
algorithms

Article

A Quantum-Behaved Neurodynamic Approach for
Nonconvex Optimization with Constraints

Zheng Ji, Xu Cai and Xuyang Lou *

Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Jiangnan University,
Wuxi 214122, China
* Correspondence: Louxy@jiangnan.edu.cn

Received: 29 May 2019; Accepted: 3 July 2019; Published: 5 July 2019
����������
�������

Abstract: This paper presents a quantum-behaved neurodynamic swarm optimization approach
to solve the nonconvex optimization problems with inequality constraints. Firstly, the general
constrained optimization problem is addressed and a high-performance feedback neural network for
solving convex nonlinear programming problems is introduced. The convergence of the proposed
neural network is also proved. Then, combined with the quantum-behaved particle swarm method,
a quantum-behaved neurodynamic swarm optimization (QNSO) approach is presented. Finally,
the performance of the proposed QNSO algorithm is evaluated through two function tests and three
applications including the hollow transmission shaft, heat exchangers and crank–rocker mechanism.
Numerical simulations are also provided to verify the advantages of our method.

Keywords: nonconvex optimization; feedback neural network; collective neurodynamic optimization;
quantum-behaved particle swarm optimization

1. Introduction

Constrained optimization problems arise in many scientific and engineering applications
including robot control [1], regression analysis [2], economic forecasting [3], filter design [4] and
so on. In many real-time applications, the optimization problems are often subject to complex and
time-varying nature, which makes it difficult to compute global optimal solutions in real time using
traditional numerical optimization techniques [4,5], such as Lagrange methods, descent methods and
penalty function methods. A promising approach for handling these optimization problems is to
employ neurodynamic optimization which is available for hardware implementation and possesses
parallel and distributed computing ability. However, as pointed out in [6], the dynamic behaviors of a
neural network could change drastically and become unpredictable, when applying neurodynamic
optimization to deal with general nonconvex optimization problems. To compute global optimal
solutions in such optimization problems, one solution is resorting to strategies in the meta-heuristics
research field.

Recently, neurodynamic optimization based on recurrent neural networks has attracted much
focus in solving various linear and nonlinear optimization problems. The essence of such
neurodynamic optimization approaches is fundamentally different from those of iterative numerical
algorithms such as the sequential programming method and interior point algorithms. The gradient
method has been widely used in optimization problems [7,8]. Recurrent neural networks are also
based on the gradient method and many other methods have been used to improve recurrent
neural networks such as dual neural network [9,10], projection neural network [11], delayed neural
network [12], weight-constrained neural networks [3,13] and so on. Some researchers focused on
improving the performance of neural networks. Leung et al. [14] addressed a high-performance
feedback neural network for solving convex nonlinear programming problems. Nazemi [15] explored

Algorithms 2019, 12, 138; doi:10.3390/a12070138 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
http://www.mdpi.com/1999-4893/12/7/138?type=check_update&version=1
http://dx.doi.org/10.3390/a12070138
http://www.mdpi.com/journal/algorithms

Algorithms 2019, 12, 138 2 of 22

a high performance neural network model to solve chance constrained optimization problem.
Some researchers give different forms of neural networks for specific problems. Mansoori et al.
presented a kind of recurrent neural network to solve quadratic programming problems and
nonlinear programming problems with fuzzy parameters in [16,17]. Xia and Kamel presented a
cooperative projection neural network to solve the least absolute deviation problems with general
linear constraints [18]. Che and Wang presented a two-timescale duplex neurodynamic system for
constrained biconvex optimization in [19]. For some special nonconvex and nonsmooth problems,
some achievements have been made in neurodynamic optimization. Based on projection method and
differential inclusions, Yang et al. [20] proposed a generalized neural network. In [21], a one-layer
recurrent projection neural network was utilized for solving pseudoconvex optimization problems
with general convex constraints. Li et al. [22] provided a one-layer recurrent neural network based
on an exact penalty function method for solving nonconvex optimization problems subject to general
inequality constraints. Bian et al. [23] proposed a one-layer recurrent neural network for solving a
class of nonsmooth, pseudoconvex optimization problems with general convex constraints.

