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Abstract: Herein, robust pole placement controller design for linear uncertain discrete time dynamic
systems is addressed. The adopted approach uses the so called “D regions” where the closed
loop system poles are determined to lie. The discrete time pole regions corresponding to the
prescribed damping of the resulting closed loop system are studied. The key issue is to determine
the appropriate convex approximation to the originally non-convex discrete-time system pole
region, so that numerically efficient robust controller design algorithms based on Linear Matrix
Inequalities (LMI) can be used. Several alternatives for relatively simple inner approximations and
their corresponding LMI descriptions are presented. The developed LMI region for the prescribed
damping can be arbitrarily combined with other LMI pole limitations (e.g., stability degree). Simple
algorithms to calculate the matrices for LMI representation of the proposed convex pole regions are
provided in a concise way. The results and their use in a robust controller design are illustrated on a
case study of a laboratory magnetic levitation system.
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1. Introduction

Analysis and control of linear dynamic systems have reached the mature stage in control system
theory. Control design strategies and techniques developed for linear dynamic systems can be often
adopted, even for more complex cases in the presence of nonlinearities or uncertainties. The model
uncertainties have to be considered due to the often unknown or varying parameters in real world
applications. In such cases, the uncertainties can be included by the set (family) of system models.
A controller which guarantees the required performance for the whole set of system models (for the
uncertain system) is called a robust controller. Robust control has attracted notable interest of many
authors in the past decades and several excellent books have been written [1–4]. In practice, there are
also requirements other than stability on the closed loop system’s overall performance. The closed
loop dynamic behaviour is determined by system poles (eigenvalues of a system matrix), therefore
pole placement belongs to widely used controller design methods also studied in the robust control
framework [5–9]. The corresponding controller then guarantees that the closed loop system poles
have the predetermined values, thus shaping the closed loop system dynamics. Pole placement or
robust pole placement is used in many applications, e.g., motion system control [10], servo-system
control [11], or power system control [12,13].

Though a vast amount of literature has been devoted to robust control and control algorithm
design, e.g., References [1–11], and various approaches have been developed both in frequency domain
and in state space, there still remain open questions in this field. The important issue is computational
tractability which also motivated linear matrix inequality (LMI) problem formulation and the use of the
corresponding computationally efficient techniques that enable solving a large set of convex problems
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in a polynomial time (see, e.g., Reference [1]). Thus, the LMI approach is advantageous for solving
control problems with a convex formulation. Intensive research has been devoted to transforming
the non-convex or NP-hard control problem into a convex optimization one in the LMI framework
(e.g., [2]). Inner approximations belong to possible frequently used tools to reformulate a non-convex
into a convex problem. The existing approaches either provide simple inner approximation (which can
be too loose) (e.g., Reference [8]) or more precise ones. However, the latter require more computational
effort, e.g., polynomial approximations based on iterative computations, [14]).

The possibility of using the LMI formulation motivated a recent concept of the so called LMI
and DR pole regions, [7]. Thus, in robust pole placement controller design, it is advantageous to
determine the required pole position by defining the corresponding LMI region. Determination of the
required closed loop system (CLS) pole position depends on performance requirements. When the
continuous-time system is considered, the pole regions related to the prescribed stability degree and
relative damping (which belong to the basic performance indices closely connected, e.g., with overshoot,
rise time, settling time, and decay rate) are convex and can be formulated by LMI or DR regions [4–6,9].
However, this is not the case for the discrete-time counterpart, where the prescribed relative damping
corresponds to the non-convex pole region. There exist a few results on this topic, [8,15], however
the provided inner approximations can be too conservative. This motivated our recent work [16],
where several alternatives for inner approximations were briefly outlined.

