
32, relatively large values of the MAE and MSE can be obtained. With a small batch size, the number
of training samples propagated in one iteration decreases, resulting in an inaccurate estimate of the
gradient. The performance of the proposed dynamic model has the trend that the values of MAE and
MSE increase as the number of batch sizes increases from 128 to 1536 since the mini-batch gradient
descent algorithm may be trapped in local optimum. One can find that, when the batch size equals
128, the best MSE (124.53) and MAE (8.42) can be achieved.

Table 3. Influence of the hidden size and the batch size.

(a) Performance Comparison with Different Hidden Sizes.

Hidden Size MSE MAE R2

2 4454.57 44.1 0.9878
6 318.88 13.8 0.9991
10 195.67 9.55 0.9991
14 225.64 12.32 0.9969
18 71.75 6.07 0.9997
22 334.02 13.93 0.9981
26 201.52 12.09 0.9990
30 267.38 12.56 0.9985

(b) Performance Comparison with Different Batch Sizes.

Batch Size MSE MAE R2

32 350.92 16.45 0.9990
64 191.53 10.17 0.9994

128 124.53 8.42 0.9996
256 178.99 9.95 0.9994
512 665.60 17.73 0.9981
768 859.31 20.49 0.9976
1024 1688.47 27.84 0.9953
1280 9992.88 68.55 0.9767
1536 14,986.28 309.58 0.3254

The impact of the initial learning rate is presented in Table 4a. Although a learning rate decay
mechanism [50] is adopted in the Adam optimization algorithm, as can be seen in Table 4a, the initial
learning rate exerts a great effect on the prediction accuracy. The overfitting phenomenon occurs
with smaller learning rates (such as 0.0001). On the contrary, with larger learning rates (such as
0.01), the gradient may oscillate near a certain local minimum, leading to large errors of the proposed
dynamic model. The best MAE and MSE were observed with a learning rate of 0.002. In terms of the
influence of depth of the neural network, we compare the performance with different numbers of
hidden layers in Table 4b. One can notice that the MAE and MSE increase as the number of hidden
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layers rises from one to three. Furthermore, our model achieved the best performance with one hidden
layer, i.e., the standard LSTM network structure, which is consistent with the analysis in Section 3.3.

Table 4. Influence of the learning rate and the number of layers.

(a) Performance Comparison with Different Learning Rates.

Learning Rate MSE MAE

0.0001 8940.12 114.69
0.0005 518.34 18.18
0.001 403.57 15.99
0.002 122.93 9.28
0.005 491.82 17.29
0.01 2035.62 40.39

(b) Performance Comparison with Different Numbers of Hidden Layers.

Number of Hidden Layers MSE MAE

1 165.19 9.04
2 194.19 10.31
3 482.25 15.04

4.1.2. Comparison with Parametric Based Train Dynamic Model

Using the best hyperparameter settings, i.e., hidden size = 18, batch size = 128 and
learning rate = 0.002, we draw the loss as a function of the epoch. In Figure 4, the loss and the
val-loss represent the values of the loss function in the training set and the validation set, respectively.
As can be seen in Figure 4, our proposed approach has a fast convergence performance and a high
degree of accuracy. More clearly, after 10 epochs, the loss and the val-loss converge to 0.0038 and
0.0052, respectively. One can found that there is a difference in the magnitude of the MAE in Figure 4
and tables in Section 4.1.1. The reason for this situation is the use of the Min-Max Normalization.
To be more specific, the features were scaled before being fed into the proposed algorithm. The MAEs
in Figure 4 were calculated according to the normalized data. In the experiment, the features were
scaled to lie between zero and one, resulting in small values of the MAE. It should be noted that,
when the training process was finished, the predicted values were transformed inversely to the original
range to compare to the actual values. The MAEs shown in the tables in Section 4.1.1 were calculated
after the reverse process. Thus, relatively large values were obtained. Intuitively, Figure 5 shows
the comparison of the output of the proposed train dynamic model and the original data. The raw
features, i.e., analog outputt−1, traction braket−1, train speedt−1 and slopet−1, were directly fed into
the proposed model to get the the train speed of the next time step. Thus, it can be considered as
predicting train speed for one-step ahead. As can be seen in Figure 5, no matter how the operation
process changes (such as train accelerating and train braking), the output of the proposed approach is
particularly close to the original data.

