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Abstract: With the rapid expansion of applied 3D computational vision, shape descriptors have
become increasingly important for a wide variety of applications and objects from molecules to
planets. Appropriate shape descriptors are critical for accurate (and efficient) shape retrieval and
3D model classification. Several spectral-based shape descriptors have been introduced by solving
various physical equations over a 3D surface model. In this paper, for the first time, we incorporate
a specific manifold learning technique, introduced in statistics and machine learning, to develop
a global, spectral-based shape descriptor in the computer graphics domain. The proposed descriptor
utilizes the Laplacian Eigenmap technique in which the Laplacian eigenvalue problem is discretized
using an exponential weighting scheme. As a result, our descriptor eliminates the limitations tied
to the existing spectral descriptors, namely dependency on triangular mesh representation and
high intra-class quality of 3D models. We also present a straightforward normalization method
to obtain a scale-invariant and noise-resistant descriptor. The extensive experiments performed
in this study using two standard 3D shape benchmarks—high-resolution TOSCA and McGill
datasets—demonstrate that the present contribution provides a highly discriminative and robust
shape descriptor under the presence of a high level of noise, random scale variations, and low
sampling rate, in addition to the known isometric-invariance property of the Laplace–Beltrami
operator. The proposed method significantly outperforms state-of-the-art spectral descriptors in
shape retrieval and classification. The proposed descriptor is limited to closed manifolds due to its
inherited inability to accurately handle manifolds with boundaries.

Keywords: manifold learning; Laplacian Eigenmap; scale-invariant shape descriptor; shape retrieval

1. Introduction

Three-dimensional models are ubiquitous data in the form of 3D surface meshes, point clouds,
volumetric data, etc. in a wide variety of domains such as material and mechanical engineering [1],
genetics [2], molecular biology [3], entomology [4], and dentistry [5,6], to name a few. Processing
such large datasets (e.g., shape retrieval, matching, or recognition) is computationally expensive and
memory intensive. For example, to query against a large database of 3D models to find the closest
match for a 3D model of interest, one needs to develop an appropriate similarity measure as well as
an efficient algorithm for search and retrieval. Shape descriptors assist with the example problem by
providing discriminating feature vectors for shape retrieval [7,8] and play a fundamental role when
dealing with shape analysis problems such as shape matching [9,10] and classification [11].
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In general, there are two types of shape descriptors: local descriptors, also called point signatures,
and global descriptors, referred to as shape fingerprints. A local shape descriptor computes a feature
vector for every point of a 3D model. On the other hand, a global shape descriptor represents the
whole 3D shape model in the form of a low-dimension vector. A descriptor that is informative and
concise captures as much information as possible from the 3D shape including the geometric and
topological features. Such a vector drastically lowers the shape analysis burdens in terms of both
computational intensity and memory.

While many successful non-spectral shape descriptors have been proposed in the literature,
spectral descriptors have proved to be beneficial in many applications [12,13]. The spectral methods
take advantage of eigenvalues and eigenvectors computed from the eigen-decomposition of the
Laplace–Beltrami (LB) operator applied on the surface of 3D shapes. These methods have found
successful applications in graph processing [14], computational biology [15], and point-to-point
correspondence [16]. Several comprehensive surveys [17–19] have been conducted on studying and
classifying data-driven 3D shape descriptors to which we refer interested readers for more information.
Our objective in this paper is to develop a concise and informative global, spectral shape descriptor.

One of the first spectral descriptors introduced to the computer graphics community is
Shape-DNA, developed by Reuter et al. in 2006 [20]. Shape-DNA attracted a great deal of attention
for its unique isometric and rotation invariant features [20]. Since then, several local as well as global
shape descriptors have been introduced in accordance with Shape-DNA such as Heat Kernel Signature
(HKS) [21], Wave Kernel Signature (WKS) [22], and Global Point Signature (GPS) [23]. The common
ground between these methods is the discretization approach used to solve the Laplacian eigenvalue
problem, which uses a cotangent weighting scheme along with area normalization.

Although there are many advantages of using variations of the cotangent scheme, there are
several limitations. First, by their nature, they are limited to triangulated meshes. Second, they do not
perform well when dealing with degenerate and non-uniform sampled meshes [24,25]. In addition,
their convergence error depends on factors such as the linearity of the function on the surface [25].
One possible approach to address these limitations is through the use of manifold learning, which is
investigated in the current contribution.

Nonlinear dimensionality reduction techniques, known as manifold learning, assume the existence
of a low-dimensional space, in which, a high-dimensional manifold can be represented without much
loss of information [26]. Similar to global descriptors, manifold learning methods attempt to learn the
geometry of a manifold in order to extract a low dimensional vector of features that is informative
and discriminative. However, unlike shape descriptors, the number of dimensions of a space does not
confine manifold learning methods. To the best of our knowledge, the application of manifold learning,
an active research topic in statistics and machine learning, has not been investigated in the computer
graphics community for extracting global shape descriptors. This motivates the primary aim of this
research, which is to explore the effectiveness of a manifold learning method, more specifically Laplacian
Eigenmap [27], in representing a 3D model with a low-dimensional vector. Our work introduces a novel
Laplacian Eigenmap-based global shape descriptor and provides a straightforward normalization
method that significantly outperforms existing spectral approaches.

In our first contribution, inspired by the idea of Laplacian Eigenmaps [27], we learned the
manifold of a 3D model and then, analogous to the approach taken by Shape-DNA, used the spectrum
of the embedded manifold to build the global shape descriptor. This approach has two main advantages.
First, it relies on the adjacency of the nodes, disregarding the fine details of the mesh structure.
Therefore, it can be used for degenerate or non-uniform sampled meshes. Second, as manifold learning
does not rely on the mesh structure and is not limited to a specific type of meshes, e.g., triangulated
meshes, it can be applied easily to any other mesh types such as quadrilateral meshes.
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In our second contribution, we presented a simple and straightforward normalization technique
(motivated by the work in [20,28,29]) to obtain a scale-invariant global shape descriptor that is more
robust to noise. To this end, we propose to subtract the first non-zero eigenvalue from the shape
descriptor after taking the logarithm of the spectrum. One advantage of our approach over the idea of
Bronstein et al. [28] is that we avoid taking the direct derivative; this advantage is significant since the
differential operator amplifies the noise. Taking the logarithm additionally helps to suppress the effect
of the noise that is present in higher order elements of the spectrum.

