
algorithms

Article

MapReduce Algorithm for Variants of Skyline
Queries: Skyband and Dominating Queries

Md. Anisuzzaman Siddique 1 , Hao Tian 2 and Mahboob Qaosar 1,2

and Yasuhiko Morimoto 2,∗

1 Department of Computer Science and Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
2 Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8521, Japan
* Correspondence: morimo@hiroshima-u.ac.jp

Received: 28 June 2019; Accepted: 7 August 2019; Published: 13 August 2019
����������
�������

Abstract: The skyline query and its variant queries are useful functions in the early stages
of a knowledge-discovery processes. The skyline query and its variant queries select a set of
important objects, which are better than other common objects in the dataset. In order to handle big
data, such knowledge-discovery queries must be computed in parallel distributed environments.
In this paper, we consider an efficient parallel algorithm for the “K-skyband query” and the “top-k
dominating query”, which are popular variants of skyline query. We propose a method for computing
both queries simultaneously in a parallel distributed framework called MapReduce, which is a
popular framework for processing “big data” problems. Our extensive evaluation results validate the
effectiveness and efficiency of the proposed algorithm on both real and synthetic datasets.

Keywords: skyline query; K-skyband query; top-k dominating queries; MapReduce

1. Introduction

The utilization of large data repositories is a crucial factor in improving various types of businesses.
Such a kind of massive data repositories is defined as “big data”. Extracting the skyline objects is a
vital task for understanding the dataset in the early stage of the knowledge discovery process from
large data repositories. Skyline objects in a database are objects that are not dominated by any other
object in the database and the skyline query [1] is a function to find a set of skyline objects.

Given an m-dimensional dataset DS, an object Oi is said to be in the skyline of DS if there is no
other object Oj (i 6= j) in DS such that Oj is better than Oi. If there exists such an Oj, then we say
that Oi is dominated by Oj, or Oj dominates Oi. Figure 1 presents an example skyline. The table in
the figure contains a list of hotels, each of which has two numerical attributes: distance and price.
If we assume that a smaller value is better, then the skyline query retrieves objects {O2, O3, O7} as
in Figure 1b. Objects O1 and O5 are dominated by object O2. Objects O4 and O6 are dominated by
object O3.

Algorithms 2019, 12, 166; doi:10.3390/a12080166 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0001-7791-8248
https://orcid.org/0000-0002-3220-1726
https://orcid.org/0000-0001-7130-2864
https://orcid.org/0000-0003-2509-1191
http://www.mdpi.com/1999-4893/12/8/166?type=check_update&version=1
http://dx.doi.org/10.3390/a12080166
http://www.mdpi.com/journal/algorithms

Algorithms 2019, 12, 166 2 of 14!"#$%&'()*"'(!"
!#

!$

!%

!&

!'

!(+,-."&()%)"/!)*"'(01%&,2 !"#$%&'(01%&,2
!%

34052 6 072
!"

5 082 9 0:2
!$

9 0:2 3 082
!'

6 072 ; 052
!&

: 032 8< 092
!(

8< 092 : 032
!#

7 0;2 7 0;2%24+-=>?."'4!%$%#($ >24+,-."&(
Figure 1. Skyline example.

Top-k dominating query [2] is a variant of the skyline query. In the query, a scoring function µ(O)

is used for evaluating strongness of an object O ∈ DS: µ(O) = |{O′ ∈ DS |O ≺ O′} |.
The scoring function µ(O) returns how many objects the object O dominate in the dataset. In the

above example, µ(O2) = 2 because O2 dominates two objects: O1 and O5. Similarly, µ(O3) = 2.
The top-k dominating query selects k objects based on µ(O). For example, a top-2 dominating query
for the example in Figure 1 retrieves O2 and O3.

The skyband query, also known as K-skyband query [3], is another well known variant of the
skyline query. A K-skyband query returns a set of objects, each object of which is not dominated
by K other objects. For the dataset in Figure 1a, the skyband query for K = 2 retrieves objects
{O1, O2, O3, O4, O7}. Object O5 is not in the skyband because it is dominated by two objects: O2 and O1.
Similarly, object O6 is not in the skyband result because it is also dominated by two objects: O3 and O4.
We illustrate this procedure in Figure 2.

!
"#
$%
&
'(

)*"'(

+,-./0%&1
!"

!#

!$

!%

!&

!'

!(

Figure 2. Skyband example.

As mentioned above, recent “big data” is too large to analyze intensively. Instead of analyzing
raw big data, we propose using a relatively small subset, i.e., the results of skyband and dominating
queries that contain the important features of the raw data. However, conventional algorithms for
computing such skyline variants are not designed for parallel distributed environments. In recent
years, the MapReduce framework has been applied for parallel processing of huge amounts of data on
large-size clusters of commodity computers in a reliable manner. MapReduce and Hadoop, which is a
popular open source variant of MapReduce, has attracted significant research attention. Our parallel
algorithm utilizes the MapReduce framework. In this paper, we propose a MapReduce algorithm,
i.e., a parallel algorithm that simultaneously computes skyband and dominating query.

Algorithms 2019, 12, 166 3 of 14

The contributions of this paper can be summarized as follows:

• We examine the skyband and dominating queries for processing “big data”.

• We develop a scalable parallel algorithm to compute the queries. The proposed algorithm
simultaneously computes skyband and dominating queries. Exploiting the MapReduce
framework for the skyband as well as dominating queries is an innovative approach that utilizes
the advantage of parallel distributed computing environment.

• The main focus of the proposed algorithm is to distribute the computation process evenly among
multiple computing nodes so that “big data” can be effectively processed. We empirically prove
the efficiency of the proposed method through intensive experiments using a real dataset and
synthetic datasets.