Despite great progresses of neurodynamic optimization approaches in solving optimization
problems with convex or some pseudoconvex functions with constraints, it is difficult to find global
optimal solutions for the optimization problems with more nonconvex functions. In addition, many
neural networks seems inadequate when dealing with constrained optimization problems containing
multiple local minima. As one of population-based evolutionary computation approaches, the
well-known particle swarm optimization (PSO) introduced by by Kennedy and Eberhart [24] is
a popular meta-heuristic method for global optimization with multimodal objective functions. In the
PSO algorithm, a simple velocity and displacement model to adjust the position according to the group
optimal value and its own optimal value. It has strong global search ability and robustness. However,
the PSO algorithm has at least three shortcomings. Firstly, it has been proved by Frans in [25] that,
when the number of iterations tends to infinity, the traditional PSO algorithm can not converge to
the global optimal solution with probability 100%. Secondly, in the PSO algorithm, the velocity of
particles has an upper limit to ensure that particles can aggregate and avoid divergence, which limits
the search space of particles and thus makes the algorithm ineffective to jump out of local optimal
solutions. Thirdly, as the evolution equation of the PSO algorithm is based on a set of simple state
equations of velocity and position, which makes the randomness and swarm intelligence relatively
low. Due to its simple calculation, easy implementation, and few control parameters, many improved
PSO algorithms have been to overcome the drawbacks (e.g., see [26–28]). Yan et al. [6] presented
a collective neurodynamic optimization approach by combining the traditional PSO algorithm and
a projection neural network to solve nonconvex optimization problems with box constraints. Later,
Yan et al. [29] apply an adaptive PSO algorithm together with a one-layer recurrent neural network to
solve nonconvex general constrained optimization problems.

Among the improved PSO algorithms, the quantum-behaved particle swarm optimization (QPSO)
algorithm introduced in [30] is also one promising alternate, which describes particle behavior with
probability. Compared with the traditional PSO algorithm, the QPSO algorithm has certain advantages
in global optimization and speed of convergence. The convergence proof of QPSO is also given in [27].
Applying the QPSO algorithm for global search intermittently by incorporating a novel feedback
neural network for local search in a hybrid mode can be a good choice.

In this paper, we propose a quantum-behaved neurodynamic swarm optimization (QNSO)
approach combined with an efficient neural network and the QPSO algorithm to solve the
nonconvex optimization problems with constraints. We improve an efficient feedback neural
network proposed in [14] and prove the global convergence of the neural network for a class of
nonconvex optimization problems. Inspired by [6,14,29], we employ the feedback neural network and
present a quantum-behaved neurodynamic swarm approach for solving the nonconvex optimization
problems with inequality constraints efficiently. The proposed QNSO approach combining the QPSO
algorithm [30] and the feedback neural network is applied to deal with constrained optimization

Algorithms 2019, 12, 138 3 of 22

problems with multiple global minima. Compared with the methods in [6,29], it shows a better
convergence performance. Both numerical examples and practical applications are provided to
demonstrate the effectiveness of the QNSO approach.

This paper is organized as follows. In Section 2, a constrained optimization problem is described
and some theoretical analysis of an improved neural network is given. In Section 3, combined with the
QPSO algorithm and the proposed neural network, the QNSO approach is developed for solving the
constrained optimization problems. In Section 4, we perform experiments on two multimodal functions
to demonstrate the performance of the QNSO algorithm. In Section 5, we apply the QNSO method
to the optimization problems of the hollow transmission shaft, heat exchangers and crank–rocker
mechanism. Finally, Section 6 concludes the paper.

2. Problem Statement and Model Description

Consider the following constrained optimization problem given by

min f (x),

subject to gi(x) ≤ 0, i = 1, 2, · · · , m,
(1)

where x ∈ Rn is the decision vector, f : Rn → R is a continuously differentiable function, gi : Rn → R
(i = 1, 2, · · · , m) are continuously differentiable functions, denoting the inequality constraints. f (x)
and gi(x) are not necessarily convex. The feasible region Ω = {x ∈ Rn : gi(x) ≤ 0, i = 1, 2, · · · , m} is
assumed to be a nonempty set.

