fj algorithms @\Py

Article

Algorithmic Matching Attacks on Optimally
Suppressed Tabular Data

Kazuhiro Minami 23* and Yutaka Abe 13

1 Department of Statistical Science, School of Multidisciplinary Sciences, The Graduate University for

Advanced Studies (SOKENDALI), Shonan Village, Hayama, Kanagawa 240-0193, Japan
2 The Institute of Statistical Mathematics, 10-3 Midori-cho, Tachikawa, Tokyo 190-8562, Japan
3 National Statistics Center, 19-1 Wakamatsu-cho, Shinjuku-Ku, Tokyo 162-8668, Japan
* Correspondence: kminami@ism.ac.jp; Tel.: +81-50-5533-8533

check for
Received: 30 June 2019; Accepted: 8 August 2019; Published: 11 August 2019 updates

Abstract: The objective of the cell suppression problem (CSP) is to protect sensitive cell values in
tabular data under the presence of linear relations concerning marginal sums. Previous algorithms
for solving CSPs ensure that every sensitive cell has enough uncertainty on its values based on the
interval width of all possible values. However, we find that every deterministic CSP algorithm is
vulnerable to an adversary who possesses the knowledge of that algorithm. We devise a matching
attack scheme that narrows down the ranges of sensitive cell values by matching the suppression
pattern of an original table with that of each candidate table. Our experiments show that actual ranges
of sensitive cell values are significantly narrower than those assumed by the previous CSP algorithms.

Keywords: statistical disclosure control; cell suppression problem; integer linear programming

1. Introduction

The cell suppression problem (CSP) [1] has been studied for many years to properly protect
sensitive information in tabular data. The goal of CSP is to determine a set of suppressed cells that
ensure sufficient uncertainty of the values of sensitive cells under the presence of linear relations
concerning marginal sums in the table. Since CSP is known to be NP-hard, many researchers
have previously developed efficient approximate or heuristics-based algorithms [2—4]. Particularly,
the algorithm [1] based on the technique of Benders decomposition [5] has been adopted for
tools for statistical disclosure control (SDC), such as T-ARGUS [6], SDCLink [7] and sdcTable [8],
because that algorithm guarantees to produce optimal solutions while running efficiently in many
realistic situations.

Previous research on CSP [9] has defined the safety of a suppressed table based on the notion
of a feasibility interval. We represent a suppressed cell by a variable that takes an unknown value
and examine the set of all possible values for that variable. When multiple variables are subject
to linear constraints in CSP, the range of each variable becomes a linear segment between two end
points. We call such a segment the feasibility interval of a cell variable and quantify the safety of the
corresponding suppressed cell based on the width of the interval. Previous research [1] considers a
suppressed cell safe if the width of its feasibility interval is greater than a given threshold. To obtain
the feasibility interval of a suppressed cell, we solve two linear programming problems to obtain the
minimum and the maximum bounds of that cell variable subject to the linear constraints of marginal
sums. The previous algorithms implicitly consider each combination of values for suppressed cells
feasible as long as those values satisfy the constraints of marginal sums.

However, we find that it is possible to exclude some feasible combinations of values of suppressed
cell variables if we know that a deterministic CSP algorithm (e.g., References [2,10]) is used to suppress

Algorithms 2019, 12, 165; doi:10.3390/a12080165 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
http://dx.doi.org/10.3390/a12080165
http://www.mdpi.com/journal/algorithms
https://www.mdpi.com/1999-4893/12/8/165?type=check_update&version=2

Algorithms 2019, 12, 165 20f17

the original table. We can construct a candidate table of the original table by complementing its
suppressed cells with a feasible combination of cell values. If we apply the same suppression algorithm
to the candidate table, we are supposed to reproduce the same suppressed table. Otherwise, we
conclude that that particular combination of cell values never coincide with the suppressed cell values
of the original table. Since it is possible to enumerate all feasible combinations of suppressed cell
values by solving indefinite linear equations of marginal constraints involving cell variables, we devise
a systematic way of narrowing down the ranges of the feasibility intervals. In this paper, we assume
an adversary who tries to infer sensitive cell values in a publicly released suppressed table and that
the adversary possesses the knowledge of the CSP algorithm observing the Kerckhoffs” principle [11].

We develop a matching attack for computing the effective feasibility intervals of suppressed cells
in tabular data. The main idea is to compute the feasibility intervals of suppressed cells incrementally
while performing the matching test on the suppression pattern of each candidate table. If a candidate
table reproduces the suppression pattern of the original table, we consider that the cell values of
that candidate table feasible and expand the ranges of their effective feasibility intervals accordingly.
We assume that a deterministic CSP algorithm applies a pre-determined threshold for the minimum
width of a feasibility interval to each sensitive cell of a table. We find that the number of feasible
combinations of cell values largely depends on the dimension of the null space of a matrix representing
the linear constraints of the original table. That is, when the dimension of the null space is small,
the width of an effective feasibility interval is often significantly narrower than that assumed by the
CSP algorithm violating the security requirement of the minimum interval width.

We evaluate the effectiveness and computational performance of the proposed matching attack
with a large number of synthetically generated frequency tables in which the sensitivity of each
cell is determined by comparing its value with a given minimum frequency threshold. We use our
implementation of the CSP algorithm [7], which ensures a given minimum width threshold on the
feasibility interval of each sensitive cell. Our experiments demonstrate that the matching attacks are
both feasible and practical for tables of small and medium sizes compromising the safety of about 46%
to 83% of the sensitive cell values.

We summarize our contributions in this paper as follows:

1. We devise the new matching attack scheme on a suppressed table to narrow down the ranges of
sensitive cell values exploiting the fact that some algorithms for CSP are deterministic.

2. We implement the matching attack, which systematically enumerates all the combinations of
candidate values for suppressed cells, performs the matching test on each candidate table and
computes the effective feasibility intervals of sensitive cells.

3. We experimentally show that the proposed attack is effective to a large number of synthetically
generated frequency tables and that there is a significant risk of many sensitive cell values being
identified exactly.