The remainder of this paper is organized as follows. In Section 2, we briefly overview spectral
shape analysis and manifold learning. Then, in Section 3, we introduce the proposed shape descriptor
along with some technical background. In Section 4, the performance of the proposed method, as well
as the robustness of the algorithm are examined and compared with multiple well-known shape
descriptors by performing several qualitative and quantitative experiments using widely used 3D
model datasets. Section 5 discusses the results in more detail and draws conclusions.

2. Background

In this section, we first review spectral shape analysis, more specifically global shape fingerprints,
and different discretization methods of the LB operator. Then, we briefly review manifold learning,
more specifically Laplacian Eigenmap, to provide the necessary foundation for developing our
proposed Laplacian Eigenmap-based scale-invariant shape descriptor, which from now on we call LESI.

2.1. Spectral Shape Analysis

The Laplace–Beltrami operator ∆ is a linear differential operator defined on the differentiable
manifoldM as the divergence of the gradient of a function f in the following form [20,30]:

∆ f = div(grad( f )). (1)

Lévy [31] noted that the eigenfunctions φi of the continuous LB operator, which are the solution
to the following Laplacian eigenvalue problem,

∆ f = −λ f (2)

are the orthogonal basis for the space of functions defined on the surface of a manifold. In other words,
a function f on the surface can be expressed as a sum over coefficients of these infinite bases:

f = c0φ0 + c1φ1 + ...

Furthermore, the LB operator is positive semi-definite, having non-negative eigenvalues λi that
can be sorted as follows:

0 ≤ λ1 ≤ λ2 ≤ ... ≤ λi ≤ ...

The sequence of eigenvalues of the LB operator is called the spectrum of the LB operator. As it
is computed based on the gradient and divergence that depend on the Riemannian structure of the
manifold, it possesses the isometry invariant property [20].

These significant features of the LB operator, which include the orthogonal basis and non-negative
spectrum, motivated researchers to develop various local and global shape descriptors. Shape-DNA
and HKS were developed by considering the heat distribution as the function f on the surface.
The WKS was obtained by solving the Schrödinger wave equation on the surface of the manifold.
In addition, it has been shown that the GPS descriptor is in close relation to the Green’s function on
the surface [23].
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To approximate Equation (2), despite the choice of function f , we need a discretization scheme.
Different discretization schemas (e.g., Taubin [32] and Mayer [33]) of the LB operator on the triangular
meshes are discussed in [34].

A 3D shape, sampled from the surface of a Riemannian manifoldM, is usually presented by a set
of vertices V and their connectivity E in the form of the graph G = (V, E). Two vertices i, j ∈ V are
neighbors if there exists a weighted edge (i, j) ∈ E, represented by wij. For a surface mesh G, according
to Reuter et al. [24], Equation (2) can be discretized as:

Af = λBf (3)

where A is the stiffness matrix and B is the lumped mass matrix. One popular approach to constructing
the matrix A, is using edge weights:

wij =
cot(αij) + cot(βij)

2
(4)

where αij and βij are the two angles facing the edge (i, j). Different mass normalization methods using
the triangle area or the Voronoi region area are suggested to construct the matrix B. The cotangent
weighting schema and its variants have been utilized in multiple FEM-based discretization methods.

Another approach to constructing the matrix A is to use the heat kernel weight, as described
in [27]. It is known as the exponential weighting scheme and defined as follows:

wij = e−
‖xi−xj‖

2

t (5)

where ‖.‖ denotes the Euclidean distance between two adjacent nodes i and j.
In [24], several existing discretization methods, including variants of linear FEM [35,36] and

heat kernel weighting proposed in [25] are compared. According to Reuter et al. [24] and from the
discussion led by Xu in [34,37], discrete LB operator using cotangent weighting scheme may not
converge in all situations, specifically when dealing with non-uniform meshes. However, the heat
kernel weighting scheme proposed in [25] does not depend on the peculiarities of the triangulation
and outperforms all linear approaches [21,24]. In addition, concerning the type of the function f ,
the cotangent scheme only converges for linear functions, while the heat kernel scheme converges
well for nonlinear functions as well [25]. The proposed exponential approximation scheme provides
point-wise convergence with good stability with respect to noise. It is important to note that although
the method was discussed for surfaces without boundary, the results are valid for interior points of
a surface with boundary [25].

2.2. Manifold Learning

To make the current contribution self-contained, we provide a brief introduction of manifold
learning from the data analysis perspective. Dimensionality reduction of high-dimensional data is
a critical step in data analysis and processing. Non-linear dimensionality reduction, also known as
manifold learning, is a problem of finding a low-dimensional representation for high-dimensional data.
Several local and global manifold learning methods have been developed including Isomap [38,39],
LLE [40,41], Laplacian Eigenmap [27], and Diffusion maps [42].

Consider a set x1, ..., xn ∈ M of n points on a manifold embedded in an l-dimensional space Rl .
Manifold learning methods look for a set of corresponding points y1, ..., yn in Rm(m� l) as a structural
representation, while respecting some local or global information. Each method attempts to minimize
a cost function in this mapping.
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Laplacian Eigenmap [43], proposed by Belkin and Niyogy in 2002, is a computationally efficient
and mathematically well-studied manifold learning technique. It is based upon graph Laplacian and
Laplace–Beltrami operator on the manifold. Accordingly, it is considered as a spectral analysis method.
Laplacian Eigenmap deals with sparse, symmetric, and positive semi-definite matrices. It is in close
connection to the heat flow [27,43].