Denote g(x) = (g1(x), g2(x), . . . , gm(x))>. Then, the problem (1) can be written as

min f (x),

subject to g(x) ≤ 0.
(2)

Let M1 be a lower bound of the optimal value of f (x∗) in the problem (1), i.e.,
M1 ≤ f (x∗), where x∗ is an optimal solution of (1). Denote d(x, M1) = f (x) − M1 and
F(x, M1) = 0.5d(x, M1)(d(x, M1) + |d(x, M1)|). Consider an energy function

E(x) = F(x, M1) + γ
(

g(x)>sgn(g(x) + |g(x)|)
)
, (3)

where γ > 0 is a penalty parameter, and sgn(·) is the sign function.
Then, inspired by [14,22], we construct the following feedback neural network for

minimizing E(x)
ẋ =−∇E(x)

=−∇F(x, M1)− γ
(
∇g(x)>sgn(g(x) + |g(x)|)

)
.

(4)

Remark 1. In [14], Leung et al. proposed the energy function G(x, M1) = F(x, M1) +
1
2 g(x)>(g(x) −

|g(x)|) + 1
2 ‖ Ax− b ‖2 for the convex nonlinear programming problem

min f (x),
subject to g(x) ≥ 0,

Ax = b.

In fact, for some equality constraint h(x) = 0, one can transform the equality constraint into inequality
constraints −h(x) ≤ 0 and h(x) ≤ 0. The energy function E(x) in (3) contains a penalty parameter γ. Such a
penalty γ can strengthen the constraints and make the results converge into the constraints more efficiently in
optimization problems with inequality constraints. In addition, as we will show later, the penalty parameter γ

makes the neural network feasible to fit in the network model for solving some nonconvex problems in [22].

Algorithms 2019, 12, 138 4 of 22

To derive the convergence results of the feedback neural network (4), we first introduce the
following definitions.

Definition 1. [22] Suppose that f is a differentiable function and defined on an open convex set M ⊂ Rn.
Then, f is quasiconvex if a, b ∈ M, f (a) ≥ f (b)⇒ ∇ f (a)>(b− a) ≤ 0.

Definition 2. [22] Suppose that f is a differentiable function and defined on an open convex set M ⊂ Rn.
Then, f is pseudoconvex if a, b ∈ M, f (a) > f (b)⇒ ∇ f (a)>(b− a) < 0.

Theorem 1. If f (x) in (2) is a pseudoconvex function, then F(x, M1) in (3) is also a pseudoconvex function.

Proof of Theorem 1. Let us rewrite F(x, M1) = 0.5d(x, M1)(d(x, M1) + |d(x, M1)|) as

F(x, M1) =

{
d(x, M1)

2, d(x, M1) ≥ 0,
0, d(x, M1) < 0.

By definition of d(x, M1), i.e., d(x, M1) = f (x)−M1, we have

∇F(x, M1) =

{
2d(x, M1)∇ f (x), d(x, M1) ≥ 0,
0, d(x, M1) < 0,

(5)

and

F(x1, M1)− F(x2, M1) =

d(x1, M1)

2 − d(x2, M1)
2, d(x1, M1) ≥ 0, d(x2, M1) ≥ 0,

d(x1, M1)
2, d(x1, M1) ≥ 0, d(x2, M1) < 0,

−d(x2, M1)
2, d(x1, M1) < 0, d(x2, M1) ≥ 0,

0, d(x1, M1) < 0, d(x2, M1) < 0.

Note that F(x1, M1)− F(x2, M1) > 0 holds when

F(x1, M1)− F(x2, M1) =

{
d(x1, M1)

2 − d(x2, M1)
2 > 0, d(x1, M1) ≥ 0, d(x2, M1) ≥ 0,

d(x1, M1)
2 > 0, d(x1, M1) ≥ 0, d(x2, M1) < 0.

Using the definition of d(x, M1) again, it follows that F(x1, M1) − F(x2, M1) > 0 implies
that both d(x1, M1) > 0 and f (x1) > f (x2) holds. Therefore, using the fact that f (x) is a
pseudoconvex function, F(x1, M1)− F(x2, M1) > 0 also implies ∇ f (x1)(x2 − x1) < 0. In addition,
since F(x1, M1) − F(x2, M1) > 0 implies d(x1, M1) > 0, it follows from (5) that

∇F(x1, M1)
>(x2 − x1) = 2d(x1, M1)∇ f (x1)(x2 − x1) < 0

if F(x1, M1)− F(x2, M1) > 0. The proof is completed.

