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Abstract

:

In this study, we address the problem of compaction of Church numerals. Church numerals are unary representations of natural numbers on the scheme of lambda terms. We propose a novel decomposition scheme from a given natural number into an arithmetic expression using tetration, which enables us to obtain a compact representation of lambda terms that leads to the Church numeral of the natural number. For natural number n, we prove that the size of the lambda term obtained by the proposed method is O((slog2n)(logn/loglogn)). Moreover, we experimentally confirmed that the proposed method outperforms binary representation of Church numerals on average, when n is less than approximately 10,000.
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1. Introduction


The goal of this study is to obtain a compact lambda term (λ-term) that leads to the Church numeral of a given natural number. Church numerals are unary representations of natural numbers on λ-terms. Let C(n) be the Church numeral for natural number n; then C(n) is as follows:


C(n)=λf.λx.f(f⋯(f︷nx)⋯).











Namely, the length of the Church numeral increases linearly with n. We want a more compact representation for n in the scheme of λ-terms. We refer to this task as the compaction of Church numerals. Using a binary representation for n is a natural idea, which enables to obtain a λ-term whose size is Θ(logn). Another idea is to decompose n into an arithmetic expression and to represent it as a corresponding λ-term of the expression. This may reduce the size of the λ-term. For example, n=500 can be decomposed into 5×10×10. The λ-term corresponding to this expression is given as (λp.λq.λf.λx.p(q(qf))x)C(5)C(10), which is much smaller than C(500). In this idea, tetration can be used for the decomposition. Tetration is the next hyperoperation after exponentiation; it is defined as iterated exponentiation, e.g., the third tetration of two 32=222=16. Since a function for calculating ik on Church numerals is written as a λ-term whose size is O(i+k), the size of the λ-term for n=ik achieves o(logn).



In this paper, we propose the Recursive tetrational partitioning (RTP) method to decompose a natural number using tetration. We also present an algorithm to generate a compact λ-term by using RTP. Moreover, we prove that the size of the obtained λ-term is O((slog2n)logn/loglogn), where slog2n is super-logarithm, which is the inverse operation of tetration. It is slightly worse than O(logn), but we also prove that the size of the λ-term achieves O(slog2n) in some cases, and our experimental result shows that our method outperforms a binary representation on λ-term on average, when n is less than approximately 10,000.



The compaction of Church numerals can be applied to data compression. Kobayashi et al. [1] proposed a compression method called higher-order compression that uses extended λ-terms as the data model. Their method translates an input data to a compact λ-term and then encodes the obtained λ-term. When a pattern consecutively appears n times in the input, such a part can be represented as a λ-term with C(n). Thus efficient compaction of C(n) will help for higher-order compression when the data contains many repetitive patterns.



Yaguchi et al. [2] recently proposed an efficient algorithm for higher-order compression. They utilized a simply typed λ-term for efficient modeling and encoding. Differing from Kobayashi et al.’s method where each context occurring more than once in an input is extracted, Yaguchi et al.’s method extracts the most frequent context up to a certain size. They state in [2] that their method often achieves better performance than a grammar compression [3] with regard to compression ratio. Of course, their method can also be applied to the compaction of C(n), while it takes time for repeating context extraction. We confirmed via experiments that our method tends to produce more compact λ-terms for Church numerals than Yaguchi et al.’s method. Note that our method can be easily incorporated into Yaguchi et al.’s method.



Contributions: The primary contributions of this study are as follows.




	
For natural numbers, we propose a novel decomposition scheme called RTP, which enables to obtain a compact representation of λ-terms that leads to the Church numerals of the numbers.



	
By incorporating RTP, we propose an algorithm to perform the compaction of C(n) for natural number n. Moreover, we prove that the size of the λ-terms constructed by the algorithm is O((slog2n)logn/loglogn).



	
We implemented the proposed algorithm and conducted comparative experiments. With regard to the sizes of the obtained λ-terms, the results show that the method is superior to that of Yaguchi et al. [2] and is also superior to a binary representation on λ-term on average, when n is less than approximately 10,000.








Related studies: Better modeling for an input data leads better compression ratio. Since it is rare that we know the exact model for the input well beforehand, we usually use a universal source coding [4] or assume an appropriate model on the input to express the structure inherent in it. Kieffer and Yang [3] proposed grammar compression that uses a context-free grammar as the model. Grammar compression is a compression scheme that translates an input text into a set of context-free grammar rules, before encoding the rules. In grammar compression, a smaller set of rules gives a better compression ratio. Finding the optimal grammar is an NP-hard problem [5] but several excellent heuristic algorithms have been proposed for its solution [6,7,8,9,10,11]. Obtaining a smaller grammar is of great importance since most existing algorithms that work on grammar-compressed texts have running time dependent on the grammar sizes (see the excellent surveys e.g., [12,13]). Due to information theory arguments, any compression cannot be better than a binary encoding on all numbers. However, as stated in [1] and the above, higher-order compression can be better for a certain subset of numbers, i.e., for n=ik.