In this paper we further develop the results from Reference [16] and concentrate on discrete-time
DR region concept for the prescribed damping, which can be arbitrarily combined with other convex
pole region limitations (e.g., stability degree guaranteeing the prescribed decay rate). This paper
provides the comprehensive survey of various DR pole regions corresponding to basic closed loop
performance indices and detailed descriptions (algorithms) of all the proposed inner approximations
for a discrete-time system pole region with prescribed damping and their comparison. The proposed
approximations are computationally simple, given by explicit formulas, do not require any iterative
procedures, and are therefore easily implementable, possibly in combination with other performance
requirements. The results are illustrated by the example—pole placement for a laboratory magnetic
levitation plant.

2. Preliminaries and Discrete-Time Pole Region Problem Formulation

The basic aim of the control design is to modify system dynamics so that the corresponding closed
loop system reaches the required performance. The considered uncertain linear dynamic system can be
described by its continuous-time or discrete-time model. When the discrete-time controller is applied,
it can be designed for a continuous-time system model and then recalculated to a discrete-time one.
However, such an approach requires a sufficiently small sampling period, otherwise the closed loop
system performance can be significantly distorted, [17]. It is therefore advantageous to stick to the
discrete-time system representation. In this paper we consider the uncertain discrete-time system
described in state space by a system of difference equations, written in a matrix form as follows:

x(k + 1) = A(∝)x(k) + B(∝)u(k), (1)

where x(k) ∈ Rn, u(k) ∈ Rm are system state and control vectors, respectively. Matrices A(∝), B(∝)
belong to a convex polytopic uncertainty domain with N vertices

(A(∝), B(∝)) ∈ {(A(∝), B(∝)) =
N∑

i=1

∝i (Ai, Bi),
N∑

i=1

∝i= 1,∝i≥ 0}. (2)

It is assumed that all states are accessible for the state feedback control

u(k) = Kx(k). (3)
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2.1. DR Regions for a Robust Pole Placement

This subsection is devoted to the description of pole regions appropriate for LMI based controller
design. The closed loop system poles determine not only CLS stability, but also other performance
specifications. Standard requirements on pole position include damping and stability degree.
These indices directly influence the corresponding CLS overshoot, rise time, settling time, decay
rate, or natural frequency, which belong to the key performance measures. When the uncertain system
is considered, it is impossible to prescribe the exact pole position. In this case, a robust pole placement
approach determines a whole region in a complex plane where all the CLS poles should be placed.
Since LMI framework offers efficient computational tools for robust control design for linear uncertain
systems, significant effort has been made to reformulate various robust control problems as LMI.
Therefore, in pole placement controller design problem, LMI description of the prescribed pole region
is a crucial issue. The general concept of convex pole regions appropriate for LMI formulation was
presented in Reference [7], as summarized below.

Definition 1. (DR—stability), [7] DR region is defined as a subset to a complex plane C

DR =
{
z ∈ C : R11 + R12z + RT

12z∗ + R22zz∗ < 0
}
, (4)

where R11 = RT
11 ∈ Rd×d, R12 ∈ Rd×d, R22 = RT

22 ∈ Rd×d.

For R22 ≥ 0, the DR region can be equivalently described by the LMI condition.

Remark 1. It should be noted that:

• DR regions are symmetric with respect to the real axis of complex plane;
• Matrix A ∈ Rn×n is DR—stable if and only if all its eigenvalues lie in the corresponding DR region;
• Intersection of DR regions is again DR region (due to convexity).

For a linear system, system poles are given by the eigenvalues of the system matrix A. The next
Theorem provides a basic condition for a matrix A to have poles in the DR region described by
Equation (4).

Theorem 1. [7] A matrix A ∈ Rn×n is DR-stable for the defined DR region (4) in a complex plane, if and only if
there exists a symmetric positive definite matrix P such that

R11 ⊗ P + R12 ⊗ (PA) + RT
12 ⊗ (A

TP) + R22 ⊗ (ATPA) < 0. (5)

Inequality (5) can be interpreted as a generalization of the well-known Lyapunov stability condition
for linear systems.