The organization of this paper is as follows. We survey the literature and review related works
in Section 2. We present the concepts and properties of skyband and dominating query in Section 3.
We describe analysis of proposed algorithm with detailed examples in Section 4. Next, we evaluate
our algorithm through intensive experiments in Section 5. Finally, in Section 6, we conclude this paper.

2. Related Works

Skyline query and its variants have been widely used in several multi-criteria decision support
applications. Borzsonyi et al., who first introduced the skyline query, proposed three basic
algorithms for the skyline computation [1]. Those algorithms are known as block-nested-loops (BNL),
divide-and-conquer (D&C), and B-tree-based schemes. Chomicki et al. proposed a sort–filter–skyline
(SFS) algorithm, which improved the efficiency of the skyline computation by presorting the database
attributes [4]. To optimize the average-case running time, Godfrey et al. proposed linear elimination
sort for skyline (LESS) algorithm [5]. To filter the dominated objects efficiently through recursively
partitioning the dataset based on the nearest objects, Kossmann proposed the nearest neighbor (NN)
algorithm for computing the skyline [6].

On the other hand, instead of computing skyline from the original objects’ attributes, several
algorithms have proposed to use the index of the objects’ attributes for computing skyline. Tan et al.
has proposed two progressive algorithms to compute skyline based on attributes’ bitmap and
index [7]. The recent state-of-the-art algorithm is the Branch-and-Bound Skyline(BBS), proposed
by Papadias et al., which is shown to be I/O optimal for computing skylines on datasets indexed
by R-trees [3]. Meanwhile, various approaches have been proposed for effective skyline querying
from the high dimensional dataset. Yuan et al. proposed a skycube structure to reduce the cost of
skyline computation over all possible subspaces [8]. Later, Xia et al. revised the skycube structure and
proposed CSC structure as a more promising alternative for removing identical skyline objects in the
skycube by storing each skyline object only to its minimum-subspace [9].

As a variant of the skyline query, Chan et al. introduced the concept of top-k frequent skyline
queries [10]. They suggested that a metric, called skyline frequency, can be used to rank and select
skyline objects by their interesting-ness. Li et al. proposed a data-cube structure to speed up the
query evaluation by analyzing the dominance relationship [11]. On the other hand, Lin et al. have
considered extracting k most representative skyline objects [12]. They have introduced the concept
of a representative object by the population it dominates. According to their definition, a skyline
object is more representative than other skyline objects, when it dominates more objects than others.
Chan et al. illustrated k-dominant skyline based on the measure of the k-dominance relationship.
The k-dominant skyline query can control the number of retrieved objects by changing k. If we set a
larger k value, an object more likely to be dominated by another object. They developed specialized
algorithms to compute the k-dominant skyline [13]. K-skyband query, which is another variant
of skyline query, selects those objects which are dominated by at most (K-1) other objects. It has
been noticed that, for any increasingly monotone aggregate function, the top-k objects belong to the
k-skyband, where k ≤ K [3,14].

Algorithms 2019, 12, 166 4 of 14

There exist more spontaneous techniques for skyline query formalization. Lin et al. proposed
n-of-N skyline query to support online query on data streams, i.e., to find the skyline of the set
composed from the most recent n elements. The proposed method considers a very widely distributed
dataset, which is impossible to process in a centralized fashion [15]. Balke et al. has also investigated
skyline computation over a vertically distributed database [16]. Tao et al. examined skyline query in
arbitrary subspaces [17]. Papadias et al. studied on dynamic skyline query [18]. Dellis et al. proposed
the reverse skyline query, which selects the number of users who like the given object most based on
the dominance relationship among the objects [19] .

Nowadays, the parallel computing paradigm becomes very popular for processing and analyzing
“big data”. Therefore the computation of skyline and its variants are becoming challenging today.
Noted that [10,11,13] cannot be directly applied to evaluate top-k dominating queries. Moreover,
the computation of skyband query requires a separate algorithm. This paper proposed an efficient
algorithm for computing both types of queries(top-k dominating and skyband) over a large volume of
data, such as “big data”. For such data intensive applications, the most notable platform, which has
attracted a lot of attention, is MapReduce For this kind of data-intensive application, the MapReduce
framework has attracted much attention as the most prominent platform [20–22]. It facilitates the
deployment of scalable parallel applications on the share-noting machines cluster for processing large
dataset. Google’s MapReduce or its open source equivalent Hadoop is a powerful tool for building
such applications [23]. The MapReduce framework has also been utilized for some of the recent
research works on the computation of skyline and k-dominant skyline [24–26].

Recently, Ezatpoor et al. [27] exploits the MapReduce framework for computing top-k dominance
on incomplete big data. Besides, Chen et al. [28] utilized the Spark streaming framework to process
top-k dominating query over the distributed data stream. Both [27,28] divided the data by using the
method of the hash map to process the data through distributed computing nodes.

This paper complements the existing efforts to address the K-skyband and top-k dominating
query problems by the rank of objects obtained using two intuitive scoring functions. Specifically,
our algorithm can provide solutions for these two types of queries within the same framework. To the
best of our knowledge, there is no such MapReduce algorithm had been proposed for the k-dominating
query and the K-skyband query so far.

3. Preliminaries

Consider an m-dimensional dataset DS {a1, a2, · · · , am}. We assume that the dataset is distributed
into n subsets {DS1, DS2, · · · , DSn} in different locations. Without loss of generality, we assume that
the dataset contains non-negative numerical values. We also assume that smaller values are preferable
in each dimension/attribute. Oi,j.ap denotes that the p-th dimension’s/attribute’s value for object Oi,j,
where i, j is an object ID which means object j in dataset i (DSi). Assume that the dataset DS shown in
Figure 1 is distributed into three subsets, DS1, DS2, and DS3, each of which has two attributes, a1 and
a2, as shown in Table 1.