Remark 2. From the proof of Theorem 1, it should be noted that the function F is constructed as a semi-positive
definition function and the term |d(x, M1)| can be seen as an adaptive adjustment function when computing the
gradient of E(x). That is, when f (x) approaches f (x∗), d(x, M1) becomes smaller and ∇ f (x) plays a minor
role in computing the gradient of E(x); when f (x) is far away from f (x∗), d(x, M1) becomes larger and∇ f (x)
plays an important role in computing the gradient of E(x).

To establish a relationship between the feedback neural network (4) and the neural network
in [22], we consider the following notion and lemmas.

Definition 3. [29] (Clarke’s generalized gradient) The generalized gradient of f at x, denoted by ∂ f (x), is the
convex hull of the set of limits of the form lim∇ f (x + li), where li → 0 as i→ ∞.

Algorithms 2019, 12, 138 5 of 22

Lemma 1. [22] [Proposition 6] Let g(x) be continuously differentiable. Then, max {0, g(x)} is a regular
function, its Clarke’s generalized gradient is

∂ max {0, g(x)} =

∇g(x), g(x) > 0,
αg∇g(x), g(x) = 0,
0, g(x) < 0,

where αg ∈ [0, 1].

Lemma 2. [22] [Theorem 4] For the problem (1), if one of the following two conditions holds,

(a) f (x) and gi(x), i = 1, 2, · · · , m are convex functions;
(b) f (x) is a pseudoconvex function and gi(x), i = 1, 2, · · · , m are quasiconvex functions,

then, for a sufficiently small penalty factor σ > 0, any state of the following recurrent neural network

ẋ ∈ −∇ f (x)− 1
σ ∂ ∑m

i=1 max {0, gi(x)} (6)

converges to an optimal solution of problem (1).

Definition 4. (KKT Point) For the problem (1), suppose that f (x) : Rn → R is differentiable and
gi(x) : Rn → R, i = 1, 2, · · · , m are differentiable functions. If (x̄, µ̄) ∈ Rn × Rm satisfies the
following conditions:

∇ f (x̄) + µ̄>∇g(x̄) = 0, µ̄ ≥ 0, g(x̄) ≤ 0, µ̄>g(x̄) = 0,

then x̄ is said to be a KKT point of problem (1). The KKT conditions provide first-order necessary conditions for
nonlinear programming problem and can be considered as local optimization points for programming problem.

Under some acceptable assumptions (see [22] for details), the following properties hold.

Proposition 1. [22] [Theorem 1] When the penalty parameter σ is sufficiently small, then any state of (6) is
guaranteed to be convergent to the feasible region in finite time and stay there thereafter.

Proposition 2. [22] [Corollary 1] When the penalty parameter σ is sufficiently small, any state of the neural
network (6) will converge to an equilibrium point x̄ and any equilibrium point x̄ of the neural network (6)
corresponds to a KKT twofold (x̄, µ̄) of the problem (1).

Next, we claim that for the problem (1), the neural network (4) is a special form of neural
network (6). Firstly, note that, to solve the the problem min F(x, M1) with the constraint g(x) ≤ 0, it
is equivalent to solving the problem min f (x) with the constraint g(x) ≤ 0. Secondly, take αg = 0 in
Lemma 1, the neural network (4) can be written as

ẋ = −∇F(x, M1)− γ(∇g(x)>sgn(g(x) + |g(x)|))
= −∇F(x, M1)− γ∂

m
∑

i=1
max {0, gi(x)}. (7)

Define σ := 1
γ in (7). It follows that

ẋ = −∇F(x, M1)− 1
σ ∂

m
∑

i=1
max {0, gi(x)},

which is a special case of the neural network (6) in Lemma 2 if F(x, M1) has the same property of the
function f in Lemma 2.

The following result shows the convergence property of the proposed neural network.