Standard DR regions corresponding to the specified performance are recalled below together with
the respective matrices R11, R12, R22 for both continuous and discrete-time systems.

While in Figures 1 and 2 (stability and prescribed stability degree) both continuous-time domains
and their discrete-time counterparts are represented by convex regions, this is no more the case when
the relative damping (given by a ratio of the imaginary and real part of the pole) is prescribed. While the
corresponding pole region for a continuous-time case is the convex interior of the cone, as shown in
Figure 3a, the discrete-time counterpart is the nonconvex interior of the logarithmic spiral shown in
Figure 3b. Since it has a heart shape, it can be also called cardioid. Since the latter region is nonconvex,
it cannot be described as a DR region, Equation (4).
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Figure 1. Stable system pole regions. (a) Continuous-time system: Open left half plain of the convex
plane; (b) discrete-time systems: Interior of the unit circle.
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Figure 2. Pole regions for the prescribed stability degree (corresponding to the system exponential decay
rate). (a) Continuous-time system: Shifted left half plain of the convex plane; (b) discrete-time systems:
Interior of the “shrinked” unit circle – circle centered in [0, 0] with radius 1/sqrt(α), where α > 1.
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Figure 3. Pole regions for the prescribed relative damping (corresponding to a ratio of the imaginary
and real part of the pole). (a) Continuous-time system: Interior of the convex cone with vertex
angle corresponding to the damping); (b) discrete-time systems: The space between two symmetric
logarithmic spirals.

To convert the nonconvex cardioid interior into the DR region description, inner approximations
can be used. The existing simple inner approximations, see References [8,15], use an inner circle or
ellipse, as depicted in Figure 4, which can be further combined with the half plane. Note that, due to
characteristics of any DR region, the center of a corresponding circle or ellipse lies on the real axis.
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Figure 4. Inner circle (green) and elliptic (black) approximations to the cardioid region.

Recall [9] that the general DR region description for the interior of the circle centered in [xs, 0],
with radius r, is given by the following matrices:

R11 = x2
s − r2, R22 = 1, R12 = −xs. (6)

The interior of the ellipse centered in [xs, 0] with semi-axes 1/c and 1/d, [14] is as follows:

R11 =

[
−1 −cxs

−cxs −1

]
, R22 =

[
0 0
0 0

]
, R12 =

[
0 (c− d)/2

(c + d)/2 0

]
. (7)

The main advantage of the above approximations is their simplicity and explicit formulas to get all
parameters [9,15]. The major drawback is their conservatism. The whole part of cardioid region close
to the extreme point [1, 0] is not included in the circle/elliptic approximation. However, in controller
design for real world systems, increasing the stability degree may require too demanding control
action. Therefore, it is often desirable to keep the CLS poles near the right-hand side border of the
prescribed region, as will be illustrated in Section 4. (The general pole placement recommendations can
be consulted in [17,18]). For this reason, recently we proposed constructing the inner approximation
as an intersection of the shifted cone and ellipse [16]. In Section 3 we further extend the results from
Reference [16] and provide all the details needed for the computation of DR region matrices.

2.2. Robust Pole Placement for the Defined DR Region via State Feedback

In this subsection we recall LMI condition to find the controller gain matrix for control law,
Equation (3), introduced in Reference [7].

Theorem 2. [7] Consider a linear uncertain system, Equation (1), with polytopic uncertainties, Equation (2).
If there exist matrices H ∈ Rn×n, S ∈ Rm×n and N symmetric positive definite matrices Pi ∈ Rn×n such that[

M11i M12i
MT

12i M22i

]
< 0 i = 1, . . . , N, (8)

with
M11i = R11 ⊗ Pi + R12 ⊗ (AiH + BiS) + RT

12 ⊗ (AiH + BiS)
T,

M22i = R22 ⊗
(
Pi −H −HT

)
,

M12i = RT
12 ⊗

(
Pi −HT

)
+ R22 ⊗ (AiH + BiS),
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then the closed loop uncertain system, Equation (1), with a state feedback, Equation (3), is robustly DR-stable in
the uncertainty domain, Equation (2), with a state feedback gain matrix given by