Composition: The rest of this paper is organized as follows. In Section 2, we review tetration, lambda notation, and Church numerals. In Section 3, we define the proposed RTP method and present the translation algorithm using RTP. We also prove the upper bound of the size of the λ-term produced by our algorithm. In Section 4, we discuss application to higher-order compression and present our experimental result. Conclusions are presented in Section 5.



Previously, one page abstract of this work has been published in the proceedings of Data Compression Conference 2016 [14]. This paper is the full version article of [14].




2. Preliminaries


2.1. Tetration and Super-Logarithm


Definition 1

(Tetration). For natural numbers φ and t, the t-th tetration of φ, denoted by tφ, is recursively defined as follows:


tφ:=1(ift=0),φ(t−1φ)(otherwise).













For example, 12=202=21=2, 22=212=22=4, 32=222=24=16, and 42=232=216=65536.



The following corollary is easily induced from Definition 1.



Corollary 1.

For natural numbers φ and t, it holds that logφtφ=t−1φ.





Definition 2

(Super-logarithm). Super-logarithm, denoted by slog, is the inverse operation of tetration, defined as slogφ(tφ)=t with natural numbers φ and t.





The iterated logarithm of n, denoted by log*n, is also known as the number of times the logarithm function must be applied to n before it becomes less than or equal to 1. For positive numbers, the super-logarithm is essentially equivalent to the iterated logarithm, i.e., it holds that log*n=⌈slogen⌉ for any n>0. However, note that in the O(.)-notation the size of super-logarithm depends on its base, that is, O(slogan)≠O(slogbn) if a≠b.




2.2. Lambda Terms


Definition 3

(Lambda terms (λ-terms)). Let x be a variable. Then, lambda term (λ-term) M is defined inductively as follows:


M::=x|λx.M|M1M2.













We call λ-terms formed λx.M and M1M2λ-abstraction and functional application, respectively. Let V1 and V2 be the sets of the variables occurring in M1 and M2, respectively, then, we identify M1 with M2 if there is an isomorphism from V1 to V2. M[x1:=M1,x2:=M2,…] denotes the λ-term such that all occurrences of x1,x2,… in M are replaced by M1,M2,…, respectively.



We show in parentheses “(“ and “)” the precedence of combining λ-terms. However, for simplicity, we omit these parentheses based on standard omission rules, that is, we consider that functional applications are left-associative and prior to λ-abstractions. For example, we consider M1M2M3 as (M1M2)M3 rather than M1(M2M3), and consider λx.M1M2 as λx.(M1M2) rather than (λx.M1)M2.



Definition 4

(β-reduction). Let x be a variable, and M1 and M2 be λ-terms. Then, β-reduction is a relation of λ-terms, denoted by using ⟶β, such that (λx.M1)M2⟶βM1[x:=M2]. We write ⟶β* for the reflexive transitive closure of ⟶β.





For example, (λx.M1xx)M2⟶βM1M2M2 because the right-side of ⟶β is (M1xx)[x:=M2]. Similarly, (λx.λy.xyy)M1M2⟶β*M1M2M2 because (λx.λy.xyy)M1M2⟶β(λy.M1yy)M2⟶βM1M2M2.



We define the sizes of λ-terms as follows. The definition can be found in [1].



Definition 5

(Sizes of λ-terms). Let x be a variable and M be a λ-term. Then, we denote the size of the λ-term by #M, and inductively define the size of each λ-term as follows:


#x=1,#(λx.M)=#M+1,#(M1M2)=#M1+#M2+1.













For λ-terms M1 and M2, we say that M2 is more compact than M1 if #M2<#M1. Compaction of a λ-term M1 means to find a λ-term M2 such that M1N⟶β*M′ and M2N⟶β*M′ for every N with a λ-term M′, and #M2<#M1.



In this paper, we assume Word RAM as the computational model. Thus, we ignore the size of names and pointers when we discuss size and space.




2.3. Church Numerals


It is known that natural numbers are represented as Church numerals on λ-terms. Also, some λ-terms enabling arithmetic operations on Church numerals are provided.



Definition 6

(Church numerals). For natural number n, its Church numeral, denoted by C(n), is


C(n):=λf.λx.f(f⋯(f︷nx)⋯).













Corollary 2

(Arithmetic operations on Church numerals). Let n1 and n2 be natural numbers. Then we obtain three λ-terms Add(n1,n2), Mul(n1,n2), and Tet(n1,n2), such that Add(n1,n2)⟶β*C(n1+n2), Mul(n1,n2)⟶β*C(n1·n2), and Tet(n1,n2)⟶β*C(n2n1), respectively, as follows:


Add(n1,n2)=(λp.λq.λf.λx.pf(qfx))C(n1)C(n2),Mul(n1,n2)=(λp.λq.λf.λx.p(qf)x)C(n1)C(n2),Tet(n1,n2)=(λp.λf.λx.pp⋯p︷n2fx)C(n1).













As can be seen in Corollary 2, in each λ-term, one λ-abstraction occurs first, and one or two Church numerals follow it. We call the former λ-abstraction and the following Church numerals function term and argument terms, respectively. For example, for Add(n1,n2), (λp.λq.λf.λx.pf(qfx)) is the function term and the following C(n1) and C(n2) are the argument terms.