Table 1. Dataset DS.

DS1 DS2 DS3

ID a1 a2 ID a1 a2 ID a1 a2

O1,1 3 8 O2,1 7 3 O3,1 5 10
O1,2 2 7 O2,2 8 4 O3,2 10 5

O3,3 6 6

Definition 1. (Dominance) For two objects O and O′, object O is said to dominate object O′, denoted O ≺ O′,
if O.as ≤ O′.as for all attributes (s = 1, · · · , m) and O.ax < O′.ax for at least one attribute (1 ≤ x ≤ m).

Algorithms 2019, 12, 166 5 of 14

We refer to such an O as a dominant object and such a O′ as A dominated object. If O dominates O′, then O is
preferable to O′.

In Table 1, object O1,2 dominates object O1,1 (O1,2 ≺ O1,1). This is because object O1,2 has a smaller
value for both attributes than object O1,1.

Definition 2. (Skyline) An object O ∈ DS is in a skyline of DS (i.e., a skyline object in DS) if O is not
dominated by any other object in DS. The skyline of DS, denoted Sky(DS), is the set of skyline objects in DS.
For the dataset DS, objects O1,2, O2,1, and O3,3 can dominate all other objects and are not dominated by any
other object. Therefore, a skyline query on dataset DS will retrieve Sky(DS) = {O1,2, O2,1, O3,3}.

Definition 3. (The µ score) The µ score of an object shows how many objects the object dominate in the dataset.
We use µ(O) to denote the µ score of an object O. In Table 1, object O1,2 dominates objects O1,1 and O3,1.
Therefore, the µ score of O1,2 is 2 (i.e., µ(O1,2) = 2).

Definition 4. (The SB score). The SB score of an object is the number of objects dominating that object. We use
SB(O) to denote the SB score of an object O. In Table 1, object O3,2 is dominated by objects O2,1 and O2,2.
Therefore, the SB score of O3,2 is 2 (i.e., SB(O3,2) = 2).

Definition 5. (Dominating query) Given a positive integer k and a dataset DS, the top-k dominating query
returns the k objects that have the top-k µ scores in DS. For the dataset in Table 1, a top-two dominating query
retrieves O1,2 and O2,1.

Definition 6. (Skyband query) Given a positive integer K, the K-skyband is the set of objects that are not
dominated by K other objects. For the dataset DS in Table 1, the skyband query for K = 2 retrieves objects
{O1,1, O1,2, O2,1, O2,2, and O3,3}. Intuitively, K represents the thickness of the skyline. A 1-skyband query is
the same as a conventional skyline query.

Definition 7. (Worst rank) For an object O, assume r1(O) and r2(O) are the rank values of attributes a1

and a2, respectively. For example, in Figure 1, r1(O4) = 6 and r2(O4) = 2. We refer to the largest rs(O)

(s = 1, ..., m) as “the worst rank of O” and as as “the worst rank attribute of O.” In this example, the worst
rank of O4 was six and the worst rank attribute was a1.

Definition 8. (Domination check set) The domination check set (DC) for an object O is the set of objects that
have equal or greater rank than the worst rank of O for the worst rank attribute. For example, O6 has a greater
rank than the worst rank of O4 (7th > 6th) in a1 (price). Therefore, the DC set of object O4 is {O6}. Similarly,
the worst rank of O1 is 6 in a1 (distance). So, the DC set of object O1 is {O5}.

From the above definitions, we have observed an important property [28] and a lemma.

Property 1. Top-k dominating queries result always comes from skyband queries result. For example, a top-two
dominating query for the example in Figure 1 retrieves O2 and O3. Those are also belongs to two-skyband result
(Figure 2).

Lemma 1. Dominance relation among the objects within a dataset also remains in the transformed ranked
dataset. For example, in Figure 1 object O2 dominates object O1, since object O2 has a smaller value for both
attributes than object O1. This dominance relation is also true according to the rank dataset. This is because
object O1 has a greater rank for both attributes than object O2.

Algorithms 2019, 12, 166 6 of 14

4. Skyband and Dominating Query Processing

Our MapReduce-based algorithm for skyband and dominating queries consists of the following
five phases:

P1: Data map and ranking. Each distributed dataset was partitioned vertically. Then, each partition
was dispatched to the map workers (mappers). Each map worker, next, generates (Val, OID) pairs,
where Val is the numeric value of the corresponding object in the attribute domain and OID represents
the object ID. After receiving (Val, OID) pairs as input, each “reduce” worker (reducer) produced the
(OID, Rank) pairs for each object, where Rank is the rank value of each object in the attribute domain.
P2: Shuffling. In this phase, each map worker outputs (OID, AttrRank) pairs, where AttrRank is
the attribute name with the corresponding attribute rank for each object in the attribute domain.
Next, each “reduce” worker also produced (OID, Ranks) pairs for each object, where Ranks is a list of
attribute names and the respective rank value for each attribute.
P3: Worst rank computation. The coordinator collected all (OID, Ranks) pairs to reduce data
transmissions from map workers to reduce workers. After rearranging the (OID, Ranks) pairs,
the coordinator found the worst attribute rank for each object.
P4: DC sets computation. The coordinator sends the attributes with the worst ranks to the workers,
which are responsible for DC set computation for each object. Each worker takes an attribute rank,
and the corresponding attribute’s worst rank as input and outputs DC sets for each object.
P5: Skyband and dominating objects computation. At this stage, the map workers take DC sets
as inputs and perform domination checks between the DC sets and corresponding objects. Finally,
the reducer produced the SB score and the µ score required to compute the skyband query and top-k
dominating query, respectively.