K = SH−1. (9)

Theorem 2 provides the algorithm to calculate the state feedback pole placement controller for the
determined matrices R11, R12, R22, corresponding to the prescribed DR region where the CLS poles lie.
Inequality (8) is in the form of LMI for the unknown matrices H, S, Pi and can be readily solved by
any free LMI solver (we used SEDUMI); a nice interface for the MATLAB environment is provided by
YALMIP [19]. Therefore, once we determine the DR region corresponding to the required performance,
the respective controller is calculated by solving Equations (8) and (9). The next section is devoted
to the crucial task—inner convex approximation to the discrete-time pole region for the prescribed
damping and computation of the corresponding matrices R11, R12, R22 defining the DR region.

3. Inner Convex Approximations to a Discrete-Time Pole Region for the Prescribed Damping

This section introduces several proposed convex inner approximations to the nonconvex cardioid
domain (Figure 3b). It should be noted that the novel approximations cover the domain close to
the right-hand side extreme point of the cardioid, corresponding to lower stability degree. For the
readers’ convenience, we recall the description of functions (logarithmic spirals) corresponding to the
prescribed damping of discrete-time systems and extreme points of these functions, since the extreme
points are used as parameters of the inner approximations.

3.1. Logarithmic Spirals Corresponding to the Prescribed Damping and Their Extreme Points

This subsection is devoted to the description of the domain in the complex plane, which represents
the region corresponding to the prescribed damping both for continuous and discrete-time systems, [15].
The conic domain depicted in Figure 3a corresponds to a damping D = cosϕ. The smaller the angle
ϕ, the bigger the damping and less oscillating the system. The cone is described by its upper line,
as follows:

y = −xtgϕ = −kx, (10a)

and lower line, as follows:
y = xtgϕ = kx. (10b)

The discrete-time counterpart can be received using a Z-transform of the continuous time poles.
For a pair of conjugated poles s = a± ib we have after discretization with the sampling period T

z = esT= e(a±ib)T = eaTe±ibT. (11)

Considering Equations (10a) and (10b), we have b = ka and from Equation (11) we receive the
upper and lower logarithmic spiral, respectively, as follows:

z = e(a−ika)T = eaTe−ikaT = eaT(cos kaT − i sin kaT), (12a)

z = e(a+ika)T = eaTe+ikaT = eaT(cos kaT + i sin kaT). (12b)

The parametric description of logarithmic spirals, Equations (12a) and (12b), corresponding in the
discrete time domain to the prescribed damping, can be formulated as

z = x± iy,
x = et cos kt; y = et sin kt,

(13)

where k = tgϕ, t = aT, therefore, t ∈
(
−
π
k , 0

)
.
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Applying the rules for derivation of parametric equations, the extreme points can be found (for
details see Reference [15]), depicted in Figure 5. The upper extreme point EM = [xM, yM] is given by

xM = e−ϕ/tgϕ cos(−ϕ); yM = −e−ϕ/tgϕ sin(−ϕ). (14)

The intersection point with the negative part of the real axis (y = 0), is as follows:

x0 = −e−
π

tgϕ . (15)
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The extreme points coordinates x0, xM, yM are used to calculate parameters of all studied
inner approximations.