Briefly speaking, for a given manifold, Laplacian Eigenmap applies the graph Laplacian operator
and uses the eigenfunctions of such operator to provide the optimal embedding. Laplacian Eigenmap
preserves local information by minimizing the distance between embedded points, which are mapped
from adjacent points in the original high-dimensional space [27]. Aside from the locality preserving
property, it provides structural equivalence and discrimination by capturing the intrinsic geometric
structure of the manifold. The structural equivalence property states that two similar manifolds will
have similar representation after projecting into a lower dimension space [44,45].

Some other manifold learning methods, e.g., Isomap, LLE, and Diffusion map, are also based on
spectral analysis of the high-dimensional manifold. In contrast to these methods that construct the
orthogonal basis of their desired low-dimensional space using eigenfunctions of an LB operator, we
develop our scale-invariant shape descriptor using the spectrum of the LB operator. Even though our
primary focus is on the Laplacian Eigenmap, owing to its unique properties, we believe that other
spectral manifold learning methods are also capable of extracting informative and discriminative
shape fingerprints.

3. Method

In this section, we elaborate our proposed LESI global shape descriptor. A flowchart of the
proposed approach is shown in Figure 1.

Construct:
Laplacian matrix (L)

Solve:
Lf = λD f

Spectrum:
0 < λ1 ≤ ... ≤ λm

Normalization:
log(λi) − log(λ1)

1 ≤ i ≤ m

3D
model

Figure 1. The block diagram of the proposed Laplacian Eigenmaps based scale-invariant (LESI) global
shape descriptor.

3.1. Laplacian Eigenmap-Based Shape Descriptor

We treat a global descriptor as a dimensionality reduction problem as it squeezes the latent
information of a 3D model into a vector. Since the Laplacian Eigenmap has two properties of structural
equivalence and locality preservation [27], we propose a global shape descriptor using the spectrum of
graph Laplacian.

A graph Laplacian is constructed over an undirected weighted graph G = (V, E) with a set of points
xi ∈ V and a set E of edges that connects nearby points ((i, j) ∈ E). The theory behind finding the
optimal embedding in a Laplacian Eigenmap requires an undirected graph. Every 3D model is given
in bidirectional connection and, hence, we need to neither examine nor force it to the graph. However,
as explained below, we need to remove isolated points. Considering the advantages of the heat kernel
weighting scheme, which are summarized in Section 2.1 and discussed in detail in [25], Laplacian
Eigenmap suggests constructing the weighted graph as follows:

wij =

e−
‖xi−xj‖

2

t , if (i, j) ∈ E

0 , otherwise
(6)

where xi and xj are coordinates of adjacent nodes i and j, connected with a weighted edge wij.
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The only parameter in Equation (6) is t, which defines the extent to which distant neighbors
influence the embedding of each point. The choice of parameter t is data-dependent, and there exists
no unique way in the literature to select the proper value, but it can be tuned empirically. The only
limitation is that if t is very small, most edge weights wij are close to zero. Then, the Laplacian
eigenvalue problem will not converge to a unique solution. If t is large enough, it has a high impact on
neither the final embedding nor the convergence rate of our final derivations. Therefore, we empirically
recommend:

t = 2d2
max where,

dmax = max ‖xi − xj‖ , ∀(i, j) ∈ E.
(7)

Here, weights are bounded as 0.6 ≈ e−0.5 ≤ wij ≤ 1. We would like to note that another way is to
select a constant value for the entire sample set.

Laplacian Eigenmap attempts to find a low dimensional dataset that preserves local information.
For this purpose, it assumes two neighboring points xi and xj stay close after being mapped to yi and
yj. Therefore, it minimizes the following function [27]:

1
2 ∑

ij
(yi − yj)

2wij = yTLy. (8)

where L = D−W is the so called Laplacian matrix, W is a symmetric weight matrix, and Dii = ∑j Wij,
the degree matrix, is a diagonal matrix. The assumption that the graph is undirected yields the symmetric
property of W and, consequently, D and L. It plays a critical role in deriving Equation (8).

By adding the orthogonality constraint yTD1 = 0 to eliminate the trivial solution and the
constraint yTDy = 1 for removing an arbitrary scaling factor in the embedding, the minimization
problem in Equation (8) simplifies to:

arg min
y

yTDy=1
yTD1=0

yTLy. (9)

The matrix L is real, symmetric, and positive semi-definite. Therefore, the solution vector y
(in Equation (9)) is obtained by the minimum eigenvalue solution to the generalized eigenvalue
problem [27]:

Ly = λDy. (10)

At this point, the optimal low-dimensional embedding, suggested by the Laplacian Eigenmap, is
obtained by utilizing the eigenvectors. In addition, the eigenvectors of Equation (10) have application
in graph partitioning with relaxed normalized cut [46], which is out of the scope of this manuscript.
Here, we focus on the spectrum of the graph Laplacian and its’ properties. Eigenvalues obtained from
Equation (10) are real, non-negative, and sorted in increasing order as follows:

0 ≤ λ1 ≤ λ2 ≤ ... ≤ λn.

As the row (or column) sum of L is equal to zero, eigenvalue λ = 0 and a corresponding
eigenvector 1 are trivial solutions to Equation (10). The multiplicity of eigenvalue zero is associated
with the number of connected components of the graph. Eigen-solvers often obtain very small,
though not precisely zero, eigenvalues due to the computational approximations. If we may know
the number of connected components of L, we can discard all eigenvalues equal to zero, and form
our shape fingerprint using the more informative section of the spectrum. This is easily done by
Dulmage–Mendelsohn decomposition [47].
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The second smallest eigenvalue, also known as the Fiedler value, is a measure of the connectivity
within the graph. If the graph has c connected components, our proposed shape descriptor is a set of d
eigenvalues as:

LESI := (λc+1, λc+2, . . . , λc+d) (11)

The LESI descriptor is composed of the spectrum of the LB operator, and, hence, it is isometric
invariant, independent of the shape location, and informative. The latter, discussed in spectral graph
theory, states that the spectrum of graph Laplacian contains a considerable amount of geometrical
and topological information of the graph. Moreover, LESI has the similarity property, caused by the
structural equivalence property of Laplacian Eigenmap, meaning that two 3D models from the same
class of models have similar fingerprints. Unlike Shape-DNA and other shape descriptors that are
based on the cotangent weighting scheme, LESI is not limited to triangulated mesh structures because
the Laplacian Eigenmap is capable of dealing with high-dimensional data. For some applications in
which scale is not a determinant factor, it is favorable to have a scale-invariant descriptor. A fast and
efficient normalization method is presented in Section 3.2.