4.1. Data Map and Ranking

We first vertically split the dataset into m partitions, if the number of attributes in a dataset
is m. Therefore, if the number of data subsets was n, then the total number of partitions was
equal to n×m (e.g., {s1,1, · · · , s1,m, · · · , sn,1, · · · , sn,m}). For simplicity, we denote {s1,1, s2,1, · · · , sn,1},
{s1,2, s2,2, · · · , sn,2}, and {s1,m, s2,m, · · · , sn,m} as {S1}, {S2}, · · · , and {Sm}, respectively. In the
example, DS1 had two attributes a1 and a2. We split DS1 into two partitions called s1,1 and s1,2.
Since we had two partitions, we needed at least two map workers to complete the computation.

Figure 3 illustrates the “data map and ranking” procedure. Figure shows that objects O1,2 and
O2,1 have rank “1" for attribute a1 and a2, respectively. Therefore, O1,2 had the smallest a1 value and
O2,1 has the smallest a2 value.

Recall that in the Hadoop framework in which we have implemented our system, each map
worker operates on a non-overlapping partition of the input file independently and the worker emits
key-value pair lists in parallel according to a user-defined “map function”. In proposed algorithm, each
map worker produces (Val, OID) pairs, where Val is the numeric value of each object in the attribute
domain and OID is the corresponding object ID. Next, the reduce workers begin their processing job.
They receive (Val, OID) pairs as inputs and produce (OID, Rank) pairs for each object, where Rank
is the ascending order sorted rank value of each object in the attribute domain. To calculate the rank
value for each key-value pair of Sl(l = 1, · · · , m), the corresponding reduce worker sorts its attribute
in ascending order. The reduce worker, then, replaces the values with their corresponding ascending
rank value.

Algorithms 2019, 12, 166 7 of 14

ID a1 a2

O1,1 3 8

O1,2 2 7

Data Source 1

ID a1 a2

O2,1 7 3

O2,2 8 4

Data Source 2

ID a1 a2

O3,1 5 10

O3,2 10 5

O3,3 6 6

Data Source 3

8 O1,1

7 O1,2

3 O2,1

4 O2,2

10 O3,1

5 O3,2

6 O3,3

O1,2 1

O1,1 2

O3,1 3

O3,3 4

O2,1 5

O2,2 6

O3,2 7

O2,1 1

O2,2 2

O3,2 3

O3,3 4

O1,2 5

O1,1 6

O3,1 7

R
an

k
on

 a
1

R
an

k
on

 a
2

Input
Output

M
ap

pe
r f

or
 a

1

3 O1,1

2 O1,2

7 O2,1

8 O2,2

5 O3,1

10 O3,2

6 O3,3

Val OID

R
ed

uc
er

 (S
or

te
d

by
 k

ey
)

M
ap

pe
r f

or
 a

2

R
ed

uc
er

 (S
or

te
d

by
 k

ey
)

OID Rank

Figure 3. Data map and ranking process.

4.2. Shuffling

The second MapReduce phase is invoked for skyband and top-k dominating query computation.
After generating (OID, Rank) pairs in the data map and ranking phase, map workers take those
pairs as inputs and produce (OID, AttrRank) pairs, where AttrRank is the attribute name with
the corresponding attribute rank for each object in the attribute domain. Then, each map worker
dispatches the (OID, AttrRank) pairs to the reducers. After shuffling, reduce workers produce
(OID, Ranks) pairs for each object, where Ranks is a list of attribute names and respective rank
values for each attribute. Figure 4 illustrates the “shuffling” procedure. In the example, O1,1

has rank values of two and six for attributes a1 and a2, respectively. Therefore, map workers
produce two key-value pairs, (O1,1,< a1, 2 >) and (O1,1,< a2, 6 >), for O1,1. After shuffling
those two pairs, the reduce worker generates an (OID, Ranks) pair for object O1,1 as a key-value
pair, which is (O1,1,<< a1, 2 >,< a2, 6 >>). Each reduce worker dispatches (OID, Ranks) pairs to
the coordinator.

O1,2 1

O1,1 2

O3,1 3

O3,3 4

O2,1 5

O2,2 6

O3,2 7

O2,1 1

O2,2 2

O3,2 3

O3,3 4

O1,2 5

O1,1 6

O3,1 7

R
an

k
on

 a
1

R
an

k
on

 a
2

O1,2 <a1, 1>

O1,1 <a1, 2>

O3,1 <a1, 3>

O3,3 <a1, 4>

O2,1 <a1, 5>

O2,2 <a1, 6>

O2,1 <a2, 1>

O2,2 <a2, 2>

O3,2 <a2, 3>

O3,3 <a2, 4>

O1,2 <a2, 5>

O1,1 <a2, 6>

O3,1 <a2, 7>

O1,1 <<a1, 2>, <a2, 6>>

O1,2 <<a2, 5>, <a1, 1>>

O2,1 <<a1, 5>, <a2, 1>>

O2,2 <<a1, 6>, <a2, 2>>

O3,1 <<a2, 7>, <a1, 3>>

O3,2 <<a2, 3>, <a1, 7>>

O3,3 <<a1, 4>, <a2, 4>>

M
ap

pe
r

Reducer1

Reducer2

Reducern

OID AttrRank

OID Ranks

Figure 4. Shuffling.