3.2. Inner Convex Approximations to the Nonconvex Domain Corresponding to the Prescribed Damping

In this subsection, we summarize the proposed inner convex approximations to the cardioid
interior, as follows: Computation of their parameters, the corresponding figure, and matrices for DR

region description. Recall, that all DR regions must be symmetric with respect to the real axis of the
complex plane. Therefore, the centers of circle or ellipse always lie on the x-axis.

a) Inner circle

The inner circle approximation is proposed so that it has a maximal possible radius. Therefore,
it is centered in [xM, 0] and the radius, r, is dependent on the shape of the spirals and calculated in
Matlab as follows:

ak = xM − x0;
bk = yM;
r = min(ak, bk);

The DR region matrices (scalars) conforming to the general circle description, Equation (6), are
given as:

R11 = xMˆ2 − rˆ2;
R12 = −xM;
R22 = 1;

Circle approximation is depicted in Figure 6.
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The next two options, c) and d), are appropriate for the case when poles with a nonnegative real
part are required. Then it is advantageous to use the intersection of the right half plane with the inner
circle or ellipse with bigger area than those in a) or b).

c) Right half-plane and circle
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This option is suitable for angles bigger than 53◦, when, for the extreme points given by Equations
(14) and (15), it holds as follows: xM − x0 < yM. The corresponding circle is centered in [xM, 0] and its
radius is set to r = yM. The resulting DR region is obtained as an intersection of the right half plane
and the circle and the corresponding matrices are as follows:

R11 = [0 0; 0 (xMˆ2 − rˆ2)];
R12 = [−1 0; 0 − xM];
R22 = [0 0; 0 1];

The approximation is depicted in Figure 8a.

d) Right half-plane and ellipse

The ellipse is centered in [xM, 0], as in the case of b), however, its x-semi-axis is increased, so that
the ellipse reaches the intersection of the cardioid with the y-axis, denoted as y3. The resulting DR

region is obtained as an intersection of the right half plane and the ellipse and the corresponding
matrices, R11, R12, and R22, are calculated as follows:

y3 = exp (−pi/(2*tan(fi*pi/180)));
ak = xM*yM/sqrt (yMˆ2 − y3ˆ2);
bk = yM;
R11 = [0 0 0; 0 − 1 − xM/ak; 0 −xM/ak −1];
R12 = [−1 0 0; 0 0 (1/ak − 1/bk)/2; 0 (1/ak + 1/bk)/2 0];
R22 = zeros (3, 3);

(ϕ is represented by fi in the program).
Though the last approximation (intersection of the right half plane and ellipse) gets closer to the

right-hand side border than the inner ellipse (compare Figures 7b and 8b), there is still a significant
area not included in the approximation. All the above approximations basically avoid the domain
close to point [1, 0]. The next novel combination of the shifted cone and ellipse is proposed to also
include this area close to the border, since it can be important to make control feasible.
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Figure 8. Approximation given by the intersection of the right half plane with circle (a) and ellipse (b)
(65◦ damping angle).

e) Ellipse-cone

This approximation considers the intersection of an angle with the vertex in [1, 0] and the elliptic
region. The crossing point [xe, ye] lies on the cardioid (logarithmic spiral) and xe is considered as a
parameter to be chosen. In Figure 9, two variants for different choices of xe are shown.
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Figure 9. Approximation given by the intersection of the angle and ellipse (a) for xe = 0.7 and (b) for
xe = 0.6.

The ellipse is centered in the middle of the cardioid x-axis, its x-semi-axis denoted as ak is
maximized, and the y-semi-axis bk is derived so that it crosses [xe, ye], as follows:

xse = (1 + x0)/2;
ak = (1 − x0)/2;
bk = ye*ak/sqrt (akˆ2− (xe − xse)ˆ2);

and the corresponding DR region matrices are as follows:

R11e = [−1 – xse/ak; − xse/ak − 1];
R12e = [0 (1/ak − 1/bk)/2; (1/ak + 1/bk)/2 0];
R22e = zeros (2, 2).

The cone with the vertex in [xv, 0] and inner angle 2γ corresponds to Figure 9 (γ is represented by
ga in the program). The respective DR region matrices for this shifted angle are as follows:

ga = atan(ye/(1 − xe));
R11v = [−xv*sin(ga)*2 0; 0 − xv*sin(ga)*2];
R12v = [sin(ga) cos(ga); − cos(ga) sin(ga)];
R22v = [0 0; 0 0].