One important matter to consider is the convergence and accuracy of the proposed fingerprint,
which ultimately depends on the heat kernel-based discretization of the LB operator. The cotangent
weighting scheme and its variants are sensitive to the peculiarities and quality of the particular
triangulation of the mesh (refer to Section 2.1). While an exponential weighting scheme has shown
accurate performance in dealing with nonlinear functions over the surface and non-uniform mesh
representations, it is not clear how this method can handle manifolds with boundaries [24,25]. It does,
however, behave well for interior points of the surface. Therefore, we recommend removing rows and
columns of L and D corresponding to isolated points, before solving Equation (10). The descriptor
obtained from the rest of the connected graph is an informative and discriminative descriptor
of the graph.

3.2. Scale Normalization

For some applications, the size of an object is not a determinant factor in shape comparison and
identification. Therefore, a scale-invariant shape descriptor with a solid normalization method is more
desirable. For that purpose, some shape descriptors including Shape-DNA, have proposed multiple
normalization methods. Most normalization methods of Shape-DNA focus on finding an appropriate
scaling factor, such as the surface area, the volume, or coefficient of a fitting curve, which will be
multiplied in the descriptor.

Moreover, it is shown that eigenvalues with a higher order are more susceptible to noise.
For that reason, the original Shape-DNA recommends cropping the spectrum and using no more than
100 eigenvalues [20]. In this section, we propose a simple and efficient normalization method that
significantly reduces the effect of scale variations as well as noise. In this approach, we are interested
in taking the scaling factor out from the descriptor in one step, rather than an extra step to find
an appropriate neutralizing factor. Although the normalization seems simple, later in the experiments
section, we show its efficiency.

In general, there are two forms of scaling that can affect a shape descriptor: (1) when an arbitrary
scale object is scaled in the Euclidean space with factor α, e.g., a Teddy Bear model and its scaled
version shown in Figure 2a; and (2) when two objects within a same category are naturally in different
sizes, e.g., the two glasses shown in Figure 2b. According to Weyl’s law [48], the eigenvalues of a scaled
object (the first form of object scaling) are scaled with factor 1/α2. In the case of the second form of
object scaling, the relationship between the eigenvalues of two objects is a complicated relation, which
requires solving Equation (10). However, we can approximately model it with f (α2)—a function of α2.
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(a) Teddy Bear models (b) Two different glasses

(c) Spectrum of LB operator (d) Normalized spectrum

Figure 2. An example showing the proposed normalization method of the shape descriptor. (a) A Teddy
Bear model and its scaled version (scale factor 0.7). (b) Two different glasses that vary in size.
(c) The spectrum of the original Teddy Bear, scaled Teddy Bear, and both glasses with t = 0.5 and
t = d2

max. Please note that the spectrum of the original and scaled Teddy Bear models coincide when
t = d2

max. (d) The spectrum of all models after proposed normalization.

For Equation (6), one can use a constant value for parameter t on the entire dataset, or use
a varying value for each object in proportion to the size of the object. For example, as we previously
suggested in Equation (7), t can be a multiple of d2

max for each individual object. When t is selected
using the latter option, the scaling factor α of the first form of object scaling is canceled out from
the numerator and denominator of Equation (6). As a result, all edge weights, and consequently, all
eigenvalues will be invariant of the factor α. However, such a parameter t cannot completely deal
with the scaling differences between two different objects. In addition, when t is constant for the
entire dataset, both forms of object scaling have their impact on the spectrum. Figure 2c shows the
spectrum of Teddy Bear models and both glasses in two scenarios; t = 0.5 and t = d2

max. Note that,
when t = d2

max, the spectrum of the scaled Teddy Bear model is aligned with the spectrum of the
original model.

Another observation from Figure 2c is that the spectrum is a function of t, as well.
That phenomenon can be expected as t presents in the exponential term defining edge weights.
Let ζs = g(α2, t)(λ1, . . . , λd) be a LESI descriptor obtained from a scaled 3D model with unknown
factor α. To normalize the descriptor and eliminate the effect of the scaling factor as well as parameter
t, we recommend computing:

ζn(i) = log(ζs(i))− log(ζs(1)) , for 1 ≤ i ≤ d (12)

To achieve a scale invariant shape descriptor, we first take the logarithm of the descriptor vector
and then compute the difference of the new vector from its smallest element. This is equivalent to
dividing the vector by its first element—as suggested by Reuter et al. [20]—and taking the logarithm
next. The proposed scale normalization scheme not only normalizes the descriptor to scale variations,
but also eliminates the influence of both parameter t and the noise that is present in eigenvalues with
a higher order. Basically, division takes the factor out, and the logarithm eliminates the influence of
noise. In other words, taking the logarithm of the spectrum takes away g(α2, t) from multiplicand and
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leaves it as augend. Then, subtracting one term (e.g., the first element) removes it from all other terms,
which is also owed to the monotonicity of the logarithmic function.

As shown in Figure 2d, the normalized spectrum obtained from glasses are nicely grouped
together, while they are well-separated from Teddy Bear models, for both cases when t is constant or
chosen to be in proportion to the scale of each object.

3.3. Algorithm

Our proposed descriptor consists of three major steps. For a given 3D polygonal model G = (V, E)
with a set of vertices V = (x1, . . . , xn) ∈ R3×n and a set of neighbor connections E, the LESI descriptor
is a d-dimensional vector ζ = (λ1, . . . , λd) of real and positive values.