To further verify the effectiveness of the proposed train dynamic model, we also made a
comparison with another two parametric approaches: (i) a parametric train dynamic model that
is currently being used in real train control systems (PTDM-I); and (ii) a parametric approach that the
parameters have been optimized using the fruit fly optimization algorithm (PTDM-II). Note that
these two approaches follow the single-point train dynamic model as described in Section 3.1.
The PTDM-I relies on a simple method of table lookups to produce the speed of the next time step.
The corresponding relationship between the velocity (km/h) and the acceleration (m/s2) of PTDM-I
is shown in Table 5. PTDM-II uses the fruit fly optimization algorithm to optimize the resistance
parameters of the Davis formula, i.e., c0, c1 and c2, as shown in Equation (2). The settings of these
parameters for Yanfang Metro Line are listed in Table 6.
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Figure 4. Comparison of the loss in the training results.
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Figure 5. Comparison of the original data and the output of the proposed model.

Table 5. Relationship between the velocity and the acceleration of PTDM-I.

Velocity Acceleration Velocity Acceleration Velocity Acceleration Velocity Acceleration

3 1.081497 5 1.113422 7 1.113031 9 1.112617
11 1.112179 13 1.111718 15 1.111233 17 1.110725
19 1.110193 21 1.109638 23 1.109059 25 1.108456
27 1.107831 29 1.107181 31 1.106508 33 1.105811
35 1.105091 37 1.104348 39 1.10358 41 1.10279
43 1.101975 45 1.101138 47 1.100276 49 1.099391
51 1.098483 53 1.097551 55 1.096595 57 1.095616
59 1.094614 61 1.093587 63 1.074573 65 0.9804486
67 0.950206 69 0.893474 71 0.8668448 73 0.8167437
75 0.7704815 77 0.7276618 79 0.6879385 81 0.6335031
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Table 6. Parameter settings of PTDM-II.

Station Interval c0 c1 c2

Yancun Dong Station to Caoziwu Station 1.051400712 0.005980156 0.00022866
Caoziwu Station to Yancun Station 2.908890237 0.014551371 0.00002373932

Yancun Station to Xingcheng Station 1.078270769 0.005545171 0.0003830150
Xingcheng Station to Dashihe Dong Station 1.634758136 0.026648264 0.0000319240

Dashihe Dong Station to Magezhuang Station 1.051565386 0.020496939 0.0000288589
Magezhuang Station to Yaolefu Station 1.022215526 0.005227106 0.00002196136

Yaolefu Station to Fangshanchengguan Station 1.035460959 0.006413686 0.000698753
Fangshanchengguan Station to Yanshan Station 1.039279709 0.005581798 0.000388984

The comparison results of the LSTM based train dynamic model, PTDM-I, PTDM-II and the
original data are presented in Figure 6. We only draw the operation curves of these approaches
from Xingcheng Station to Magezhuang Station for clarity. As expected, the proposed dynamic
model clearly outperformed two traditional parametric models: PTDM-I and PTDM-II. As can be
seen in Figure 6, PTDM-I has the highest output errors. In actual applications, before launching
a new metro line, the relational table should be adjusted by experienced engineers to adapt to the
real environment. As an optimized version of PTDM-I, the model performance was significantly
improved in PTDM-II. The reason is that the parameters were tuned using the fruit fly optimization
algorithm. More specifically, for each station interval, this algorithm was repeatedly employed for
parameter optimization. For example, according to Table 6, c0, c1 and c2 are, respectively, adjusted as
2.908890237, 0.014551371 and 0.00002373932 from Caoziwu Station to Yancun Station. Furthermore,
these parameters change to 1.078270769, 0.005545171 and 0.0003830150 between Yancun Station and
Xingcheng station. The fruit fly optimization algorithm belongs to a kind of interactive evolutionary
computation (refer to [54] for more information). However, PTDM-II is shown to be less effective in
the train coasting phase and the train cruising phase. One can also find that the performance of the
proposed model was better than PTDM-II in the train coasting phase and the train cruising phase due
to its learning ability. Similar to Figure 5, the proposed model could generate very close output to the
original data. The experimental results demonstrate that the LSTM based model could remarkably
enhance the output accuracy compared to the parametric based models.
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time(dots)
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1000

1500

2000

cm
/s

orginal data
LSTM based dynamic model
PTDM-II
PTDM-I

Figure 6. Comparison of different approaches.