The rest of the paper is organized as follows. Section 2 describes the formulation of the CSP
introducing the notion of the feasibility interval, based on which we determine the safety of suppressed
tabular data. We finally define our adversary model justifying our assumptions on the capability of an
adversary. Section 3 describes the matching attack that systematically examines all candidate tables
and performs the matching test, and Section 4 demonstrates the effectiveness of the matching attacks
experimentally. Section 5 discusses related work and Section 6 concludes.

2. Background

In this section, we first formulate the cell suppression problem (CSP) introducing the notion of
the feasibility interval. Previous algorithms for CSP implicitly use the safety definition for suppressed
tables based on the minimum width of the feasibility intervals of sensitive cells. We next define the
adversary model, justifying our assumptions on an adversary’s knowledge on the CSP algorithm and
its security parameters for inputs to the algorithm.

Algorithms 2019, 12, 165 30f17

2.1. Disclosure Risks in Tabular Data

We first describe disclosure risks in tabular data, which contain sensitive information on
individuals. Tabular data are produced from microdata that consist of records of an individual
respondent’s variables (i.e., attributes) such as age, income and so on. There are two types of tabular
data—frequency tables and magnitude tables. Both types of tables classify records of microdata into
a set of cells that correspond to a particular value combination of grouping variables. For example,
Figure 1 shows a pair of frequency and magnitude tables whose cells are crossed by two variables M
and P. The variables M and P represent a geographical region where the respondent of a record resides
and that respondent’s occupation, respectively. Both variables are categorical variables whose domains
are a finite set of discrete values. The frequency table on the left shows the numbers of respondents
that belong to each cell of the table. The magnitude table on the right shows the income sums of those
in each cell. We here assume that there is another quantitative variable income I in each record of
the microdata.

Occupation
P1 PZ P3 P4 P5 SUm
g| M [20 | 15 | 30 | 20 | 10 | 95
Frequency 217, [0 (1) 30 | 10 | 133
table o \
| My | 38 | 38 | 15\ 40 (2)] 133
sum [130 | 73 | 46 [\ 90 | 22\ 361
P | P | Py [[P | Ps [[sum
. M, | 360 | 450 | 720 J 400 | 360 |[2290
Magnitude : ¢
table M, | 1440 | 540 |(22)| 570 | 320 2892
M; | 722 | 1178 | 375 | 800 |(363)| 3438
Sum | 2522 | 2168 | 1117 | 1770 | 1043 | 8620

Income sums

Figure 1. Disclosure scenarios with example frequency and magnitude tables.

Now we suppose that an adversary knows that someone possesses attributes M, and P; and
that that person’s record is included in the tables in Figure 1. Those attributes of a person are
easily observable to her neighbors. Since there is a single respondent with the attributes M, and P,
the adversary can identify that respondent uniquely. If the adversary also obtains the magnitude
table in Figure 1, he can infer the exact amount of salary of the identified respondent, which appears
in cell (M, P3) of the magnitude table. Therefore, a respondent who belongs to a cell of a single
unit has a significant risk of disclosing his sensitive information to an adversary who can learn some
of the respondent’s attributes. Similarly, there is a disclosure risk in a cell with a small number of
units. For example, consider cell (M3, P5) with two units in the frequency table in Figure 1. This time,
we assume an internal adversary who himself contributes to cell (M3, P5) as a respondent. If he can
identify another respondent in cell (M3, P5) by knowing his attribute values, the adversary can infer
the income of that respondent by subtracting the amount of his salary from the value in (M3, Ps) of the
magnitude table. In general, we model an adversary as a set of colluding respondents who contribute
their records to tabular data and thus consider cells with low frequency in a table unsafe.

2.2. Overview of the Cell Suppression Problem (CSP)

We protect sensitive information in tabular data by suppressing the values of unsafe cells that
are determined by applying some sensitivity rule [9] to each cell of the table. For example, we apply
the minimum frequency rule to a frequency table such that each cell will be suppressed if its value

Algorithms 2019, 12, 165 40f17

is less than a given threshold for the minimum frequency. We call this process primary suppression
and call suppressed cells in primary suppression primary suppressed cells accordingly. However,
to perform primary suppression on a table is not sufficient to protect sensitive cell values because
it is usually trivial to restore the original values by utilizing linear relationships among cell values
concerning marginal sums. We, therefore, perform secondary suppression that additionally suppresses
the values of non-sensitive cells to prevent an adversary from recomputing the cell values of primary
suppressed cells. We call non-sensitive cells that are suppressed in secondary suppression secondary
suppressed cells.

We illustrate this two-stage cell suppression procedure with an example of a frequency table in
Figure 2. We first determine sensitive cells using the minimum frequency rule with a threshold value
of 10. In this example, we determine that cell (M, P;,) is sensitive and suppress that cell value in the
process of primary suppression. Since it is trivial to restore the suppressed value by considering a linear
relationship either on the row sum or the column sum, we additionally suppress three non-sensitive
cells (Ml, Pz), (Mz, P1), and (Mz, Pz).

Py P, P3 | Sum Py P, P3 | Sum

M, | 7 | 11 [60 | 78 Primary M, | - | 11 | 60 | 78
suppression
M, | 10 | 60 | 11 | 81 |——=—=——< | M, | 10 | 60 | 11 | 81

Ms 60 12 60 132 Ms 60 12 60 132
Sum | 77 83 131 | 291 Sum | 77 83 131 | 291
Secondary

suppression

P, | P, | P | Sum
M, | - « |60 | 78
M, | * « 11 | 81
M; | 60 | 12 | 60 | 132
sum| 77 | 83 | 131 | 201

Figure 2. Two-step procedure for protecting sensitive cells in a frequency table. We consider the
cell (M, Py) sensitive because its value—7—is smaller than the minimum frequency threshold—10.
We represent primary and secondary suppressed cells by symbols — and * respectively.

It is, however, not clear whether this particular choice of secondary suppressed cells adequately
protects sensitive information in the primary suppressed cell. Also, we need to minimize information
loss due to secondary suppression while protecting the value of the primary suppressed cell.
We therefore define CSP at a high level as follows:

Definition 1 (Cell Suppression Problem (CSP)). Given a secondary suppressed table T and a set S of primary
suppressed cells in T, CSP determines a set S’ of secondary suppressed cells with the minimum information loss
under the constraint that the value of each primary suppressed cell p € S is properly protected.