In the first step, we compute the n× n real, symmetric, and sparse weight matrix (W) for a 1-ring
neighbor of every point, as stated in Equation (6) using the inner scaling factor given in Equation (7).
Next, we form the generalized eigenvalue problem in Equation (10) by constructing Laplacian and
degree matrices (L and D, respectively) without difficulty. The matrix L is sparse, real, symmetric and
semi-positive. Utilizing the Dulmage–Mendelsohn decomposition, we find the number of connected
components of L. The objective of the second step is to find the spectrum of the LB operator. For that
purpose, we solve the generalized eigenvalue problem using the Lanczos method. Then, we leave out
as many smallest eigenvalues as the number of connected components. Since in most cases a single 3D
model is made up of one connected component, we only need to leave out one eigenvalue. The last
step of the algorithm deals with scale normalization and noise reduction, in the case it is required,
by taking the logarithm of the spectrum and subtracting the first element from the rest of the vector.
Detailed steps of the algorithm are summarized in Algorithm 1.

Algorithm 1: Laplacian Eigenmap-based scale-invariant global shape descriptor.

Input: A 3D polygonal model G = (V, E) with n vertices xi and edge list E
Output: A d-dimensional vector ζ = (λ1, . . . , λd)

1 Compute edge weights using Equations (6) and (7);
2 Construct the sparse, real, and symmetric n× n matrices W, D, and L;
3 Find number of connected components (nConComp) from L;
4 Solve Equation (10) for nConComp + d eigenvalues;
5 Sort them in increasing order and leave out nConComp smallest ones;
6 if normalization is required then
7 Compute log(λi)− log(λ1) where
8 1 ≤ i ≤ d;
9 end

4. Experiments

In Section 4.1, we first present the two public datasets used in our experiments. Then, in Section 4.2,
we qualitatively visualize and measure the competence of the proposed method in discriminating
different clusters compared with candidate methods from the literature. Next, in Section 4.3, we validate
the effectiveness of the LESI descriptor to distinct multiple classes by measuring the accuracy of
multi-class classification. Finally, in Section 4.4, extensive experiments carried out to study the
robustness of the proposed shape descriptor with respect to noise, scale invariance, and down-sampling
are presented. All experiments were carried out using the MATLAB R2017b environment running on
a personal computer with Intel(R) Xeon(R) E3-1245 CPU @ 3.50GHz and 32GB memory.

4.1. Dataset

To validate the utility of the proposed shape descriptor, we utilized two standard, widely-used,
and publicly available datasets of 3D polygon meshes. The high-resolution TOSCA dataset [49]
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contains 80 three-dimensional non-rigid models, including 11 cats, 6 centaurs, 9 dogs, 4 gorillas,
8 horses, 12 women poses, 3 wolves and 2 men with 7 and 20 poses, respectively. In our experiments,
we used all models except the gorilla models, as they contain isolated points. The models in each
class of the TOSCA dataset are almost identical in terms of scale, the number of vertices, quality of
triangulation, and structure, which all represent the same object with different poses.

The McGill dataset with articulating parts [50] was used to evaluate the ability of the descriptors
to describe models with poor intra-class quality. The McGill dataset contains 3D models of
30 ants, 30 crabs, 25 glasses, 20 hands, 29 humans, 25 octopuses, 20 pliers, 25 snakes, 31 spiders,
and 20 Teddy bears. The classification of the McGill dataset models is more challenging due to scale
and shape variations.

4.2. Retrieval Results

In this section, we evaluate the general performance of our proposed shape descriptor
and compare it with several state-of-the-art spectral-based global shape descriptors including
Shape-DNA [20], cShape-DNA [30], and GPS [23] algorithms. We chose these methods because they are
widely used by researchers (e.g., [51–53]) to develop new descriptors or applications, or to evaluate the
performance of their proposed descriptors. Moreover, cShape-DNA represents the normalized version
of the original Shape-DNA. Even though there are multiple ways to convert a local point descriptor
to a global shape fingerprint, in this article we focus only on algorithms that have been originally
introduced as global fingerprints. To this end, we take advantage of the source code made available on
Dr. Kokkinos’s homepage (http://vision.mas.ecp.fr/Personnel/iasonas/descriptors.html) [28], as well
as the shape descriptor package provided by Li et al. [54] available on a GitHub repository (https:
//github.com/ChunyuanLI/spectral_descriptors) to generate the Shape-DNA and GPS descriptors,
respectively. We also compare the performance of shape retrieval using the code provided for
evaluation by SHREC’11 [55].

The shape descriptors are compared using the TOSCA dataset to discriminate between different
classes of 3D objects. In this experiment, we used the first 33 non-zero eigenvalues (d = 33). Then,
to visualize the locations of objects in the shape space, we projected them onto a 2D plane using
Principle Component Analysis (PCA). Figure 3 displays the effectiveness of our method compared
with the fingerprints of interest.

(a) (b) (c) (d)

Figure 3. 2D PCA projection of shape descriptors computed from: (a) original Shape-DNA;
(b) cShape-DNA; (c) GPS; and (d) LESI algorithms on TOSCA dataset.

Figure 3 reveals that LESI can differentiate models of various classes significantly better than
the other methods for a refined and normalized dataset. Despite the large isometric deformations in
each class, the proposed LESI method clusters all models of the same class together very tightly. Even
though all human models (David, Michael, and Victoria) are very similar, it can distinguish the woman
from the men. However, it fails to discriminate models of Michael from David.

Looking more closely at Figure 3 and comparing the performance of Shape-DNA and cShape-DNA
in the separation of David and Michael, we conjecture whether objects’ scale is one of the most
distinctive features of David and Michael’s differentiation. LESI descriptor is invariant to isometry,
object’s location, and rotation. LESI learns the overall structure of each model, which it is similar for

http://vision.mas.ecp.fr/Personnel/iasonas/descriptors.html
https://github.com/ChunyuanLI/spectral_descriptors
https://github.com/ChunyuanLI/spectral_descriptors
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men models. We suspect that using the parameter t as defined in Equation (7) may cause LESI to fail to
discriminate models of different men. Therefore, we computed LESI descriptor for David and Michael,
using t = 5 and t = 15. Figure 4 shows two samples of David and Michael, which demonstrates how
much they look alike. In addition, PCA projection of LESI descriptors for all models of David and
Michael using three different values for t—two constant and one variable in proportion to the size of
each model—is shown. From the results in Figure 4, we conclude that LESI algorithm can differentiate
different models of men, if we use constant t value. However, for the sake of simplicity and consistency,
we continue the rest of this section using t as defined in Equation (7).