Algorithms 2019, 12, 166 8 of 14

4.3. Worst Rank Computation

The coordinator computes the worst rank and corresponding worst rank attribute for each object.
Figure 5 illustrates the “worst rank computation” by the coordinator. In the example, O1,1 has rank
values of two and six for attributes a1 and a2, respectively. In the object, a2’s rank is the worst among
all attribute ranks. Therefore, the worst rank of O1,1 is six and the corresponding worst rank attribute
of O1,1 is a2. Therefore, the coordinator generates (O1,1,< a2, 6 >) as a key-value pair for O1,1.

ID a1 a2

O1,1 2 6

O1,2 1 5

O2,1 5 1

O2,2 6 2

O3,1 3 7

O3,2 7 3

O3,3 4 4

R
eA

rr
an

g
e

O1,1 < a2, 6 >

O1,2 < a2, 5 >

O2,1 < a1, 5 >

O2,2 < a1, 6 >

O3,1 < a2, 7 >

O3,2 < a1, 7 >

O3,3 < a1, 4 >

W
o

rs
t

V

al
u

e

OID Worst rankO1,1 <<a1, 2>, <a2, 6>>

O1,2 <<a2, 5>, <a1, 1>>

O2,1 <<a1, 5>, <a2, 1>>

O2,2 <<a1, 6>, <a2, 2>>

O3,1 <<a2, 7>, <a1, 3>>

O3,2 <<a2, 3>, <a1, 7>>

O3,3 <<a1, 4>, <a2, 4>>

OID Ranks

Figure 5. Worst rank computation process.

4.4. DC Sets Computation

The coordinator distributes the output pairs to the workers according to the worst rank attribute.
Figure 6 presents the “DC sets computation” procedure. As shown in the figure, pairs of O2,1, O2,2,
O3,2, and O3,3 are distributed to worker DC Comp1 for a1. Similarly, pairs of O1,1, O1,2, and O3,1 are
distributed to worker DC Comp2 for a2.

Each worker outputs DC sets for each object. In Figure 6, because object O2,1 has the worst rank
of 5 in a1, DC Comp1 outputs {O2,2, O3,2} as the DC set for O2,1. It should be noted that O2,2 and O3,2

have a greater rank than that of O2,1 in a1. Object O1,1 has the worst rank of 6 in a2 and DC Comp2

outputs the DC set member of O1,1 as {O3,1}. We calculate the DC sets for other objects similarly.

O1,2 1

O1,1 2

O3,1 3

O3,3 4

O2,1 5

O2,2 6

O3,2 7

O2,1 1

O2,2 2

O3,2 3

O3,3 4

O1,2 5

O1,1 6

O3,1 7

O2,1 < a1, 5 >

O2,2 < a1, 6 >

O3,2 < a1, 7 >

O3,3 < a1, 4 >

O1,1 < a2, 6 >

O1,2 < a2, 5 >

O3,1 < a2, 7 >

O2,1 {O2,2, O3,2}

O2,2 {O3,2}

O3,2 null

O3,3 {O2,1, O2,2, O3,2}

O1,1 {O3,1}

O1,2 {O1,1, O3,1}

O3,1 null

Output

DC Sets

R
an

k
 o

n
 a

1
R

an
k
 o

n
 a

2

D
C

 C
o
m

p
1

D
C

 C
o
m

p
2

Figure 6. Domination check (DC) sets computation process.

Algorithms 2019, 12, 166 9 of 14

4.5. Skyband and Dominating Objects Computation

Each map worker takes the previous DC sets as inputs and performs domination checks between
corresponding objects and DC sets to produce (µ/SB, Score) pairs, where the µ score is the number of
objects dominated by an object. In contrast, the SB score of an object is the number of dominant objects.
However, to compute either a µ score or SB score, our method does not need to perform a domination
check with any objects outside the DC sets. This advantage stems from the following theorem.

Theorem 1. For two objects {O, O′ ∈ DS}, if O′ is not in the DC set of object O, then O cannot dominate
object O′ (i.e., O ⊀ O′).

Proof. Let as be the worst rank attribute of O. If O dominates O′, O′ must be in the DC set of O
because O.as ≤ O′.as. If O′ is not in the DC set of O, it means O.as > O′.as. Therefore, O cannot
dominate O′.

Theorem 1 demonstrates that it is sufficient to perform a domination check between an object O
and the corresponding DC set to determine whether or not O is in the query results. To analyze this
result, recall object O2,1 and its corresponding DC set O2,2, O3,2. Because O2,1 has the worst rank of 5
for attribute a1, this means that this object has no possibility to dominate a higher rank object, such as
O2,1, O1,1, O3,1, or O3,3. This means we need to perform a domination check only between O2,1 and its
DC set {O2,2, O3,2}.

Figure 7 presents the skyband and dominating objects computation process. To compute
K-skyband, if we set K = 2, the query returns {O1,1, O1,2, O2,1, O2,2, O3,3} as the two-skyband
objects set, since the SB score values for these objects is less than 2. Then, our method outputs objects
O1,2 and O2,1 as the top-2 dominating result because both objects have the highest µ score value.