We next describe the security definition on a primary suppressed cell in Section 2.3 and
formulate the optimization problem of minimizing information loss in the framework of integer
linear programming (ILP) in Section 2.4.

2.3. Safety of Suppressed Tabular Data

To determine whether a given choice of secondary suppressed cells properly protects the values
of primary suppressed cells, we need to verify that each primary suppressed cell has enough
uncertainty on its value under the presence of linear relations concerning marginal sums. We consider
a two-dimensional table T of r rows by ¢ columns without loss of generality. Figure 3 shows linear

Algorithms 2019, 12, 165 50f17
relations in table T. We denote by a;; the value of cell (i,j) in T and express the linear relations on
marginal sums as follows:

Y1 4ij = Ai(c11) for every row i, and 1)

Yi—14ij = Aap41). forevery columnj.)

We also assume that every cell takes a non-negative value as in the case of a frequency table,
that is,

a;; >0 for every cell (i,7) (3)
¢ columns
ar .. Ale a](c+1) ¢
R > aij =ayery i=1,..7
arl <o e Ar(c+1) =t
A+l - Arr)e| A1) ()

r
Zaijza(TJrl)j j:1,...,c

i=1

Figure 3. Linear relationships among cell values concerning marginal sums. We denote the value of a
cell (i, j) by a;;. Since there are r rows and ¢ columns in the table, there are r + c linear equations.

Suppose that we suppress some cells in T and obtain a suppressed table T’. To quantify the
uncertainty of suppressed cell values in T’, we introduce a cell variable x;; for each cell (i,) of T".
We also introduce the notion of a suppression pattern y, which is a binary matrix of the same size as
table T'. The suppression pattern y specifies which cells in table T’ are suppressed such that:

1 if cell (i,}) in tabel T/ is suppressed

0 otherwise

We can obtain the lower bound x;; of each primary suppressed cell (i,j) by solving the ILP

problem below.
minimize Xij ®
C
Subject to 2 xij = xi(c+l) fOI' every Trow i (6)
j=1
r
Z Xij = X(r41)c for every column @
i=1
xij = a;; if forevery cell (i,f) with y;; = 1 ®
xij >0 forevery cell (i,) ©

Equation (8) sets the value for xjj to be the actual cell value a;; if that cell is suppressed in T’,
which is indicated by the value y;; in suppression pattern y. Similarly, we can obtain the upper bound
xjj of cell (i,7) by computing the maximum value of x;j under the same constraints (6)-(9) of the above
ILP problem.

We now define the feasibility interval of a suppressed cell in table T’ as follows.

Algorithms 2019, 12, 165 60of 17

Definition 2 (Feasibility interval). Given a suppressed table T" with a suppression pattern y, the feasibility
interval for a suppressed cell (i,) is an interval [x;;, X;;] between the lower and upper bounds of cell variable x;;
and its width is defined as the delta between the two end points; that is,

wjj = Xjj — ﬁ (10)

We quantify the uncertainty of a primary suppressed cell with the width of its feasibility interval
and require that the width of the feasibility interval of every primary suppressed cell is greater than a
given threshold value ¢ for the minimum width, as shown in Figure 4.

Feasibility
interval

Threshold 6 4

/
/

& S
<€ >

/
»

i ! !
Clj‘ij aij m

Lower bound Cell value Upper bound

\
]
i ’
i
:
|

Figure 4. The safety condition on a primary suppressed cel at (i, j) based on the notion of its feasibility
interval. The thick line represents the feasibility interval of a cell. A parameter J is a threshold value
for the minimum width of the feasibility interval.

We consider that a suppressed table T’ is safe if every primary suppressed cell in T’ is safe.

Definition 3 (Safety of a suppressed table T"). Given a suppressed table T' with a suppression pattern y,
a set of primary suppressed cells P, and a minimum threshold 5, we say that a table T' is safe if, for every primary
suppressed cell (i,j) € P,

wij > 1) (11)
holds.

Example 1. Consider the secondary suppressed table T' in Figure 2. Suppose that the minimum width & for
feasibility intervals is 10. we compute the lower and upper bounds x11 and X171 of the primary suppressed cell
(1,1) with the following constraints.

x11 + x12 + x13 =78 (12)
X1 + X202 + X23 = 81 (13)
X31 + X33 + x33 = 132 (14)
X11 + X1 +x31 =77 (15)
X12 + x22 + x3p = 83 (16)
x13 + X23 + x33 = 131 (17)
x13 = 60 (18)

Xp3 = 11 (19)

X3, = 60 (20)

Xy =12 1)

X33 = 60 (22)

(X11, X12, X13, X21, X22, X23, X31, X32, X33,) > 0, (23)

Algorithms 2019, 12, 165 7 of 17

which can be simplified by eliminating variables for non-suppressed cells as follows.

X114 X132 = 78 — 60 (24)
o + xXop = 81 — 11 (25)
X1+ Xa1 = 77 — 60 (26)
X2+ X3 = 83 — 12 27)
X13 + x3 + x33 = 131 (28)
(x11, %12, %21, X22) > 0 (29)

By solving the two problems of ILP, we obtain x11 = 0 and X117 = 17 respectively. Therefore, the feasibility
interval wy; = 17 — 0 > 10 = 6. Since a cell (1,1) is the only primary suppressed cell in T', we conclude that
table T’ is safe.

2.4. Cell Suppression Problem (CSP)

We now formulate the CSP. Obviously, the more we suppress cells in a table, the greater the
uncertainty of the value of each suppressed cell is and thus the safer the table is. However, if we
suppress too many cells, the suppressed table with such significant information loss is not useful for
any data analysis. Therefore, we aim to minimize information loss due to secondary suppression.
The goal of solving a CSP for a given table is to determine the minimum set of cells to be suppressed
that is sufficient to protect sensitive information in primary suppressed cells.