(a) Men models (b) LESI using various t

Figure 4. Experiment on separating different models of men: (a) a sample of Michael (left) and David
(right) models; and (b) PCA projection of LESI descriptors of different men models using t = 2d2

max,
t = 5, and t = 15.

To demonstrate the power of our method in classifying objects with low intra-class similarity
compared with other shape descriptors, the same experiment was carried out on the McGill dataset.
Models of the same class with articulating parts are in different scales, shape, and structure. The 2D
PCA projections of 33-dimension descriptors from all four algorithms are shown in Figure 5.

(a) (b) (c) (d)

Figure 5. 2D PCA projection of shape descriptors computed from: (a) original Shape-DNA;
(b) cShape-DNA; (c) GPS; and (d) LESI algorithms on McGill dataset.

As illustrated in Figure 5, the original Shape-DNA is highly sensitive to scales. Multiple methods
are presented in [20] to make the descriptor normalized to scale. cShape-DNA represents a normalized
version of it by multiplying the descriptor with the surface area. Although cShape-DNA can separate
models from each other, classes are not separated efficiently. LESI outperforms the other algorithms by
providing distinct descriptors, which can separate classes. Shape descriptors offered by LESI prove
superior to the other algorithms in the shape retrieval and classification tasks, as described below and
in the next section, respectively.

To examine the superiority of LESI quantitatively, we computed multiple standard retrieval
measures including Nearest Neighbor (NN), First Tier (FT), Second Tier (ST), e-Measure (E), and
Discounted Cumulative Gain (DCG). These measures represent state-of-the-art quality metrics used
when evaluating matching results for shape-based search engines [56]. Table 1 reports the results
of shape retrieval. Boldface numbers indicate the highest value for each measure per each dataset.
In Table 1, it is clear that the LESI descriptor outperforms all other methods concerning all measures
in retrieving models from the McGill dataset. When retrieving models of the TOSCA dataset, LESI
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outperforms all methods concerning FT, ST, and E measures. Shape-DNA outperforms LESI by
a higher value for NN and DCG measures, due to the poor discrimination between David and Michael
performed by the LESI descriptor. However, it does not diminish the validity of our claim that LESI
performs well for meshes with non-uniform sampling or peculiarities.

Table 1. Shape retrieval performance using TOSCA and McGill datasets.

Dataset Method NN FT ST E DCG

TOSCA

ShapeDNA 1.0000 0.8091 0.9391 0.4486 0.9584
cShapeDNA 0.9474 0.7748 0.8984 0.4748 0.9241

GPS 0.4868 0.4244 0.6320 0.3614 0.6787
LESI 0.8684 0.8456 0.9430 0.4860 0.9244

McGill

ShapeDNA 0.7922 0.3452 0.4977 0.3411 0.7192
cShapeDNA 0.7882 0.3943 0.5483 0.3852 0.7470

GPS 0.3843 0.2508 0.4066 0.2588 0.6020
LESI 0.9647 0.7046 0.8739 0.6644 0.9251

4.3. Multi-Class Classification Results

In this section, we corroborate the findings of Section 4.2 by training a linear multi-class SVM
classifier to assess the accuracy of LESI compared to other shape descriptors. For this experiment,
we utilized the McGill dataset. In addition to the shape descriptors evaluated in Section 4.2,
we computed another normalized version of Shape-DNA by dividing the feature vector by its first
element (similar to what LESI offers) as suggested in [20]. This way we can compare the effect of the
exponential weighting scheme without the influence of the normalization method or compactness
(offered by cShape-DNA). Using 10-fold cross-validation and repeating the experiment three times, we
report the average accuracy for each method in Table 2.

Table 2. Classification accuracy using McGill dataset.

Method Average Accuracy

Shape-DNA 21.02%
Shape-DNA (Normalized) 90.60%

cShape-DNA 71.37%
GPS 50.11%
LESI 95.69%

The new LESI approach significantly outperforms all other methods when using a two-tailed
paired t-test (p < 0.05). The t-test was performed on one set of 10 folds in order to avoid violating
the independence assumption of the t-test. There is a significant improvement in accuracy when
comparing the Shape-DNA (Normalized) to other variants of the Shape-DNA, which is due in part to
the normalization method. However, the average accuracy of the LESI descriptor is noticeably higher
(95%) when compared to 90% of the Shape-DNA (Normalized).

Finally, Figure 6 shows the confusion matrix obtained from the linear multi-class SVM using LESI
descriptor. The number of correct classifications made for each class (indicated by the green diagonal),
confirms that our method captures the discriminative features of the shapes.
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4.4. Robustness

In this section, we address the robustness of the LESI shape descriptor to shape variations, including
noise, scale, and down-sampling by performing another set of experiments. First, we generated the
disturbed version of every model in the TOSCA dataset. Then, we tested the capability of every method
mentioned above in discriminating between different classes. For this purpose, besides plotting the 2D
PCA projection of shape descriptors, we also computed and plotted the pairwise Euclidean distance
matrix, in every case. The distance matrix represents the dissimilarity between each pair of models in
the set. It is often used to compute other evaluating metrics such as nearest-neighbor, and first and
second tier, to name a few. The dissimilarity of descriptors increases from blue to red, and the more
separate classes differ in color, the better they are discriminating from each other.

Figure 6. Confusion matrix obtained from linear multi-class SVM for McGill dataset using
LESI descriptors.