O2,1 {O2,2, O3,2}

O2,2 {O3,2}

O3,2 null

O3,3 {O2,1, O2,2, O3,2}

O1,1 {O3,1}

O1,2 {O1,1, O3,1}

O3,1 null

DC Sets Map

�-O2,1 2

SB-O2,1 0

SB-O2,2 1

SB-O3,2 1

�-O2,2 1

SB-O2,2 0

SB-O3,2 1

Map

Map

�-O3,3 0

SB-O3,3 0

SB-O2,1 0

SB-O2,2 0

SB-O3,2 0

Map

�-O1,1 1

SB-O1,1 0

SB-O3,1 1

�-O1,2 2

SB-O1,2 0

SB-O1,1 1

SB-O3,1 1

Map

�/SB Score

Map

Reducer
O1,1 � = 1

O1,2 � = 2

O2,1 � = 2

O2,2 � = 1

O3,1 � = 0

O3,2 � = 0

O3,3 � = 0

O1,1 SB = 1

O1,2 SB = 0

O2,1 SB = 0

O2,2 SB = 1

O3,1 SB = 2

O3,2 SB = 2

O3,3 SB = 0

Reducer

Reducer

OID �/SB Score

Reducer

Reducer

�-O3,2 0

SB-O3,2 0

�-O3,1 0

SB-O3,1 0
Map

Reducer

Figure 7. Skyband and top-k dominating computation.

After performing a domination check, each map worker produces two types of keys: the µ score
for the corresponding object and the SB score for all objects. If an object dominates another object in the
DC set, the µ score value of the corresponding object and SB score value of the dominated objects are

Algorithms 2019, 12, 166 10 of 14

incremented by 1. Next, all of the µ scores and SB scores are sent to the reduce workers. After applying a
“group-by” operation, the reduce workers can provide K-skyband and top-k dominating query results.

5. Performance Evaluation

This section presents the results from experimental runs to validate the effectiveness and efficiency
of the proposed method. First, to validate its efficiency with a variety of problem settings, Section 5.1
reports evaluation results using synthetic data with various experimental settings. Second, to evaluate
the performance of the proposed model on real datasets, Section 5.2 reports evaluation results for
the real-world FUEL dataset, which was extracted from “www.fueleconomy.gov”. A cluster of four
commodity machines was used for our experiments. Each machine had an Intel Core i7 3.4 GHz CPU
and 4 GB of memory. These machines were connected through a Gbps LAN connection. The operating
system used was CentOS 7.0 with Hadoop version 2.5.2. The algorithm was implemented in Java.

5.1. Synthetic Datasets

This section reports our evaluation results from applying the proposed method to synthetic
datasets. First, Section 5.1.1 discusses the effect of dimensionality. Second, Section 5.1.2 discusses the
effect of cardinality. Finally, Section 5.1.3 discusses the effect of skyband size. Following the common
methodology in the literature, we employ correlated, anti-correlated, and independent (uniform)
datasets [1].

5.1.1. Effect of Dimensionality

To study the effect of dataset dimensionality, we used datasets with the cardinality of 100K,
skyband size of K = 5, and dimensionality m ranging from 2 to 6. The runtime results for
this experiment are presented in Figure 8a–c. The results reveal that as dimensionality increases,
the performance of the proposed method gradually decreases. This degradation in performance was
caused by growth in the number of non-dominant objects in high dimensions. It should be noted that
the data distribution factor also influences algorithm performance. As the number of non-dominant
objects in the correlated dataset is fewer than that in the anti-correlated and independent datasets,
the algorithm with the correlated data generally requires less execution time than those with the other
data distributions. Execution on the correlated dataset is 10 times faster than on the independent
dataset and 12 times faster than on the anti-correlated dataset.

0

2000

4000

6000

2 4 6

Dimensionality

Runtime (sec.)

0

1000

2000

3000

4000

2 4 6

Dimensionality

Runtime (sec.)

0

100

200

300

400

2 4 6

Dimensionality

Runtime (sec.)

(a) Correlated (b) Independent (c) Anti-correlated

Figure 8. Performances with different data dimensions.

5.1.2. Effect of Cardinality

We similarly examined the efficiency of the proposed method with different cardinalities.
The results for varying cardinality are presented in Figure 9. For this particular test, we used a
dimensionality m of 6, skyband size of K = 5, and datasets cardinality ranging from 75,000 to 300,000.
Figure 9a–c present the results for the correlated, independent, and anti-correlated datasets, respectively.

www.fueleconomy.gov

Algorithms 2019, 12, 166 11 of 14

The proposed technique had the fastest runtime for all three data distributions when the cardinality is
low. However, as the data cardinality increases, the performance of the proposed method consistently
decreases. As expected for anti-correlated data, the proposed method fails to dominate a reasonable
number of objects, and the performance is worse than that for correlated and independent data.

0

2000

4000

6000

75k 150k 225k 300k

Cardinality

Runtime (sec.)

0

1000

2000

3000

4000

75k 150k 225k 300k

Cardinality

Runtime (sec.)

0

100

200

300

400

500

75k 150k 225k 300k

Cardinality

Runtime (sec.)

(a) Correlated (b) Independent (c) Anti-correlated

Figure 9. Performances for different cardinalities.

5.1.3. Effect of Skyband Size

We also examined the efficiency of the proposed technique with various skyband sizes. For this
evaluation, we used a data dimensionality m of 6, data cardinality of 100,000, and skyband size K
ranging from 2 to 8. Figure 10a–c present the runtime for the different distributions. As indicated
by the results, our method was affected by the skyband size. Our experimental results show that the
runtime increases dramatically as the skyband size increases. The large cardinality of non-dominating
objects causes this.

0

1000

2000

3000

4000

5000

2 4 6 8

Skyband Size

Runtime (sec.)

0

700

1400

2100

2800

3500

2 4 6 8

Skyband Size

Runtime (sec.)

0

200

400

600

800

1000

2 4 6 8

Skyband Size

Runtime (sec.)

(a) Correlated (b) Independent (c) Anti-correlated

Figure 10. Performances for different skyband sizes.