We formulate CSP as an optimization problem of minimizing information loss under the safety
condition in Definition 3 as follows.

Definition 4 (Cell suppression problem (CSP)). Given a table T, a set of primary suppressed cells P, and a
threshold 6 for the minimum width of a feasibility interval, a CSP determines the suppression pattern y such that:

r o c

minimize Y Yy (30)
i

subject to w;; > & for every primary suppressed cell x;; € P, (31)

where w;j is the width of cell (i, j)'s feasibility interval in Definition 2.

For the simplicity of the presentation, we measure the information loss of a suppressed table by
the number of suppressed cells as given in Equation (30). Our matching attack in Section 3 is applicable
to any goal function of CSP.

2.5. Adversary Model

An adversary in this paper tries to infer sensitive cell values in a publicly released table. We assume
that such an adversary knows the suppression algorithm for solving CSPs based on the Kerckhoffs’
principle [11], which is one of the basic principles in cryptography. T-ARGUS [6], which is a software
program for solving a CSP, are publicly available with its source code and manual [12] that describes
the algorithms in detail. We also assume that an adversary knows security parameters, such as
threshold values for the minimum frequency of cell values and the minimum width of a feasibility
interval, because researchers who conduct data analysis on microdata at a secure on-site (e.g., [13])
need to know output checking rules to get a permission from an output checker at a statistics office
to bring their produced tables back home. For example, Statistics Netherlands publishes reference
guidelines for output checking [14], which mentions 10 units as the minimum frequency of cell values
in frequency tables. National Statistics Center in Japan publishes information on output checking rules
including security parameters for tabular data at [15].

Algorithms 2019, 12, 165 8of 17

Even if a statistics agency keeps security parameters secret, an adversary can narrow down the
ranges of those parameters by examining published suppressed tables, which are determined to be
safe. We argue that security by obscurity does not work for CSP because the ranges of those security
parameters are significantly smaller than key space in cryptography and we cannot change security
parameters randomly as we do for a secret key in cryptography when they are disclosed by malicious
insiders. The adversary can utilize the fact that a threshold for the minimum frequency must be
smaller than any cell value of a published table and that a threshold for the minimum width of a
feasibility interval must be smaller than the feasibility interval of any suppressed cell in published
tables. Remember that the feasibility interval of each suppressed cell can be computed by solving the
two linear programming problems in Equations (5)—(9).

3. Matching Attack

In this section, we describe the matching attack that eliminates a subset of candidate tables whose
suppression patterns generated by the same CSP algorithm do not match with that of the original table.
The attack computes the effective feasibility interval of each suppressed cell in the original table by
only considering the range of cell values in the matched candidate tables. The width of an effective
feasibility interval is possibly smaller than that defined in Definition 2, violating the safety property in
Definition 3. Note that our attack is applicable only to frequency tables in which a threshold for the
minimum width of the feasibility interval of each sensitive cell is determined independently of cell
values in a table.

3.1. Overview of the Matching Attack

We describe the matching attack on a secondary suppressed table produced by a deterministic
CSP algorithm. Our attack exploits the fact that such a deterministic algorithm always outputs the
same suppressed table from the same input table. For example, the optimal algorithm [10] and the
network flow algorithm [2] in T-ARGUS and the algorithm in SDCLink [7] are deterministic. The R
package sdcTable [8] uses one of the CSP algorithms in T-ARGUS underneath to solve a CSP.

Figure 5 shows a conceptual scheme of the matching attack. An adversary first obtains the original
suppressed table and enumerates every possible candidate table of the original table by complementing
the suppressed cells of the suppressed original table with values that satisfy the constraints in (1), (2),
and (3). The adversary next applies the CSP algorithm to each candidate table. We here assume that
the adversary knows the CSP algorithm and its security parameters as described in Section 2.5. If a
resulting suppressed table is the same as the suppressed original table, we consider that candidate
table a real candidate; otherwise, we eliminate it from the list of candidate tables.

Complement candidate cell values

: Suppressed

. Original original

: table \ table

i csP

E / algorithm Matchlng
Candidate \ Suppressed

candidate
table

tables

Figure 5. Conceptual scheme of the matching attack. The matching attack compares the original
suppressed table with each candidate table generated by complementing values to suppressed cells in
the original suppressed table.

Algorithms 2019, 12, 165 90f17

The main idea of the attack is to recompute the feasibility intervals of the suppressed cells in
the suppressed original table by only considering the range of cell values in the matched candidate
tables. We call the feasibility intervals recomputed with the real candidate tables the effective feasibility
intervals. On the other hand, the feasibility interval in Definition 2 considers all candidate tables
satisfying the linear and non-negativity constraints. Therefore, the width of the effective feasibility
interval of a suppressed cell could be smaller than that of the feasibility interval in Definition 2 such
that an adversary can infer that cell value more accurately than assumed by the CSP algorithm.

3.2. Enumerating Candidate Tables

We enumerate candidate tables by obtaining solutions of indefinite equations (1) and (2) involving
cell variables of suppressed cells in the original table. We assume that cell variables for non-suppressed
cells are replaced with the actual cell values as we do in Example 1 in Section 2.3. We denote the linear
equations in (1) and (2) in a matrix form as follows.

Ax=0b (32)

where A is the coefficient matrix, x is a column vector of cell variables, and b is a column vector of
marginal sums either on a row or a column. We here assume that we order cell variables in a table in a
sequential order either by row or column.

Let N(A) be the null space of matrix A such that

N(A) ={y e 2" [Ay = 0} (33)

where 7 is the number of cell variables and Z is the set of integers. If x1,x; € Z" are solutions to
Ax = b, thatis Ax; = band Axp, = b, then A(x; — xp) = 0. Thus, the difference between any two
solutions belongs to the null space N(A). Therefore, any solution to the equation Ax = b can be
expressed as the sum of a fixed solution v and some element in N(A); that is, the set S of all solutions
to Ax = b is defined as follows.

S={o+y|Av=DbAy e N(A)}. (34)

Since the null space is represented by the linear combinations of independent vectors, we can
enumerate all possible solutions that satisfy the non-negative constraints in (3) systematically.