Resistance to noise. Multiple noisy versions of the TOSCA dataset were generated following
the idea articulated in [57]. To this end, the surface meshes of all models were disturbed by changing
the position of each point along its normal vector that was chosen randomly from an interval (−L, L)
with the 0 mean, where L determines the noise level and is a fraction of the diagonal length of the
model bounding box. In this experiment, three noise levels L = 0.5%, L = 1%, and L = 2% were
tested, where the latter one represents a greater level of noise. Two-dimensional PCA projections of all
descriptors with the presence of different levels of noise are plotted in Figure 7. Combining these with
the results shown in Figure 3, where no noise is present, demonstrates that the LESI algorithm is highly
noise-resistant while the performance of the Shape-DNA and cShape-DNA decreases as the level of
noise increases. Moreover, GPS fails in separating different classes of models with the presence of noise.
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Figure 8 reflects the effect of noise on the discriminative power of the descriptors. The LESI algorithm
shows consistent results as the level of noise increases from 0% (top row) to 2% (bottom row).

Scale invariance. To validate the insensitivity of the LESI descriptor to scale variations and
compare the robustness of the proposed method with other descriptors, each model of the TOSCA
dataset was scaled by a factor of 0.5, 0.875, 1.25, 1.625, or 2 randomly. Figure 9 shows that the
LESI algorithm surpasses other methods in discerning different classes. Comparing the result of
this experiment with the results shown in Figure 3 demonstrates the consistency of the LESI and
cShape-DNA algorithms with the presence of scale variation. That is expected, as they can remove the
parameter of scale and obtain scale-free descriptors. The distance matrices in Figure 10 show that the
original Shape-DNA algorithm is very susceptible to scale variations. Even though the cShape-DNA
has significantly improved scale sensitivity of the original Shape-DNA, it does not provide as accurate
results as the LESI algorithm does.

Resistance to the sampling rate. To investigate the effect of sampling rates on the discriminative
power of the shape descriptors, Bronstein et al. [8] proposed to reduce the number of vertices to 20%
of its original size. Accordingly, the down-sampled version of the TOSCA dataset was generated, and
shape descriptors associated with them were computed. The 2D PCA projections and distance matrices
of descriptors are illustrated in Figures 11 and 12, respectively. Although the original Shape-DNA
shows a more accurate result than cShape-DNA, the separation of cat, dog, and wolf models is
challenging. Although the performance of the LESI method is slightly affected, it still outperforms
cShape-DNA and GPS methods.

Figure 7. 2D PCA projection of shape descriptors computed by (from left to right) Shape-DNA,
cShape-DNA, GPS, and LESI algorithms from perturbed TOSCA dataset with (from top to bottom) 0.5%,
1%, and 2% noise level, respectively.
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Noise
Level Shape-DNA cShape-DNA GPS LESI

0%

0.5%

1%

2%

Figure 8. The Euclidean pairwise distance matrix of shape descriptors computed by (from left to right)
Shape-DNA, cShape-DNA, GPS, and LESI algorithms from perturbed TOSCA dataset by (from top to
bottom) 0%, 0.5%, 1%, 2% noise levels.

(a) (b) (c) (d)

Figure 9. 2D PCA projection of shape descriptors computed by: (a) original Shape-DNA; (b) cShape-DNA;
(c) GPS; and (d) LESI algorithms over scaled version of the TOSCA dataset by a randomly chosen factor of
0.5, 0.875, 1.25, 1.625, or 2.

Shape-DNA cShape-DNA GPS LESI

Random
Scale

Figure 10. The Euclidean pairwise distance matrix of shape descriptors computed by (from left to right)
Shape-DNA, cShape-DNA, GPS, and LESI algorithms over scaled version of the TOSCA dataset by
a randomly chosen factor of 0.5, 0.875, 1.25, 1.625, or 2.
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(a) (b) (c) (d)

Figure 11. 2D PCA projection of shape descriptors computed by: (a) original Shape-DNA; (b) cShape-DNA;
(c) GPS; and (d) LESI algorithms from down sampled TOSCA dataset by rate of 20%.

Shape-DNA cShape-DNA GPS LESI

Down
Sampled

Figure 12. The Euclidean pairwise distance matrix of shape descriptors computed by (from left to right)
Shape-DNA, cShape-DNA, GPS, and LESI algorithms from from down sampled TOSCA dataset by
rate of 20%.

5. Discussion

In this study, motivated by the unique properties of Laplacian Eigenmap (i.e., locality preservation,
structural equivalence, and dimensionality reduction) and inspired by the existing spectral-based
shape descriptors, we investigated the application of manifold learning in deriving a shape fingerprint
in order to address the limitations tied to popular cotangent-based shape descriptors. We proposed
a global descriptor (LESI) with an easy-to-compute and efficient normalization technique that facilitates
applications such as shape classification and retrieval. Our method applies fewer restrictions on the
class of meshes as well as improves the quality of tessellations. Analogous to other spectral descriptors,
LESI uses the spectrum of the LB operator, which is independent of the shape location, informative
(contains a considerable amount of geometrical and topological information), and above all isometric
invariant. We compared the discriminating power of LESI with three prominent descriptors from the
literature, namely Shape-DNA, cShape-DNA, and GPS, and found it to be superior.

In the first set of experiments illustrated in Figures 3 and 5, our method substantially outperforms
the others. The superiority of LESI is more significant when the McGill dataset is used (Table 2 and
Figure 6). This dataset includes wide variations in mesh structure and scales, causing the failure
of the other methods to generate acceptable results. However, LESI, due to utilizing a different
method of discretization to form the LB operator, focuses on the vicinity rather than the quality of the
triangulation. Therefore, our technique, unlike other methods, is not affected by the low quality of
polygon meshes.

The second set of experiments evaluated the reliability of our method in the presence of noise,
scale variations, as well as different sampling rates. LESI shows impressive robustness against the first
two sets of perturbation. Despite the negative impact of down sampling in LESI descriptor, it continues
to show better performance when compared to cShape-DNA and GPS. It should be noted that the
result could also be improved by increasing the size of the output vector.