The DR region matrices describing the intersection of the ellipse and angle can be obtained by
taking xv = 1 and merging the above matrices for the ellipse and cone, as follows:

Z = zeros (2, 2); R11 = [R11e Z; Z R11v];
R12 = [R12e Z; Z R12v];
R22 = [R22e Z; Z R22v].

Remark 2. It should be noted that any DR regions can be combined, so that their intersection is considered, as in
the latter case, where the intersection of the ellipse and angle is described by the resulting DR region matrices.
DR regions can be also combined with other performance criterion. Often, pole placement is considered together
with H2 or Hinf minimization.

Comparison of all the above approximations is illustrated on the example in the next section,
providing the results for laboratory magnetic levitation plant.
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4. Discrete-Time Robust Pole Placement Control for Magnetic Levitation (ML) Laboratory Plant

This section presents the results obtained for a robust state feedback pole placement controller
designed for a laboratory magnetic levitation plant [20], for different choices of the DR region.
The control aim in the ML system is to control the position of a magnetic ball levitating in the air-space.
This position is controlled by the current in the coil (electromagnet) situated above the air-space.
The ML can be modelled by a 3rd order nonlinear state space system. All state variables can be
measured and used for control, as follows: Ball position, ball velocity, and current in the coil. All the
details for ML state space nonlinear and linearized model can be found in [21]. The sampling period
for a discretized model is 1ms. The robust state feedback pole placement controller was designed for
the linearized uncertain model, Equation (1), obtained for 3 working points (WP) defined by 3 various
ball positions corresponding to the state x1, as follows:

WP1 :
x10 = 0.008,
x20 = 0,
x30 = 0.7697

x(k + 1) =


1.0008 0.0010 0
1.6851 1.0008 −0.0233

0 0 0.8300

x(k) +


0
−0.0098
0.7479

u(k)
WP2 :

x10 = 0.010,
x20 = 0,
x30 = 0.9139

x(k + 1) =


1.0008 0.0010 0
1.6851 1.0008 −0.0187

0 0 0.7492

x(k) +


0
−0.0124
1.1036

u(k)
WP3 :

x10 = 0.012,
x20 = 0,
x30 = 1.0852

x(k + 1) =


1.0008 0.0010 0
1.6851 1.0008 −0.0146

0 0 0.6391

x(k) +


0
−0.0154
1.5878

u(k)
(16)

It is important to note that the ML system is unstable and the control variable (current in the
upper coil) is limited, which also limits the required pole position.

The next choices of DR regions and the corresponding controllers were considered and compared
as follows:

• Stabilization only: required pole region is unit circle;
• Elliptic inner approximation for 87◦ damping angle;
• New proposed ellipse-cone approximation for 50◦, 60◦, and 70◦ damping angles. For numerical

reasons, in this case we considered R22 = 0.01 ∗ I and stability degree 0.99.

To track the ball position step changes, a PI controller was designed since the ML system itself
does not include an integral term. The corresponding internal model principle for controller structure
determination can be found, e.g., in Reference [22]. In all cases, the corresponding state feedback PI
controller was designed and the corresponding closed loop poles were calculated.

The designed pole placement PI controller parameters for all the considered cases are summarized
in Table 1. Note that the ellipse approximation yields about nine times bigger P gain and more than
20 times bigger I gain comparing to the new proposed ellipse-cone approximation. Furthermore,
the ellipse-cone approximation provides a feasible solution to Equation (8), for a 50◦ damping angle,
while the elliptic approximation provides feasible solution to Equation (8) only for damping angles
bigger than 86◦.

Table 1. State feedback PI controller parameters designed using Equation (8) for the considered
DR regions.