5.2. Performance on a Real Dataset

In this section, we analyze the effectiveness of the proposed algorithm based on the quality of
skyband objects retrieved from real-world data. The FUEL dataset contains 24,000 records with six
attributes and is related to a marketing campaign for vehicles. For this dataset, we conducted similar
experiments to those conducted on the synthetic datasets. For the dimensionality test, we used a data
cardinality of 24,000, skyband size of K = 4, and dataset dimensionality m varying between 3 and 6.
Figure 11a presents the results. Figure 11b presents the performance of the proposed algorithm when
varying cardinality from 12,000 to 24,000. The dimensionality m was 5, and the skyband size was
K = 4. In the final experiment, analyzed the performance with various skyband sizes. We used a data
cardinality of 24,000 and dimensionality m of 5. The time consumption is presented in Figure 11c.
For all experiments on the FUEL dataset, we observed similar characteristics to those resulting from
the synthetic datasets, which confirms the scalability of our algorithm on real datasets.

Algorithms 2019, 12, 166 12 of 14

0

60

120

180

240

300

2 4 6 8

Skyband Size

Runtime (sec.)

0

50

100

150

200

250

6k 12k 18k 24k

Cardinality

Runtime (sec.)

0

50

100

150

200

250

2 4 6

Dimensionality

Runtime (sec.)

(a) Varying

dimensionality

(b) Varying

cardinality

(c) Varying

skyband size

Figure 11. Experiments on the FUEL dataset.

5.3. Comparison with Existing Works

In this paper, we have proposed an efficient algorithm for computing the skyband and dominating
queries simultaneously by exploiting parallel distributed (MapReduce) computing environment.
Therefore, the main focus of the proposed algorithm is to distribute the computation process evenly
among distributed computing nodes, so that large data can be processed effectively. On the other hand,
both [27,28] considered distributing the computation based on hash mapping of the domain space.
Therefore, the data ratio within each grid cell might not be uniform after hash mapping. That means
the distribution of computation process among the computing nodes is not balanced. In contrast,
our proposed algorithm dynamically distributes the computation process among the computing nodes
based on the worst rank of the objects. Therefore, algorithms proposed in [27,28] are incomparable
with our algorithm.

6. Conclusions

We proposed a parallel distributed algorithm based on the MapReduce framework to solve
K-skyband queries and top-k dominating queries in this paper. In addition to the scalability provided
by the MapReduce, it can perform two different types of queries simultaneously. Extensive experiments
demonstrated the efficiency of our algorithm for both real-world and synthetic datasets.

The proposed algorithm can be extended to different directions. Future research should focus
on the computation of both types of queries on streaming datasets. In the future, we will research on
the potential of an efficient index-based (R-tree/B-tree) parallel distributed method. We also intent to
implement our algorithm using spark framework.

Author Contributions: M.A.S. and Y.M. conceived the original idea for the study, designed the system model,
and analyzed the experiment results. M.A.S. and H.T. performed the experiments and wrote the initial manuscript.
M.Q. and Y.M. revised the manuscript. All authors have confirmed and approved the submitted manuscript.

Funding: This work is supported by KAKENHI (16K00155, 23500180) Japan. Mahboob Qaosar is supported
by the Japanese Government MEXT Scholarship. Md. Anisuzzaman Siddique was supported by the Japanese
Government MEXT Scholarship.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Borzsonyi, S.; Kossmann, D.; Stocker, K. The skyline operator. In Proceedings of the IEEE International
Conference on Data Engineering (ICDE), Heidelberg, Germany, 2–6 April 2001; pp. 421–430.

2. Yiu, M.L.; Mamoulis, N. Efficient Processing of Top-k Dominating Queries on Multi-Dimensional Data.
In Proceedings of the VLDB Endowment, Vienna, Austria, 23–27 September 2007; pp. 483–494.

3. Papadias, D.; Tao, Y.; Fu, G.; Seeger, B. Progressive skyline computation in database systems. ACM Trans.
Database Syst. 2005, 41–82. [CrossRef]

http://dx.doi.org/10.1145/1061318.1061320

Algorithms 2019, 12, 166 13 of 14

4. Chomicki, J.; Godfrey, P.; Gryz, J.; Liang, D. Skyline with Presorting. In Proceedings of the IEEE International
Conference on Data Engineering (ICDE), Bangalore, India, 5–8 March 2003; pp. 717–719.

5. Godfrey, P.; Shipley, R.; Gryz, J. Maximal vector computation in large datasets. In Proceedings of the VLDB
Endowment, Trondheim, Norway, 30 August–2 September 2005; pp. 229–240.

6. Kossmann, D.; Ramsak, F.; Rost, S. Shooting stars in the sky: An online algorithm for skyline queries.
In Proceedings of the VLDB Endowment, Hong Kong, China, 20–23 August 2002; pp. 275–286.

7. Tan, K.L.; Eng, P.K.; Ooi, B.C. Efficient Progressive Skyline Computation. In Proceedings of the VLDB
Endowment, Roma, Italy, 11–14 September 2001; pp. 301–310.

8. Yuan, Y.; Lin, X.; Liu, Q.; Wang, W.; Yu, J.X.; Zhang, Q. Efficient computation of the skyline cube.
In Proceedings of the VLDB Endowment, Trondheim, Norway, 30 August–2 September 2005; pp. 241–252.

9. Xia, T.; Zhang, D. Refreshing the sky: The compressing skycube with efficient support for frequent updates.
In Proceedings of the ACM SIGMOD International conference on Management of Data, Chicago, IL, USA,
27–29 June 2006; pp. 491–502.