2.4. Binary Expression of Natural Numbers on λ-Terms


Instead of Church numerals, we can represent natural numbers on λ-terms based on binary representation as follows [15].



Definition 7

(Binary representation on λ-terms). For natural number n, assume that its binary representation is BkBk−1⋯B2B1 with Bi∈{0,1} for 1≤i≤k. Then, the binary expression of n on λ-terms, denoted by B(n), is


B(n):=bB1(bB2⋯(bBk−1(bBk(λx.x)))⋯),








where b0=λp.λf.λx.pf(pfx) and b1=λp.λf.λx.f(pf(pfx)).





For example, the binary expression of 57 is 111001, then its binary expression on λ-terms is b1(b0(b0(b1(b1(b1(λx.x)))))).



Note that B(n)⟶β*C(n) and #B(n)=Θ(logn) follows Definition 7, while #C(n)=Θ(n).





3. Proposed Method


3.1. Basic Idea


Let n be a natural number. As stated in Section 1, we can reduce #C(n) by using decomposition of n into an arithmetic expression. For the example, for n=500, we can decompose it to an arithmetic expression 5·10·10 (more precisely, (5·10)·10). A corresponding λ-term M of the expression is obtained as M=(λp.λq.λf.λx.p(qf)x)((λp.λq.λf.λx.p(qf)x)C(5)C(10))C(10), and its size is 85, while #C(500)=1003. Here, M⟶β*C(500). Moreover, we can make M more compact by combining two λ-abstractions into a single λ-abstraction, such as (λp.λq.λf.λx.p(q(qf))x)C(5)C(10). This also generates C(500) through β-reduction similar to M, while its size is just 51.



We perform compaction of C(n) in the following three steps.




	Step 1:

	
Decompose n into a special form of arithmetic expression, called TAE.




	Step 2:

	
Translate the arithmetic expression into a λ-term having the form of MC(φ*).




	Step 3:

	
Apply the above Step 1 and 2 for the natural number φ* recursively.









For Step 1, we introduce TAEs in Section 3.2. For Step 2, we describe a translation method in Section 3.3. There are many ways to achieve decomposition of a natural number into a TAE, and the size of the translated λ-term changes depending on the expression. Then, we consider how we effectively obtain a TAE such that the translated λ-term of the TAE is compact. We propose RTP in Section 3.4, which is a heuristic approach decomposing a natural number into a TAE. Finally, for Step 3, we discuss further recursive compaction of Church numerals in Section 3.5.




3.2. Tetrational Arithmetic Expression (TAE)


We define tetrational arithmetic expression (TAE), denote by E, as a special form of arithmetic expression.



Definition 8

(Tetrational arithmetic expressions (TAEs)). Let N be an arbitrary natural number. Then, tetrational arithmetic expression (TAE) E is inductively defined as follows:


E::=N|E+E|E·E|N2N1.











If the evaluated result of a TAE E is a natural number n, we write E[n] for the TAE. Especially, let Eφ denote a restricted form of TAE with a natural number φ, defined as


Eφ::=φ|Eφ+Eφ|Eφ·Eφ|tφ,








where t is an arbitrary natural number.





For example, 2·3+22 is a TAE, which is written as E[10] because its evaluated result is equal to 10. Similarly, 22·2+2 is also a TAE written as E2[10].



Informally speaking, reducing the number of natural numbers occurring in TAEs is effective for compaction of corresponding λ-terms, since it enables to reduce the number of the kinds of argument terms in the λ-terms; note that we can transform (λp.λq.λf.λx.pf(qfx))C(n1)C(n1) to (λp.λf.λx.pf(pfx))C(n1), for example. From this point of view, it is expected that the corresponding λ-term of Eφ[n] becomes compact when n is a multiple of φ. Let r=nmodφ and n¯=n−r. Thus, we consider TAE Eφ[n¯]+r instead of Eφ[n] itself.




3.3. Translation from TAE to λ-Term


Here, we consider how we translate an TAE Eφ[n¯] to a corresponding λ-term. A simple method is to translate each arithmetic operation occurring in Eφ[n¯] by using λ-terms stated in Corollary 2. For example, for E2[200]=32·(22·2+22)+22·2, the translated λ-term is obtained as


Add(Mul(Tet(2,3),Add(Mul(Tet(2,2),2),Tet(2,2))),Mul(Tet(2,2),2)).











As seen above, the corresponding λ-term seems to become long. However, we can translate the TAE to a compact λ-term.



Definition 9

(Corresponding functional λ-terms (CFLT)). Let n and φ be natural numbers. We say a λ-term M is a corresponding functional λ-term (CFLT) of TAE E[n] if both of the following conditions hold for M:




	1. 

	
M has the form of (λp.λf.λx.M^)C(φ), where M^ is a λ-term that contains no Church numerals.




	2. 

	
M⟶β*C(n).









For a given TAE E, We denote a CFLT of E by Λ(E).