D_R Region P I

Unit circle [106.7, 2.47, −0.617] 0.3527
Ellipse (87◦) [952.4, 9.75, −0.653] 26.88

Ellipse-cone (70◦) [134.2, 2.55, −0.275] 1.222
Ellipse-cone (60◦) [154.7, 2.93, −0.317] 1.420
Ellipse-cone (50◦) [190.7, 3.56, −0.368] 1.831
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The designed controllers were then verified on a nonlinear simulation model. The obtained
results are shown in Figures 10 and 11. In Figure 10, the prescribed pole regions are depicted for all
considered DR region variants, as well as for the corresponding closed loop poles. In all cases the
poles are inside the prescribed region. Note that in the case of stabilization only (green), the poles
are concentrated close to the stability border with almost no damping, which causes a response
overshoot and a relatively longer settling time. The elliptic region, on the other hand, guarantees the
damping. However, the poles are not allowed to keep closer to the point [1, 0], which indicates a too
demanding control variable. The latter observation was approved by simulations for the nonlinear ML
model. The results for 3 working points (3 different positions of levitating ball) are shown in Figure 11.
Rapid significant changes of the control variable for elliptic approximation are outperformed by the
ellipse-cone controller with both output and control variables smooth. This feature is important for the
practical implementation of the designed controller.Algorithms 2019, 12, x FOR PEER REVIEW 12 of 15 
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Figure 11. Simulation results for the nonlinear ML model in 3 working points (WP) for the designed
robust pole placement controller for unit circle (green), elliptic approximation for damping angle
87◦ (magenta), and ellipse-cone (AE: blue dots): (a) Output variable—ball position; (b) control
variable—current in the coil.

For comparison we tried to design the continuous-time PI controller for the prescribed damping
angle 60◦—the corresponding convex cone region is shown in Figure 3a. Then we recalculated
the continuous to the discrete-time PI controller (for the used sampling period 1ms). We verified
the resulting controller on the nonlinear simulation model. We can conclude that, though the
continuous-time controller design requires only 2× 2 DR region matrices (the ellipse-cone approximation
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uses 4 × 4 DR region matrices), the recalculated continuous time PI controller provided significantly
slower response than the originally designed discrete-time PI controller based on the ellipse-cone.
Generally, the discrete-time controller recalculated from the continuous-time one provides a closed loop
system performance that is not better (usually worse) than the continuous-time closed loop one [17].

5. Discussion and Conclusions

The paper provides the thorough study of discrete-time pole regions appropriate for a robust
pole placement controller design. The main problem is finding adequate and computationally simple
inner convex approximation for the nonconvex discrete-time system pole region corresponding
to the prescribed damping. Previously published inner approximations for circle and ellipse are
computationally simple, but they are too restrictive in cases where the realistic closed loop pole position
close to the right-hand side pole region border stems from the real plant dynamics. The proposed
ellipse-cone approximation much better approximates the original heart-shape region in the right-hand
side part than the elliptic one (as shown in Figures 8 and 9). This feature is important since the poles can
be better tuned to receive the response, which is damped as required (contrary to the unit circle-based
design). In comparison with elliptic approximation, the proposed ellipse-cone one provides wider
possibilities to shape the response so that it is not too fast, which is important to obtain a less aggressive
control action. This real plant feature is also inherent in the presented case study, a magnetic levitation
laboratory system. Discrete-time pole placement results for magnetic levitation for various choices of
the DR region are compared and illustrated in Figure 10. Though the discrete-time controller can be
recalculated from the one designed in the continuous time domain, in general, the performance of the
resulting closed loop system is usually worse than the continuous time original (in the best case, almost
the same). This fact motivates the discrete-time controller design directly in the discrete-time domain.

The presented results provide the simple convex approximations to the originally nonconvex
domain, with all the computational details. The authors believe this can contribute to solving the
robust pole placement controller design problem for discrete-time systems with required resulting
closed loop system damping (possibly combined with other performance requirements formulated by
LMI) as simply as possible.
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