10. Chan, C.Y.; Jagadish, H.V.; Tan, K.L.; Tung, A.K.H.; Zhang, Z. On High Dimensional Skylines. In Proceedings
of the Extending Database Technology (EDBT) Conference, Munich, Germany, 26–31 March 2006;
pp. 478–495.

11. Li, C.; Ooi, B.C.; Tung, A.K.H.; Wang, S. DADA: A Data Cube for Dominant Relationship Analysis.
In Proceedings of the ACM SIGMOD International conference on Management of Data, Chicago, IL, USA,
27–29 June 2006; pp. 659–670.

12. Lin, X.; Yuan, Y.; Zhang, Q.; Zhang, Y. Selecting stars: The k most representative skyline operator.
In Proceedings of the IEEE International Conference on Data Engineering (ICDE), Istanbul, Turkey,
15–20 April 2007; pp. 86–95.

13. Chan, C.Y.; Jagadish, H.V.; Tan, K.L.; Tung, A.K.H.; Zhang, Z. Finding k-Dominant Skyline in High
Dimensional Space. In Proceedings of the ACM SIGMOD International conference on Management of Data,
Chicago, IL, USA, 27–29 June 2006; pp. 503–514.

14. Gong, Z.; Sun, G.Z.; Yuan, J.; Zhong, Y. Efficient Top-k Query Algorithms Using K-skyband Partition.
In Proceedings of the of Scalable Information Systems, Hong Kong, China, 10–11 June 2009; pp. 288–305.

15. Lin, X.; Yuan, Y.; Wang, W.; Lu, H. Stabbing the sky: Efficient Skyline computation over sliding
windows. In Proceedings of the IEEE International Conference on Data Engineering (ICDE), Tokoyo,
Japan, 5–8 April 2005; pp. 502–513.

16. Balke, W.T.; Güntzer, U.; Zheng, J.X. Efficient distributed skylining for web information systems.
In Proceedings of the Extending Database Technology (EDBT) Conference, Crete, Greece, 14–18 March 2004;
pp. 256–273.

17. Tao, Y.; Xiao, X.; Pei, J. Subsky: Efficient Computation of Skylines in Subspaces. In Proceedings of the IEEE
International Conference on Data Engineering (ICDE), Atlanta, GA, USA, 3–7 April 2006; p. 65.

18. Papadias, D.; Tao, Y.; Fu, G.; Seeger, B. An optimal and progressive algorithm for skyline queries.
In Proceedings of the ACM SIGMOD International conference on Management of Data, San Diego, CA, USA,
9–12 June 2003; pp. 467–478.

19. Dellis, E.; Seeger, B. Efficient Computation of Reverse Skyline Queries. In Proceedings of the VLDB
Endowment, Vienna, Austria, 23–27 September 2007; pp. 291–302.

20. Blanas, S.; Patel, J.M.; Ercegovac, V.; Rao, J.; Shekita, E.J.; Tian, Y. A comparison of join algorithms for log
processing in MapReduce. In Proceedings of the ACM SIGMOD International Conference on Management
of Data, Indianapolis, IN, USA, 6–10 June 2010; pp. 975–986.

21. Jiang, D.; Tung, A.K.H.; Chen, G. MAP-JOIN-REDUCE: Toward Scalable and Efficient Data Analysis on
Large Clusters. IEEE Trans. Knowl. Data Eng. 2011, 1299–1311. [CrossRef]

22. Vernica, R.; Carey, M.J.; Li, C. Efficient parallel set-similarity joins using MapReduce. In Proceedings of the
ACM SIGMOD International conference on Management of Data, Indianapolis, IN, USA, 6–10 June 2010;
pp. 495–506.

23. Apache. Apache Hadoop. Available online: https://hadoop.apache.org (accessed on 3 June 2019).
24. Park, Y.; Min, J.; Shim, K. Parallel Computation of Skyline and Reverse Skyline Queries Using MapReduce.

Proc. VLDB Endow. 2013, 6, 2002–2013. [CrossRef]
25. Tao, Y.; Lin, W.; Xiao, X. Minimal MapReduce Algorithm. In Proceedings of the ACM SIGMOD International

Conference on Management of Data, New York, NY, USA, 22–27 June 2013; pp. 529–540.

http://dx.doi.org/10.1109/TKDE.2010.248
https://hadoop.apache.org
http://dx.doi.org/10.14778/2556549.2556580

Algorithms 2019, 12, 166 14 of 14

26. Siddique, M.A.; Tian, H.; Morimoto, Y. k-dominant Skyline Query Computation in MapReduce Environment.
IEICE Trans. Inf. Syst. 2015, 1027–1034. [CrossRef]

27. Ezatpoor, P.; Zhan, J.; Wu, J.M.; Chiu, C. Finding Top-k Dominance on Incomplete Big Data Using MapReduce
Framework. IEEE Access 2018, 7872–7887. [CrossRef]

28. Guidan Chen, Y.W. Top-K Dominating Query Processing over Distributed Data Streams. Glob. J. Eng. Sci.
Res. Manag. 2018, 5, 13–23. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1587/transinf.2014DAP0010
http://dx.doi.org/10.1109/ACCESS.2018.2797048
http://dx.doi.org/10.5281/zenodo.1286792
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Preliminaries
	Skyband and Dominating Query Processing
	Data Map and Ranking
	Shuffling
	Worst Rank Computation
	DC Sets Computation
	Skyband and Dominating Objects Computation

	Performance Evaluation
	Synthetic Datasets
	Effect of Dimensionality
	Effect of Cardinality
	Effect of Skyband Size

	Performance on a Real Dataset
	Comparison with Existing Works

	Conclusions
	References