For example, for E2[200]=32·(22·2+22)+22·2, one of its CFLTs is


Λ(E2[200])=(λp.λf.λx.ppp(λy.pp(λz.pfz)(ppfy))(pp(λw.pfw)x))C(2).



(1)







The size of the above (1) is 48, which is much smaller than #C(200)=403.



For TAE Eφ, the following lemma holds.



Lemma 1.

For any TAE Eφ, its CFLT exists.





Proof. 

We prove the lemma by induction. Considering λ-terms stated in Corollary 2, for Eφ=φ and Eφ=tφ, their CFLTs are obtained as


Λ(φ)=(λp.λf.λx.pfx)C(φ)andΛ(tφ)=(λp.λf.λx.pp⋯p︷tfx)C(φ),








respectively.



Let Eφ(1) and Eφ(2) be TAEs. Then, we assume that there are CFLTs of Eφ(1) and Eφ(2). Moreover, by Definition 9, we assume that Λ(Eφ(1))=(λp.λf.λx.M^(1))C(φ) and Λ(Eφ(2))=(λp.λf.λx.M^(2))C(φ). Here, CFLTs of Eφ+Eφ and Eφ·Eφ are obtained as


Λ(Eφ(1)+Eφ(2))=(λp.λf.λx.(λy.M^(1)[x:=y])((λy.M^(2)[x:=y])x))C(φ)andΛ(Eφ(1)·Eφ(2))=(λp.λf.λx.(λg.λy.M^(1)[f:=g,x:=y])(λy.M^(2)[x:=y])x)C(φ),








respectively.  □





For compaction, next we introduce simplification of λ-terms.



Definition 10

(Simplification of λ-terms). Let x be a variable, M1 and M2 be λ-terms, and ⟶˜β be a special β-reduction from (λx.M1)M2 to M1[x:=M2] which defined only if at least one of the following holds:




	1. 

	
x occurs in M1 only once (in other words, x is linear in M1),




	2. 

	
#M2=1.









Then, simplification is reflexive transitive closure of ⟶˜β.





By using simplification for (λx.M1)M2, we can reduce the size of the λ-term since #M1[x:=M2]=#M1+#M2−1 (if x occurs in M1 only once) or #M1[x:=M2]=#M1 (if #M2=1) holds, while #((λx.M1)M2)=#M1+#M2+2.



From the above discussion, we can translate a given TAE Eφ into a compact λ-term by applying simplification after translating Eφ into the CFLT in the manner of the proof of Lemma 1. We show the translating algorithm in Algorithm 1. The time complexity of Algorithm 1 depends on the total number of the occurrences of addition and multiple in the input TAE.





	Algorithm 1 Translation from Eφ to its CFLT.



	Input: Eφ



	Output: Λ(Eφ)



	  1: function translate(Eφ)



	  2:    if Eφ=φthen



	  3:        return (λp.λf.λx.pfx)



	  4:    else if Eφ=tφthen



	  5:        return (λp.λf.λx.pp⋯p︷tfx)



	  6:    else if Eφ=Eφ(1)+Eφ(2)then



	  7:        (λp.λf.λx.M^(1)):=translate(Eφ(1))



	  8:        (λp.λf.λx.M^(2)):=translate(Eφ(2))



	  9:        return (λp.λf.λx.(λy.M^(1)[x:=y])((λy.M^(2)[x:=y])x))



	 10:    else if Eφ=Eφ(1)·Eφ(2)then



	 11:        (λp.λf.λx.M^(1)):=translate(Eφ(1))



	 12:        (λp.λf.λx.M^(2)):=translate(Eφ(2))



	 13:        return (λp.λf.λx.(λg.λy.M^(1)[f:=g,x:=y])(λy.M^(2)[x:=y])x)



	 14:    end if



	 15: end function



	 16:



	 17: M:=translate(Eφ)



	 18: M*:= the λ-term generated by simplification of M



	 19: return(M*C(φ))







3.4. Recursive Tetrational Partitioning (RTP)


We consider how we obtain an effective Eφ[n¯] for given n¯ and φ in the sense that the CFLT becomes more compact. Eφ[n¯] is more effective if it consists of fewer arithmetic operations because the size of the CFLT increases with the number of arithmetic operations occurring in it. For example, for n¯=12 and φ=3, 3·3+3 is more effective than 3+3+3+3. We propose recursive tetrational partitioning (RTP), which is a heuristic method to find such an effective TAE for given n¯ and φ.



Definition 11

(Recursive tetrational partitioning (RTP)). Let n and φ≥2 be natural numbers, and r=nmodφ. Then, recursive tetrational partitioning (RTP) is a method of decomposing n into Eφ[n−r]+r. Let Tφ[n] denote a TAE generated by RTP, then RTP recursively decompose n in the manner described as follows:


Tφ[n]:=n(ifn≤φ),kφ·Tφ[pk−rk]+(kφ+⋯+kφ︷rk)+⋯+1φ·Tφ[p1−r1]+(1φ+⋯+1φ︷r1)+r(otherwise),








where k is the maximum natural number such that kφ≤n, and for 1≤i≤k, pi is the natural number such that 0≤pi·iφ<i+1φ and ri=pimodφ. Here, if pi−ri=0 or 1, we omit the corresponding terms or coefficients in the generated TAE, respectively.