Example 2. Suppose that we have a suppressed table in Table 1. There are four suppressed cells whose cell
variables are v1, v, U3, and vy, respectively.

Table 1. An example of a suppressed table. Each suppressed cell i is represented by a cell variable v;.

P P, P; Py Sum
M 15 15 12 10 52
Mz 19 X1 13 X2 55
M3 8 8 11 14 41
My 9 x3 26 x4 44

Sum 51 46 62 33 192

Then, the linear equations of the form Ax = b in (32) are represented as

110 0] [x 23
00 1 1| |x 9

— , 35
101 0] |x3 23 (35)
010 1| |x 9

Algorithms 2019, 12, 165 10 of 17

A vector v = [14,9,9,0]7 is a solution to Equation (35) and the null space N(A) is represented as
T
N(A) = {k[l 1 -1 1} | ke z} (36)

Since each variable takes a non-negative value, we represent the set S of all possible combinations of cell
values as

T T
s:{{m 9 9 o} +k[1 1 1 1] | keZ A 0§k§9} (37)

In this example, the dimension of the null space is 1, but, in general, the null space is represented
as a linear combination of multiple column vectors.

3.3. Algorithm for the Matching Attack

Our attack computes the effective feasibility interval of each suppressed cell by considering the
cell values of candidate tables whose suppression pattern matches with that of the original table.
We formally define the effective feasibility interval of a suppressed cell as follows.

Definition 5 (Effective feasibility interval). Suppose that the function solveCSP for solving a CSP takes
a table tbl and a list of security parameters parms as inputs and outputs a suppressed table stbl. Given a
suppressed table T’, the function solveCSP and its security parameters parm, the effective feasibility interval for
a suppressed cell (i, j) is defined as [xjj, ;] where

Xj =max{x; |x €S A V(i j):x; >0 A solveCSP(T'(x),parms) = T'}, and (38)
xjj =min{x;; |x €S A V(i j):x; >0 A solveCSP(T'(x),parms) = T'}. (39)

The width w;; of the effective feasibility interval [xjj, ;] is defined as
Wij = Xjj — Xjj. (40)

We denote S by the set of all solutions in (34) to Ax = b in (32) and T'(x) by the table whose suppressed
cells in T" are complemented with the values of a cell vector x.

Algorithm 1 shows the pseudocode of the matching attack, which computes the effective feasibility
intervals of suppressed cells in Definition 5. The algorithm takes a suppressed table stbl, a minimum
frequency t and a threshold width J for the minimum width of the feasibility interval of a suppressed
cell as inputs and outputs a list of actual feasibility intervals for the suppressed cells in the input
table stbl.

Line 1 obtains a list of cell variables in a suppressed table stbl. Each variable v; has an entry
vars[i], which maintains its minimum and maximum values. Lines 2-5 initialize each variable v;’s
minimum and maximum values to oo and 0, respectively. Line 6 generates the linear equations of
a matrix form (32) from the input suppressed table stbl by calling the function genLinearEquations,
which produces the coefficient matrix A representing the linear equations regarding marginal row
sums and column sums. Lines 7 obtains a fixed solution v to linear equations Ax = b by calling the
function getFixedSolution, which chooses the solution v closest to the origin of the coordinate system.
We implement this function using the IpSolve package [16] for ILP in the R language. Line 8 computes
the null space N(A) with the function getNullSpace. We represent the null space of A by the span of
column vectors in N(A). Line 9 enumerates all candidate solutions to Ax = b where x; > 0 for all i
and put them into set S. The function getAllSolutions adds each linear combinations of column vectors
in N(A) into the fixed solution v and put into set S if all the components of the resulting solution take
a non-negative value as specified in (34).

Algorithms 2019, 12, 165 11 of 17

Algorithm 1 Function matching Attack(Ty, s,)

Input: a suppressed table: stbl, a minimum frequency ¢, a threshold width: &
Output: a set of actual feasibility intervals for the suppressed cells: list

1: vars < getListOfVariables(stbl)
2: fori = 1to length(vars) do

3. vars[i].min < co

4 vars|i|.max <0

5: end for

6: (A,b) < genLinearEquations(stbl)
7: v < getFixedSolution(A, b)

8: N(A) < getNullSpace(A)

9: S < getAllSolutions(v, N(A))

10: for all solutions € S do

11: thl < complement(stbl, s)
12: stbl’ < solveCSP(tbl, t,6)
13: if stbl’ = stbl then

14: for each variable 7 in vars do

15: if s[i] < vars[i].min then

16: vars[i].min <+ sli]

17: else if s[i] > vars[i].max then
18: vars|i].max < s|i]

19: end if

20: end for

21: end if

22: end for

23: return vars

The for loop in lines 10-22 performs the matching test on every candidate table tbl and
incrementally obtain the effective feasibility interval of each suppressed cell in stbl. Line 11 prepares a
candidate table tbl by complementing suppressed cells in stbl with each solution s in the set S of all
solutions. Line 12 performs cell suppression on a candidate table tb! with the function solveCSP for
solving a CSP. As we discuss the adversary model in Section 2.5, we assume that an adversary uses the
same deterministic algorithm solveCSP and security parameters t and ¢ as is used to produce an input
suppressed table stbl. Line 13 checks whether a suppressed candidate table stbl’ is same as the input
table stbl. If so, lines 14-20 updates the feasibility intervals of each suppressed cell if the candidate cell
values are outside the current ranges of the feasibility intervals. After examining all possible solutions
for cell variables, line 23 returns a list of variables with their effective feasibility intervals.

4. Evaluation of the Matching Attacks

We evaluate the effectiveness of the matching attack in Section 3.1 experimentally using
synthetically generated tables. We measure how the matching attack narrows down the widths
of the feasibility intervals of primary suppressed cells by comparing them with those of the effective
feasibility intervals computed by Algorithm 1.