4.2. Results of n Steps Speed Prediction

By employing the feature engineering, delicate descriptions of the raw features can be obtained.
With the captured long-term pattern of the data and inspired by the studies on traffic speed
prediction [41–43], we extended the LSTM based approach to predict train speed for multi-step
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ahead. With the help of the train speed prediction, the train running status can be obtained proactively.
According to the predicted output, automatic train operation systems or drivers may take actions
in advance to avoid or reduce damage resulting from system abnormalities. Taking the emergency
braking distance and the sample interval into consideration, in the experiments, we predicted the
10-step ahead (10× 0.2 = 2 s), 30-step ahead (30× 0.2 = 6 s) and 50-step ahead (50× 0.2 = 10 s)
train speeds.

Table 7 provides the MAE and MSE with different prediction steps. By observing Table 7 and the
tables in Section 4.1.1, one can find that the MAE and MSE values for multi-step ahead are significantly
larger than the results of one-step ahead, i.e, the proposed dynamic model. As the prediction time step
increases, the prediction accuracy of train speed deteriorates. For a long-term prediction (N = 50),
values of the MAE and MSE are 101.36 and 13,281.65, respectively. This can be understood by the fact
that the increase of the prediction step may add more uncertainties, which leads to a reduction of the
prediction performance.

Table 7. Prediction accuracy with different prediction steps.

Evaluation Indicator N = 10 N = 30 N = 50

MAE 31.70 38.43 101.36
MSE 2607.12 7492.34 13281.65

Taking 30-step-ahead prediction as an example, we draw the loss as a function of the epoch in
Figure 7. Similar to Figure 4, the loss and the val-loss represent the values of the loss function in the
training set and the validation set, respectively. The settings of the hyperparameters in Figure 7 and
Table 7 are exactly the same as the settings in Section 4.1.2. It was observed that the loss oscillates at
0.023 and the val-loss converges to 0.039 after 70 epochs.
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Figure 7. Comparison of the loss for 30-step-ahead prediction.

To further examine the prediction performance in a more intuitive way, the comparisons
between the original data and the output of 10-step-ahead prediction, 30-step-ahead prediction
and 50-step-ahead prediction are shown in Figures 8–10, respectively. The algorithm output of
10-step-ahead prediction was observed to be relatively close to the original data. As the time step
increases, the difference between the predicted value and the original data becomes larger, which is
consistent with the results in Table 7. One can notice that the prediction accuracy degenerates after
certain turning points. The reason is that the features extracted from the previous data may not describe
the rapid change of the train speed. As can be seen in Figures 8–10, although the error increases in
these scenarios, the proposed method has the ability to predict train speed since the prediction error
is controlled to a legitimate range. The software program will be made available in the open code.
One can found the link in the Supplementary Materials.
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Figure 8. Comparison of the original data and the output of 10-step-ahead prediction.
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Figure 9. Comparison of the original data and the output of 30-step-ahead prediction.
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Figure 10. Comparison of the original data and the output of 50-step-ahead prediction.

5. Conclusions

In this paper, based on an LSTM neural network, a data-driven method is developed to build
the train dynamic model and predict the train speed. Different from the parametric approaches,
the proposed method is more adaptive to the real environment due to its strong knowledge expression
ability and learning ability. To make fair comparisons with other models, the same inputs as the
parametric approaches (analog output, traction brake, rail slope and train speed) were fed to the
LSTM based algorithm, after data preprocessing and feature engineering. The hyperparameters of
the proposed algorithm were carefully tuned to improve the output accuracy. The performance of
the proposed method was evaluated in terms of three measurement criteria: MAE, MSE, and R2.
Using the actual data collected from Shenzhen Metro Line No. 7 and Beijing Yanfang Metro Line in
China, the proposed model was compared with two traditional parametric approaches: PTDM-I and
PTDM-II. The comparison results demonstrate that the model performance was remarkably enhanced
compared to these algorithms. By combining lagged features and statistical features, the LSTM based
method was then extended to predict train speed for a longer period of time. Experimental results
suggest that the extended version can be applied to solve the train speed prediction problem since the
prediction errors are well controlled.

However, there are still some shortcomings in the proposed method. Firstly, since lagged features
are employed in the proposed algorithm, high prediction errors may be produced in the beginning
phase. It would be useful to improve the proposed algorithm by solving the initialization problem.
Secondly, the on-board devices in urban rail transit have the characteristics of limited hardware and
low-complexity. How to reduce the complexity of the proposed algorithm is a major concern for
future studies.
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