For example, for n=201 and φ=2, Tφ[n]=T2[201]=32·(22·2+22)+22·2+1. In Definition 11, note that each coefficient (pi−ri) of iφ is a multiple of φ, and then, each Tφ[pi−ri] generates just Eφ[pi−ri] without any remainder.



Theorem 1.

For given natural numbers n and φ≥2, Tφ[n] is uniquely determined.





Proof. 

We prove the statement by induction. For n≤φ, the statement clearly holds. Otherwise, let k be the maximum natural number such that kφ≤n, n¯=n−(nmodφ), and P={pk,pk−1,⋯,p1} be a set such that


∑i=1kpi·iφ=n¯.



(2)







Then, it is sufficient to prove that P is uniquely determined for n¯ since k, n¯, and each ri are uniquely determined from n, φ, and P. By Definition 11, 0≤pi·iφ<i+1φ holds for 1≤i≤k. We assume that pk is not the maximum natural number such that pk·kφ≤n¯, then


n¯−pk·kφ≥kφ+(n¯modkφ)



(3)




holds. On the other hand,


∑i=1k−1pi·iφ<∑i=2kiφ≤kφ+(n¯modkφ)



(4)




also holds. By (3) and (4), ∑i=1kpi·iφ<n¯ holds. However, this contradicts to (2). Therefore, pk must be the maximum one. Similar discussion holds for pk−1,pk−2,⋯,p2, that is, for 2≤i≤k−1, pi is the maximum natural number such that pi·iφ≤n¯modi+1φ. By (2), p1 is unique if pk,pk−1⋯,p2 are unique. Hence, P is uniquely determined for n¯ and k.  □





Theorem 2.

For given natural numbers n and φ≥2, there exists a CFLT of Tφ[n].





Proof. 

By Definition 11, Tφ[n] has form of Eφ[n¯]+r, where r=nmodφ and n¯=n−r. By Lemma 1, for Eφ[n¯], there is a CFLT Λ(Eφ[n¯])=(λp.λf.λx.M^)C(φ). Then, a CFLT of Tφ[n] is obtained as


Λ(Tφ[n])=(λp.λf.λx.M^[x:=(f(f⋯(f︷rx)⋯))])C(φ).








 □





For the size of Λ(Tφ[n]), the following two lemmas hold.



Lemma 2.

For a given Tφ[n] with natural numbers n and φ≥2, let Na and Nm be the numbers of addition and multiplication occurring in Tφ[n], respectively. Also, for tetration n2n1, we call n2 second argument of tetration, then let Nt be the sum of second arguments of all tetration occurring in Tφ[n]. Then,


#Λ(Tφ[n])≤14Na+8Nm+2Nt+2r+2φ+6








holds with r=nmodφ.





Proof. 

By Definition 9, we assume that Λ(Eφ(i))=(λp.λf.λx.M^(i))C(φ). Then, the following holds:


#Λ(tφ)=#((λp.λf.λx.pp⋯p︷tfx)C(φ))=2t+7+#C(φ),



(5)






#Λ(tφ·Eφ(1))=#((λp.λf.λx.pp⋯p︷t(λy.M^(1)[x:=y])x)C(φ))



(6)






=#M^(1)+2t+7+#C(φ),



(7)






#Λ(Eφ(1)+Eφ(2))=#((λp.λf.λx.(λy.M^(1)[x:=y])((λy.M^(2)[x:=y])x))C(φ))=#M^(1)+#M^(2)+9+#C(φ).



(8)







By Definition 11, Tφ[n] has the form of Eφ+r, where Eφ is TAE inductively defined as Eφ::=tφ|tφ·Eφ|Eφ+Eφ with natural number t. Therefore, by Equations (5), (7), and (8),


#Λ(Eφ)≤6Na+4Nm+2Nt+3+4∑iM^(i)+#C(φ)=6Na+4Nm+2Nt+3+4(2Na+Nm)+#C(φ)=14Na+8Nm+2Nt+3+#C(φ).



(9)




holds. Note that, in (5), (7), and (8), the constant size 3 arise from λp.M, λf.M, and functional application of λ-abstraction and Church numeral C(φ), which do not appear in higher level λ-term as M^(i). Also note that pp⋯p︷t occurring in (6) is the λ-term generated by simplification. Then,


#Λ(Tφ[n])≤14Na+8Nm+2Nt+2r+3+#C(φ)=14Na+8Nm+2Nt+2r+2φ+6








follows (9).  □





Lemma 3.

For a given natural number n>8, there is a natural number φ such that 2≤φ≤⌊n⌋ and #Λ(Tφ[n])<#C(n).





Proof. 