In addition to the discriminating power of the descriptor, degenerate and non-uniform meshes
may also cause failure of an algorithm to converge. The cotangent weight-based algorithms were not
able to compute the descriptors for two shapes from the McGill dataset. GPS also failed to compute
descriptors for six models of the down sampled TOSCA dataset. However, our technique converges at
all times despite the quality of the polygon mesh structure.
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Moreover, LESI, unlike cotangent weight-based techniques, is not confined to the triangulated
meshes as it disregards the mesh geometry [58]. LESI inherits this property from the capability of
manifold learning techniques in coping with high dimensional data. The discretization of the LB
operator using cotangent weights on the quadrilateral meshes is not as straightforward as on triangular
meshes. To compute the LB operator on a quadrilateral mesh, all rectangles need to be divided into
triangles. It could be done easily; however, as for each quad there are two possible triangulations, thus
the result is not unique.

The time needed to compute a descriptor, for all spectral-based descriptors discussed in this
research, can be divided into two parts: (1) constructing the L and D matrices; and (2) solving the
generalized eigenvalue problem. The computation time depends on n (graph size) and d (descriptor
length). The computation cost increases quadratically with n as does the size of matrices. Running the
experiments on a desktop with system specifications mentioned on Section 4, the average total time
is 1.18 and 2.29 s with Shape-DNA and LESI algorithms as well as 0.41 and 0.90 s with Shape-DNA
and LESI algorithms using TOSCA and McGill datasets, respectively. However, the Shape-DNA
code for computing the first part is accelerated by using C MEX files, which makes it incomparable
with our method. Therefore, we timed solving the generalized eigenvalue problem, reported as
follows: on average it takes 1 and 0.97 s with Shape-DNA and LESI algorithms using TOSCA dataset
(p-value = 0.64, not statistically significant), as well as 0.35 and 0.40 s with Shape-DNA and LESI
algorithms using McGill dataset (p-value < 0.05, statistically significant). We compared our method
with Shape-DNA as it is the basis of cotangent-based descriptors. Other cotangent-based methods have
one or more extra steps, which add fraction of seconds. The time difference between these methods are
negligible when descriptors are computed using a system with enough RAM, which is easily accessible
in today’s world. Therefore, with respect to the computational cost, neither of these methods has
advantage over the other.

In the original Laplacian Eigenmaps, the high dimension data require a considerable amount of
processing as the list of all connections need to be computed for the dataset. In fact, for each point in
the high dimension space, a given number of nearest neighbors need to be extracted which could be
challenging and unmanageable. However, applying this technique to the 3D meshes, we skip this step
as the neighbors are already defined and given in the mesh structure.

This work benefits from the Laplacian Eigenmap technique in a space in which the vicinities
are given. LESI takes advantage of simple Laplacian computation, to form the LB operator, which
provides concise and informative shape descriptors. Experimental results prove that LESI is more
effective compared with the other powerful descriptors.

One limitation of LESI is related to the original Laplacian Eigenmap algorithm introduced by
Belkin and Niyogi, in which the generalized eigenvalue problem was solved without specifying
a boundary condition. It is not clear how the algorithm can handle manifolds with boundaries.
Therefore, we limited our experiments to 3D shapes with closed manifolds. Not necessarily a limitation,
but a matter of concern, is how the algorithm works in differentiating different models of men (David
and Michael). While parameter t provides one degree of freedom for the algorithm, it is data-dependent
and needs to be assigned carefully using cross-validation or the validation set approach. It accepts
a wide range of values and no unique value is required.

Although we investigated only the application of Laplacian Eigenmap in introducing a shape
descriptor, there are some other spectral-based manifold learning methods, such as Isomap, LLE,
and Diffusion map, which have not been examined. Another possible future work can be investigating
the possibility of extending the current contribution to other data modalities, e.g., classification of 2D
images/sketches. One can construct a graph from a single 2D image by extracting features from all
or sampled pixels. Such an approach benefits from the fact that there is no limit to the number of
extracted features when using Laplacian Eigenmap.

In the end, even though the focus of this research has been on spectral shape descriptors, we would
like to briefly discuss where our method can stand in comparison with learning-based methods.
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Recently, we have witnessed that deep learning methods have superseded traditional methods in
many applications. Several deep learning techniques, (e.g., [59–61]) have been introduced in this
area. The process of training a neural network is very time consuming and requires high performance
computing units, i.e., a GPU. However, they are capable of learning great deal of structural variations
among objects within the same category. To achieve the goal of learning by seeing, they require a large
and well-annotated sample set. In some applications, such as medical image analysis, obtaining
a dataset with characteristics mentioned above is very challenging. In those cases, deep learning
techniques may result in over-fitting. One approach to mitigate this issue is integrating independent
feature sets, e.g., spectra of LB operator, with features extracted by learning methods. Recent research
has shown that, in the case of small datasets, while spectral and deep-based methods may demonstrate
similar behavior in terms of accuracy, their combination improves the total accuracy. In addition,
as they can be computed in parallel, they do not constrain runtime execution. This brief comparison
requires more investigation both experimentally and theoretically.

6. Conclusions

With recent advances in imaging and data processing, shape analyses have found applications
in various fields, from archaeology to bio-informatics. The current contribution utilizes Laplacian
Eigenmap as a foundation, and introduces a simple, easy-to-implement, yet efficient global shape
fingerprint. We have shown that the spectrum of LB operator that is discretized using exponential
weighting scheme can efficiently represent a 3D shape, which can be used for object retrieval and
classification. We have equipped our descriptor with an optional, straight-forward normalization
method, which makes it suitable for applications in which scale-invariant and noise-resistant
descriptors are preferred. The proposed shape fingerprint belongs to the category of spectral shape
descriptors, which does not require training, as deep-learning based methods do. The proposed
descriptor, as well as being used alone in geometry analysis problems, can be combined with
learning-based methods to improve their performance. For example, in problems in which the number
of samples is not enough, adding features extracted independently by a spectral method can prevent
learning methods from over-fitting. Two possible extensions to our work could be investigating the
applicability of the proposed descriptor in differentiating 3D objects with boundaries (e.g., 3D planes),
and utilizing computed eigenvectors for graph partitioning. In the end, we conclude that manifold
learning methods can be used to develop new spectral-based shape descriptors to learn the structure
of manifolds despite the quality of sampled meshes.
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