4.1. Setup

We implement the matching attack in Algorithm 1 in the R language. The program consists of
about 700 lines of code in total. Also, to implement the function solveCSP in that algorithm, we use our
implementation of the program for solving CSP based on the technique of Benders decomposition [5]
in the R language [7]. We prepare synthetic two-dimensional frequency tables for the experiments as
follows. We prepare 50 square tables of the same size in terms of the number of cells. We vary the
number of cells, 16, 25, 36, and 49. We set the value of each cell in those tables to a randomly drawn

Algorithms 2019, 12, 165 12 of 17

from a Gaussian distribution with the average 15 and the standard deviation 10. We choose a threshold
for the minimum frequency to be 5 and choose a threshold ¢ for the minimum width of the feasibility
interval of every sensitive cell to be 8.

We perform cell suppression on each synthetic table T; using the CSP algorithm and produce the
secondary suppressed table T/. We next perform the matching attack in Algorithm 1 on T/ with the
same security parameters. We conduct our experiments on a Mac pro with the 3.5 GHz 6-Core Intel
Xeon E55 processor and 64 GB main memory.

4.2. Safety of Primary Suppressed Cells

We first evaluate how many primary suppressed cells in the test tables are unsafe; that is,
the widths of their effective feasibility intervals are smaller than the minimum width of 8 in the
case of our experiments. Table 2 shows the ratios of unsafe primary suppressed cells whose effective
feasibility intervals become shorter than the threshold for the minimum width. The ratio for each table
size is computed by dividing the sum of unsafe primary suppressed cells by the sum of all primary
suppressed cells in 50 test tables of that size. The bar chart in Figure 6 displays the same results
graphically. The results show that about 46% to 83% of primary suppressed cells violate the safety
requirement in Definition 3. We observe that, as the size of a table becomes larger, the ratio of unsafe
cells increases.

We next examine how the ratio of unsafe cells depends on the dimension of the null space N(A)
of the coefficient matrix A of a suppressed table in Section 3.2. Table 3 shows the ratios of unsafe
cells by crossing tables with the dimensions of the null spaces and the number of cells in those tables.
The results show that the lower the dimension of the null space is, the higher the risk of having unsafe
cells in the table.

Table 2. The ratio of unsafe primary suppressed cells attacked by the matching algorithm. We count
the total sums of unsafe primary suppressed cells and primary suppressed cells in 50 different tables of

each size.
) #Unsafe Primary #Primary Ratio of
#Cells in a Table Suppressed Cells Suppressed Cells Unsafe Cells
16 48 104 0.46
25 117 170 0.69
36 190 230 0.83
49 226 271 0.83

o
S _
(32)
= #Unsafe cells
2 #Primary suppressed cells
3 4
N
o
S |
N

Frequency
150
Il

16 25 36 49
#Cells in a table

Figure 6. The number of unsafe primary suppressed cells compromised by the matching algorithm.
The left bar and the right bar of each table size show the number of unsafe primary suppressed cells
and that of primary suppressed cells, respectively.

Algorithms 2019, 12, 165

Table 3. The ratio of unsafe cells by crossing the dimension of the null space and table size.

Dimension of the Null Space

#Cells in a Table
2 3 4
16 0.83 042 0.17
25 1.00 071 0.57 0.83
36 1.00 0.87 0.78 0.82
49 0.81 0.89 0.73
Total 0.88 0.73 0.75 0.77

13 of 17

Figure 7 shows the number of candidate tables in dependence to the dimension of the null space
of a suppressed table in box plot graph. We show the results for each size of tables. We see that
when the dimension of the null space of a suppressed table is low, there are only a small number of
possible combinations of cell values, and, therefore, the widths of the effective feasibility intervals of
the suppressed cells become very slim.

3000 5000
P L

#Candidate tables

0 1000
.

_—

T
2 3
Dimension of null space

(a) Tables with 16 cells

#Candidate tables
5000 10000 15000
| | |

0
L

Dimension of null space

(c) Tables with 36 cells

#Candidate tables
6000
|

0 2000
L L

—_—

T T T
2 3 4
Dimension of null space

(b) Tables with 25 cells

10000 20000 30000
L

#Candidate tables

0
L

e

Dimension of null space

(d) Tables with 49 cells

Figure 7. The number of candidate tables in dependence to the dimension of the null space of a table.

4.3. Distributions of the Widths of the Effective Feasibility Intervals of Unsafe Cells

We next examine how accurately we can infer the ranges of unsafe cells. Table 4 shows the
distributions of the widths of the effective feasibility intervals of unsafe primary suppressed cells.
We show the same results in histograms in Figure 8. Surprisingly, we are able to determine the exact
values of about 40% of the unsafe cells in tables of 36 cells and 49 cells. These results show that
there are significant risks of revealing the exact values of sensitive cells under the presence of the

matching attack.

Algorithms 2019, 12, 165 14 of 17

Table 4. The distribution of unsafe cells with respect to their widths of the effective feasibility intervals.

#Cells in a Table Width of an Effective Feasibility Interval #Unsafe Cells

0 6
1 6
2 7
3 20
16 4 1
5 0
6 4
7 4
0 16
1 22
2 23
3 41
25 4 6
5 3
6 5
7 1
0 75
1 33
2 45
3 31
36 4 5
5 0
6 1
7 0
0 92
1 33
2 28
3 57
49 4 4
5 4
6 5
7 3
£, A . I —
0 1 2 3 a 5 6 7 =0 1 2 3 4 5 6 7
Width of an effective feasibility interval Width of an effective feasibility interval
(a)Tables with 16 cells (b)Tables with 25 cells
£ % £
<. e £ . T
0 1 2 3 4 5 6 o0 1 2 3 4 5 6 7

Width of an effective feasibility interval

(c)Tables with 36 cells

Width of an effective feasibility interval

(d)Tables with 49 cells

Figure 8. Distribution of the widths of effective feasibility intervals of primary suppressed cells.

Algorithms 2019, 12, 165 15 0f 17

4.4. Efficiency of the Attacks

We evaluate how efficiency we can perform matching attacks. We measure the average latency
of executing the matching attacks in Algorithm 1 on 50 different suppressed synthetic tables for each
table size. We use the proc.time function in the R language. Table 5 shows the average latency for tables
of varying number of cells from 16 to 36. We see that the average latency increases exponentially as the
table size grows because the numbers of the combinations of candidate cell values grow exponentially
and the CSP algorithm based on the Benders decomposition is an exponential-time algorithm in
the worst case. However, we believe that the matching attack is feasible with many of the publicly
published tables that contain only small number of suppressed cells.