Let φ=⌊n⌋ and r=nmodφ. By Definition 11, Tφ[n] has the form of φ·φ+r. Then, since r<φ,


#Λ(Tφ[n])=#Λ(φ·φ+r)=#((λp.λf.λx.p(pf)(f(f⋯(f︷rx)⋯)))C(φ))=2r+2φ+14<4φ+14≤4n+14



(10)




holds. By (10), the statement holds for n>15 because #C(n)=2n+3. For 8<n≤15, the statement holds when φ=3. Table 1 shows n, #C(n), and #Λ(Tφ[n]) in such cases.  □






3.5. Further Compaction


Let Λ(Tφ[n])=MC(φ). Hereinafter, we call M and C(φ) function term and argument term, respectively, similarly to the λ-terms stated in Corollary 2. Moreover, for a given natural number n, φ* denotes a natural number such that φ*≥2 and #Λ(Tφ*[n]) is smaller than any other #Λ(Tφ[n]), where φ≠φ*.



Lemma 3 implies that there is room for more compaction of Λ(Tφ*[n]) if φ*>8, since there is a natural number φ1*≥2 such that #Λ(Tφ1*[φ*])<#C(φ*). This holds recursively, that is, we can obtain a compact λ-term L(n) such that L(n)⟶β*C(n) and #L(n)≤#Λ(Tφ*[n]) as


L(n):=Λ(Tφ*[n])(ifφ*≤8),ML(φ*)(ifφ*>8),








where M is the function term of Λ(Tφ*[n]). We show an algorithm generating L(n) for a given n in Algorithm 2. In line 9, we use Algorithm 1 to obtain Λ(Eφ). Assume that O(α) is the time complexity of Algorithm 1, then as shown in Algorithm 2, O(αn) time is required to obtain φ* once.



For the size of L(n), the following theorem holds.



Theorem 3.

For a given natural number n if there are φ and t such that tφ=n, then #L(n)=O(slogφn).





Proof. 

By Definition 11 and Lemma 3,


#L(n)≤#Λ(Tφ[n])=#((λp.λf.λx.pp⋯p︷tfx)C(φ))≤#((λp.λf.λx.pp⋯p︷tfx)C(8))=2t+26.








holds. Since t=slogφn, the statement holds.  □





As seen in the above Theorem 3, by using proposed method, we can obtain L(n) which is a tetrationally compact expression of C(n) for some n. This is properly smaller than B(n) which we introduced in Definition 7. However, Theorem 3 refers to only special cases of n. For general n, the following theorem holds.





	Algorithm 2 Generation of L(n) for a given natural number n.



	Input: n



	Output: L(n)



	  1: function generate(n)



	  2:    if n≤8then



	  3:        return C(n)



	  4:    else



	  5:        φ:=2, φ*:=φ, minsize:=∞, M:=NULL



	  6:        while φ≤⌊n⌋do



	  7:           r:=nmodφ



	  8:           Eφ+r:=Tφ[n]



	  9:           ((λp.λf.λx.M^)C(φ)):=Λ(Eφ)



	 10:           Λ(Tφ[n]):=((λp.λf.λx.M^[x:=(f(f⋯(f︷rx)⋯))])C(φ))



	 11:           if #Λ(Tφ[n])<minsizethen



	 12:               φ*←φ



	 13:               minsize←#Λ(Tφ[n])



	 14:               M← the function term of Λ(Tφ[n])



	 15:           end if



	 16:           φ←φ+1



	 17:        end while



	 18:        Marg:=generate(φ*)



	 19:        return (MMarg)



	 20:    end if



	 21: end function



	 22:



	 23: return generate(n)






Theorem 4.

For a given natural number n, #L(n)=O((slog2n)lognloglogn).





We need the following lemma to prove Theorem 4.



Lemma 4.

For a given natural number n, let Mφ* and M2 be function terms of Λ(Tφ*[n]) and Λ(T2[n]), respectively. Then, #Mφ*≤#M2 holds.





Proof. 

By Definition 5, #Λ(Tφ*[n])=#Mφ*+#C(φ*)+1 and #Λ(T2[n])=#M2+#C(2)+1 holds. Therefore, by definition of φ*, the following holds:


#Λ(Tφ*[n])≤#Λ(T2[n])⇔#Mφ*+#C(φ*)+1≤#M2+#C(2)+1⇔#Mφ*−#M2≤#C(2)−#C(φ*)⇔#Mφ*−#M2≤0.








The statement follows the above. Note that, by Definition 11, Tφ[n] is only defined for φ≥2.  □





Now we can prove Theorem 4.



Proof of Theorem 4.

By the definition of L(n), we assume that L(n)=Mφ*L(φ*), where Mφ* is the function term of Λ(Tφ*[n]). By Definition 5, the following holds:


#L(n)=#Mφ*+#L(φ*)+1.



(11)







First, we consider the size of Mφ*. For a given natural number n, we inductively define a TAE T^2(n) as follows:


T^2(n):=n(ifn≤2),k2·T^2(pk−rk)+k2+⋯+12·T^2(p1−r1)+12+2(otherwise).








where k is the maximum natural number such that k2≤n, and for 1≤i≤k, each pi is the natural number such that 0≤pi·i2<i+12 and ri=pimod2. If pi=0 or 1, we omit the corresponding terms or coefficients in the TAE, similarly to T2[n]. While T^2(n) is not E2[n] (since there is a case that the evaluated result of T^2(n) is not equal to n), T^2(n) is clearly a TAE Eφ. Therefore, by Lemma 1, a CFLT Λ(T^2(n)) exists. By Lemma 2, the upper bound of #Λ(T^2(n)) depends on the number of the arithmetic operations occurring in T^2(n). Let Na and Nm be the numbers of addition and multiplication occurring in T2[n], respectively. Also, for tetration n2n1, we call n2 second argument of tetration, then let Nt be the sum of second arguments of all tetration occurring in T2[n]. Let us denote N^a, N^m, and N^t similarly for T^2(n). Here, Na≤N^a, Nm≤N^m, and Nt≤N^t hold, since in T2[n], no terms increase compared to T^2(n) while the terms i2 following i2·T^2(n) is reduced if ri=0. Then,


#Λ(T2[n])≤max(#Λ(T^2(n)))≤14N^a+8N^m+2N^t+11.








follows Lemma 2. Note that (nmod2)≤1. Let N^(n)=14N^a+8N^m+2N^t+11, then by the above,


#Λ(T2[n])≤∑i=1k(14·2+8·1+2·2i+N^(pi−ri)+11)≤2k2+13k+kN^(pk−rk).



(12)




holds. We assume that ρ is the depth of the recursion in T^2(n). Then, kN^(pk−rk)=O(kρ) holds.



Therefore, by (12),


#Λ(T2[n])=O(kρ).



(13)




holds. Here, (k2)ρ≤n⇔ρlogk2≤logn holds. Thus, by Corollary 1,


ρ≤lognlogk2<lognlog(slog2n)−12=lognloglogn








holds. By Definition 2, k≤slog2n. Then,


#Λ(T2[n])=O((slog2n)lognloglogn)



(14)




follows (13). By Lemma 4, #Mφ* is bounded by Λ(T2[n]) since the function term of Λ(T2[n]) is smaller than Λ(T2[n]) itself. Then, by (14), we obtain


#Mφ*=O((slog2n)lognloglogn).



(15)







Second, we consider the size of L(φ*). If φ*≤8, it is constant since L(φ*)=C(φ*) and #C(φ*)≤C(8)=19. Otherwise, #L(φ*)≤Λ(Tφ1*[φ*]) holds with a natural number φ1*. By the definition of L(n), it recursively holds until φi*≤8. Thus, by (11) and (15),


#L(φ*)=O((slog2φ*)logφ*loglogφ*)+O((slog2φ1*)logφ1*loglogφ1*)+⋯+O((slog2φm*)logφm*loglogφm*)+m+C



(16)




holds, where C is a constant and m is a natural number such that φm*≤8. Here, by Lemma 2, φ*≤⌊n⌋,φ1*≤⌊φ*⌋,φ2*≤⌊φ1*⌋,⋯,φm*≤⌊φ*m−1⌋ holds, then the recursion depth m is O(logn). Hence,


#L(φ*)=O((slog2φ*)logφ*loglogφ*)+O(logn)+C



(17)




follows (16). Note that ∑i=1∞F(xi)<2F(x1) holds for function F(x) and natural number x such that F(xi)≥0 and xi+1≤xi for 1≤i.



As a result, by (12), (15), and (17), we obtain


#L(n)=O((slog2n)lognloglogn)+O((slog2φ*)logφ*loglogφ*)+O(logn)+C=O((slog2n)lognloglogn)








and the statement holds.  □







4. Application to Higher-Order Compression and Comparative Experiments


We implemented our method stated in Section 3, and conducted an experiment compared to the binary expression on λ-terms stated in Definition 7 and λ-terms generated by using the method stated in [2] (we call the method YKS).



Let B(n) denote the binary expression of n on λ-terms. As seen in Section 3, our proposed method generates a compact λ-term L(n) for a given C(n). While C(n) has the size of Θ(n), the size of the λ-term L(n) achieves O(slog2n) for some n, as shown in Theorem 3. However, as shown in Theorem 4, the size of L(n) becomes O((slog2n)logn/loglogn) for general n, which is greater than that of B(n), Θ(logn). On the other hand, YKS is a method of higher-order compression, which generates an extended λ-term for a given text. Here, a text is an element of Σ*, where Σ is an alphabet. Let LYKS(n) be the generated extended λ-term by using YKS for a given text anc with a,c∈Σ. Then, we can find that the size of LYKS(n) achieves O(slog2n) for some n, similarly to L(n).



We define extended λ-terms following to [2]. We show that the application of B(n) and L(n) to extended λ-terms is directly possible.



Definition 12

(Extended λ-terms and their sizes). Let x be a variable and a∈Σ. Then, extended λ-term M˜ is defined inductively as follows:


M˜::=a|x|λx.M˜|M˜1M˜2.











The size of M˜, denoted by #M˜, is inductively defined as follows:


#a=1,#x=1,#(λx.M˜)=#M˜+1,#(M˜1M˜2)=#M˜1+#M˜2+1.













Similar to normal λ-terms, we define β-reduction, variable replacement notation M˜1[x:=M˜2], and simplification on extended λ-terms. Clearly, we can regard any normal λ-terms as extended λ-terms.