Table 5. Latency of performing matching attacks. We take the average latency of 50 matching attacks
for each table size.

#Cells in a Table Latency (Second)

16 1.412
25 102.2
36 538.9

5. Related Work

To the best of our knowledge, there is no previous work on algorithmic attacks on optimally
suppressed tabular data.

However, several researchers [17,18] study the issue of algorithm-based attacks on anonymized
microdata in the context of privacy-preserving data publishing. The standard safety metrics for
anonymized microdata is k-anonymity [19] and its variants (e.g., [20,21]). The k-anonymity model
classifies tuple attributes into three categories: identifiers, quasi-identifiers (QIDs), and sensitive
attributes, and defines the notion of equivalence class where all tuples in the same class possess the
same set of values for the QIDs. The metrics of k-anonymity is syntactic in the sense that it requires
that the size of every equivalence class is greater than a given threshold k. Many k-anonymity
algorithms [22-26] are designed to achieve this property by generalizing values in QIDs while
minimizing information loss.

Wong et al [17] observes that most anonymization algorithms adopt the minimality principle
to minimize information loss based on some criteria, and shows that sensitive information could
be revealed from anonymized data based on the privacy metrics of [-diversity [20] if an adversary
knows that the algorithm divides tuples into equivalence classes depending on the values of sensitive
attributes. They also propose the primary metrics m-confidentiality that guarantees that an adversary
who additionally possesses the knowledge on the anonymization algorithm cannot have confidence of
more than 1/m on an individual’s sensitive attribute value.

Although the concept of m-confidentiality is similar to safety conditions on feasibility intervals,
which are extended to support continuous or ordered values, there is no efficient and systematic way
of solving the inverse problem to verify the conditions of m-confidentiality. It is in general necessary
to execute the anonymization algorithm with all possible instances of input microdata. On the other
hand, our contribution in this paper is to show experimentally that it is possible to eliminate a large
portion of possible candidate tables that could be an input to the CSP algorithm by conducting the
matching test.

Jin et al. [18], who are also motivated by the issue of information disclosure from /-diversified
anonymized data, establishes the requirements for algorithm-safe anonymization. The algorithm-safe
anonymization guarantees that the conditional probability on a given instance of original microdata
does not change even if the knowledge on the anonymization algorithm is added to the conditional
premise. Although they also identify conditions for algorithm-safe anonymization, that result is not

Algorithms 2019, 12, 165 16 of 17

directly applicable to algorithms for CSP. It is still not clear how to generate safe suppressed frequency
tables under the presence of the matching attack.

6. Conclusions

In this paper, we describe the novel matching attack to infer sensitive cell values of a suppressed
table exploiting the fact that the CSP algorithm, which is used to suppress a target table, is deterministic.
The key idea is to eliminate candidate tables whose suppression patterns do not match with that of the
target table. We experimentally demonstrate that the matching attack is successful to narrow down the
ranges of a large portion of sensitive cell values to be smaller than the specified minimum width of
their feasibility intervals. We show that when the dimension of the null space of the coefficient matrix
of a target table is low, there is significant risks of having unsafe cells whose values can be inferred
accurately within a small range. As future work we plan to explore the possibility of developing a
non-deterministic algorithm for CSP, which is resilient to the matching attack in this paper.

Author Contributions: K.M. devised the propsed attack scheme and implemented that attack method in the R
languages. Y.A. conducted experiments and data analysis for evaluation.

Funding: This work was supported by KAKENHI (Grant-in-Aid for Scientific Research A) Grant Number
16H02013 from Japan Society for the Promotion of Science (JSPS) and “Challenging Exploratory Research Projects
for the Future” grant from Research Organization of Information and Systems (ROIS).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

CSP Cell suppression problem
ILP Integer linear programming

References

1. Castro, J. Recent advances in optimization techniques for statistical tabular data protection. Eur. J. Oper. Res.
2012, 216, 257-269. [CrossRef]

2. Castro,]. Network Flows Heuristics for Complementary Cell Suppression: An Empirical Evaluation and
Extensions. In Inference Control in Statistical Databases, From Theory to Practice; Springer: London, UK, 2002;
pp- 59-73.

3. Giessing, S. Survey on Methods for Tabular Data Protection in ARGUS. In Privacy in Statistical Databases;
Domingo-Ferrer, J., Torra, V., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 1-13.

4. Smith,].E,; Clark, A.R,; Staggemeier, A.T.; Serpell, M.C. A Genetic Approach to Statistical Disclosure Control.
IEEE Trans. Evol. Comput. 2012, 16, 431-441. [CrossRef]

5. Benders, J.E. Partitioning procedures for solving mixed-variables programming problems. Numer. Math.
1962, 4, 238-252. [CrossRef]

6. tau-ARGUS Homepage. Available online: http://neon.vb.cbs.nl/casc/tau.htm (accessed on 10 August 2019).

7. Minami, K.; Abe, Y. Statistical Disclosure Control for Tabular Data in R. Rom. Stat. Rev. 2017, 65, 67-76.
sdcTable: Methods for Statistical Disclosure Control in Tabular Data. Available online: https:/ /cran.r-project.
org/web/packages/sdcTable/index.html (accessed on 10 August 2019).

9. Hundepool, A.; Domingo-Ferrer,].; Franconi, L.; Giessing, S.; Nordholt, E.S.; Spicer, K.; de Wolf, P.P. Statistical
Disclosure Control; Wiley: Hoboken, NJ, USA, 2012; ISBN 978-1119978152.

10. Fischétti, M.; Gonzélez,].].S. Models and Algorithms for Optimizing Cell Suppression in Tabular Data with
Linear Constraints. J. Am. Stat. Assoc. 2000. [CrossRef]

11. Kerckhoffs’ Law. In Encyclopedia of Cryptography and Security; van Tilborg, H.C.A., Jajodia, S., Eds.; Springer:
Boston, MA, USA, 2011; p. 675.

12. De Wolf, PP; Hundepool, A.; Giessing, S.; Salazar,].J.; Castro, J. tau-ARGUS Version 4.1 User’s Manual;
Statistics Netherlands: The Hague, The Netherlands, 2014.

http://dx.doi.org/10.1016/j.ejor.2011.03.050
http://dx.doi.org/10.1109/TEVC.2011.2159271
http://dx.doi.org/10.1007/BF01386316
http://neon.vb.cbs.nl/casc/tau.htm
https://cran.r-project.org/web/packages/sdcTable/index.html
https://cran.r-project.org/web/packages/sdcTable/index.html
http://dx.doi.org/10.1080/01621459.2000.10474282

Algorithms 2019, 12, 165 17 of 17

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Kikuchi, R.; Minami, K. On-site Service and Safe Output Checking in Japan. In Proceedings of the
Joint UNECE/Eurostat Work Session on Statistical Data Confidentiality, Skopje, North Macedonia, 20-22
September 2017.

Guidelines for the Checking of Output Based on Microdata Research. Available online: http://research.cbs.
nl/casc/ESSnet/GuidelinesForOutputChecking_Dec2009.pdf (accessed on 10 August 2019).

Use of Public Survery Microdata (Onsite Use) in Japan (Japanese). Available online: https://www.e-stat.go.
jp/microdata/data-use/on-site (accessed on 10 August 2019).

IpSolve. Available online: https://cran.r-project.org/web/packages/IpSolve/index.html (accessed on
10 August 2019).

Wong, R.C.W.; Fu, AW.C,; Wang, K; Pei,]. Minimality Attack in Privacy Preserving Data Publishing.
In Proceedings of the 33rd International Conference on Very Large Data Bases (VLDB 2007), Vienna, Austria,
23-27 September 2007; pp. 543-554.

Jin, X,; Zhang, N.; Das, G. Algorithm-safe Privacy-preserving Data Publishing. In Proceedings of the
13th International Conference on Extending Database Technology (EDBT 10), Lausanne, Switzerland,
22-26 March 2010; ACM: New York, NY, USA, 2010; pp. 633-644. [CrossRef]

Sweeney, L. k-anonymity: A model for protecting privacy. Int. J. Uncertain. Fuzziness Knowl.-Based Syst.
2002, 10, 557-570. [CrossRef]

Machanavajjhala, A.; Kifer, D.; Gehrke, J.; Venkitasubramaniam, M. L-diversity: Privacy beyond k-anonymity.
ACM Trans. Knowl. Discov. Data 2007, 1. [CrossRef]

Li, N,; Li, T; Venkatasubramanian, S. t-Closeness: Privacy Beyond k-Anonymity and l-Diversity.
In Proceedings of the IEEE 23rd International Conference on Data Engineering, Istanbul, Turkey, 11-15 April
2007; pp. 106-115. [CrossRef]

Fung, B.C.M.; Wang, K.; Yu, PS. Top-Down Specialization for Information and Privacy Preservation.
In Proceedings of the 21st International Conference on Data Engineering (ICDE’05), Tokoyo, Japan, 5-8 April
2005; IEEE Computer Society: Washington, DC, USA, 2005; pp. 205-216. [CrossRef]

LeFevre, K.; DeWitt, D.J.; Ramakrishnan, R. Incognito: Efficient full-domain K-anonymity. In Proceedings of
the 2005 ACM SIGMOD International Conference on Management of Data (SIGMOD ’05), Baltimore, MD,
USA, 14-16 June 2005; ACM: New York, NY, USA, 2005; pp. 49-60.

Samarati, P; Sweeney, L. Generalizing data to provide anonymity when disclosing information.
In Proceedings of the Seventeenth ACM SIGACT-SIGMOD-SIGART symposium on Principles of Database
Systems (PODS 98), Seattle, WA, USA, 1-4 June 1998; ACM: New York, NY, USA, 1998; p. 188. [CrossRef]
Sweeney, L. Datafly: A System for Providing Anonymity in Medical Data. Database Secur. XI 1998, 356-381.
[CrossRef]

Wang, K.; Philip, S.Y.; Chakraborty, S. Bottom-Up Generalization: A Data Mining Solution to Privacy
Protection. In Proceedings of the Fourth IEEE International Conference on Data Mining (ICDM ’04),
Brighton, UK, 1-4 November 2004; IEEE Computer Society: Washington, DC, USA, 2004; pp. 249-256.
[CrossRef]

® (© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

http://research.cbs.nl/casc/ESSnet/GuidelinesForOutputChecking_Dec2009.pdf
http://research.cbs.nl/casc/ESSnet/GuidelinesForOutputChecking_Dec2009.pdf
https://www.e-stat.go.jp/microdata/data-use/on-site
https://www.e-stat.go.jp/microdata/data-use/on-site
https://cran.r-project.org/web/packages/lpSolve/index.html
http://dx.doi.org/10.1145/1739041.1739116
http://dx.doi.org/10.1142/S0218488502001648
http://dx.doi.org/10.1145/1217299.1217302
http://dx.doi.org/10.1109/ICDE.2007.367856
http://dx.doi.org/10.1109/ICDE.2005.143
http://dx.doi.org/10.1145/275487.275508
http://dx.doi.org/10.1007/978-0-387-35285-5_22
http://dx.doi.org/10.1109/ICDM.2004.10110
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	Disclosure Risks in Tabular Data
	Overview of the Cell Suppression Problem (CSP)
	Safety of Suppressed Tabular Data
	Cell Suppression Problem (CSP)
	Adversary Model

	Matching Attack
	Overview of the Matching Attack
	Enumerating Candidate Tables
	Algorithm for the Matching Attack

	Evaluation of the Matching Attacks
	Setup
	Safety of Primary Suppressed Cells
	Distributions of the Widths of the Effective Feasibility Intervals of Unsafe Cells
	Efficiency of the Attacks

	Related Work
	Conclusions
	References