In higher-order compression, a given text anc is regarded as an extended λ-term S˜(n)=(a(a⋯(a︷nc)⋯)), then we generate a compact extended λ-term M˜ such that M˜⟶β*S˜(n). From B(n) and L(n), we can obtain extended λ-terms B˜(n) and L˜(n) such that B˜(n)⟶β*S˜(n) and L˜(n)⟶β*S˜(n), respectively, as follows. By Definition 7 and the definition of L(n), we assume that B(n)=(λp.λf.λx.M^B)MB′ and L(n)=(λp.λf.λx.M^L)ML′. Then, B˜(n) and L˜(n) are obtained as


B˜(n)=(λp.M^B[f:=a,x:=c])MB′andL˜(n)=(λp.M^L[f:=a,x:=c])ML′,








respectively. Note that B(n)ac⟶β*S˜(n) and L(n)ac⟶β*S˜(n) holds, since B(n)⟶β*C(n), L(n)⟶β*C(n), and C(n)ac⟶β*S˜(n). Here, B˜(n) and L˜(n) are the results of simplification for B(n)ac and L(n)ac, respectively.



Figure 1 and Figure 2 show the experimental results. In both of them, “Binary”, “YKS”, and “Proposed” denote the methods using the binary expression on λ-terms, YKS, and ours, respectively. The horizontal axis shows the repetition number n of given text anc. Then, we compare the sizes of the generated extended λ-terms by using these three methods, for the given anc.



In Figure 1, the vertical axis shows the sizes of B˜(n), LYKS(n), and L˜(n). The inequality #L˜(n)≤#B˜(n) holds in 5187 out of 10,000 cases within the range [1,10000]. The average ratio #L˜(n)/#B˜(n) for the range is approximately 0.9962. Similarly, the inequality #L˜(n)≤#LYKS(n) holds in 5959 cases, and the average ratio #L˜(n)/#LYKS(n) is approximately 0.9321.



In Figure 2, the vertical axis shows the ratio (the average size of cumulative sum of extended λ-terms from 1 to n)/#B˜(n). That is, Figure 2 shows how #LYKS(n) and #L˜(n) increase compared to #B˜(n) on average. As can be seen, #L˜(n) tends to be greater than #B˜(n) when n is greater than 10,000. We consider that it is consistent with the theoretical upper bound O((slog2n)logn/loglogn), stated in Theorem 4.




5. Conclusions


In this paper, we addressed the problem of compaction of Church numerals. For given natural number n, by using proposed RTP, we decompose n into an arithmetic expression, which enables to obtain a compact λ-term leading to the Church numeral of n. We proved that the size of the obtained λ-term becomes O((slog2n)logn/loglogn). Moreover, we experimentally confirmed that the λ-terms produced by our method tend to be smaller than binary expressions on λ-terms on average, when the given number is less than approximately 10,000. We have not proved the lower bound of the size in the worst case; it is our future work.



The compaction of Church numerals can be applied to higher-order compression, that uses extended λ-terms as the data model. In the procedure of higher-order compression, a repetitive part in the input can be represented as a λ-term with C(n). Thus, efficient compaction of C(n) will help for improving the compression performance of higher-order compression.



In data compression, data models are finally encoded in bit sequences. For bit encoding of λ-terms, Tromp [16] proposed a method for untyped λ-terms. Very recently, Takeda et al. [17] proposed an efficient encoding scheme for simply-typed λ-terms. Finding an efficient bit encoding for our method is also our future work.
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Figure 1. Term size for integer n. 






Figure 1. Term size for integer n.
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Figure 2. Average ratio to binary expression. 






Figure 2. Average ratio to binary expression.
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Table 1. n, #C(n), and #Λ(Tφ[n]) for 8<n≤15 and φ=3.






Table 1. n, #C(n), and #Λ(Tφ[n]) for 8<n≤15 and φ=3.













	n
	#C(n)
	#Λ(Tφ[n])
	n
	#C(n)
	#Λ(Tφ[n])





	9
	21
	20
	13
	29
	26



	10
	23
	22
	14
	31
	28



	11
	25
	24
	15
	33
	28



	12
	27
	24
	
	
	











© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).






media/file4.png
1.4||— Binary
... YKS
1ol Proposed
__/
S Sy I
1.0 /w ———
/
/
0.8 oz
Oiiff’w'
0.4
0.2
(100 2000 4000 8000 10000 12000 14000 16000 18000

20000





nav.xhtml


  algorithms-12-00159


  
    		
      algorithms-12-00159
    


  




  





media/file0.png





media/file2.png
120}

100

80

20F

40 :.Z- 3

60| .I;.;;--if-: =

.......
-----

.
.

*ugy |'|'|

LR,

LR N

.

- Binary
.. YKS £
. Proposed : : E iE

5000 6000

7000

8000

9000

10000

0 1000

2000 3000 4000





media/file3.jpg
— Binary
~YKS
Proposed|

3000

600

5000

5000

16000

13600

14000

16000

18000

30000





media/file1.jpg
120

" Proposed!

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000