Algorithms 2019, 12, 138 6 of 22

Theorem 2. The neural network (4) converges to an optimal solution of problem (1) if there exists a large
enough penalty parameter γ > 0 and one of the following two conditions holds

(a) f (x) and gi(x), i = 1, 2, · · · , m are convex functions;
(b) f (x) is a pseudoconvex function and gi(x), i = 1, 2, · · · , m are quasiconvex functions.

Proof of Theorem 2. Firstly, if condition (a) holds, it follows from [14] [Theorem 1] that F(x, M1) in (3)
is also a convex function. Then, condition (a) in Lemma 2 holds. Secondly, if condition (b) holds, it
follows from Theorem 1 that F(x, M1) in (3) is also a pseudoconvex function. Then, condition (b) in
Lemma 2 holds. In addition, it follows from the above discussion that the neural network (4) fits in the
form of neural network (6). Therefore, by Lemma 2, the proof is completed.

Remark 3. Theorem 2 shows that the proposed neural network (4) will converge to an optimal solution for some
nonconvex optimization problems and (4) satisfies the properties in Propositions 1 and 2, that is, the neural
network (4) can converge to the feasible region of the optimization problem in finite time and find a KKT point
which is a local optimal point of the problem (1).

3. Quantum-Behaved Neurodynamic Swarm Approach

To solve the nonconvex programming problems with box constraints, a collective neurodynamic
approach is proposed in [6], which can be seen as a combination of neurodynamic optimization and
particle swarm optimization. In order to improve the convergence speed of the optimization algorithm,
we explore a quantum-behaved neurodynamic approach combining the QPSO algorithm with the
feedback neural network model (7) for nonconvex programming problems with general constraints.
In the QPSO algorithm, each particle represents a position, which represents a potential optimal
solution of optimization problem. Imitating the swarm intelligence behavior of animals, the renewal
of particles is related to their optimal position and global optimal position. Unlike the basic PSO
algorithm, the updating equation of particle position follows the quantum-behaved model. The QPSO
algorithm has the aggregation of particles with the iteration, increases the intelligence of particle
behavior, and makes the possible search range of particles wider. Therefore, the ability of global
optimization increases.

Given q particles, define the position of the ith particle as Xi = (Xi1, Xi2, · · · , Xin), the individual
best position of the ith particle as Pi = (Pi1, Pi2, · · · , Pin) and the best position of the swarm as
Pg = (G1, G2, · · · , Gn). The particle renewal equation of the QPSO algorithm is given by

Xij(k + 1) = pij(k)± β|Cj(k)−Xij(k)| ln
1

ηij(k)
, (8)

where
pij(k) = αj(k)Pij(k) + [1− αj(k)]Gj(k)

C(k) = (C1(k), C2(k), · · · , Cn(k)) =
1
q

q

∑
i=1

Pi(k)

=
1
q
(q

∑
i=1

Pi1(k),
q

∑
i=1

Pi2(k), · · · ,
q

∑
i=1

Pin(k)
)

and αj(k), ηij(k) are random numbers between (0, 1), j ∈ {1, 2, · · · , n}, i ∈ {1, 2, · · · , q}, β is an
adjustable parameter, pij(k) is the center of attraction potential field of Xij(k + 1). C(k) is the average
optimal position of particle. The iteration stops when the maximum number of iterations is reached or
the given conditions is achieved.

Note that, despite of its excellent global optimization ability, the QPSO algorithm lacks the ability
for constraint processing and deep local searching. Inspired by neurodynamic optimization, during
the local search process, we apply the feedback neural network to optimize each particle and improve

Algorithms 2019, 12, 138 7 of 22

the search efficiency. Next, we explore the QNSO approach to deal with constrained optimization
problems, where the QPSO algorithm is applied to adjust the initial conditions of the feedback neural
network at each local search phrase.

The steps of the QNSO algorithm are summarized as follows:

Step 1: Initialize the position of particles.
Step 2: Initialize the individual best position Pi of the ith particle, i = 1, 2, · · · , q and the global best

position Pg of the particle swarm.
Step 3: Each particle reaches a local optimal solution based on the feedback neural network (7).
Step 4: Update the individual best position Pi of the ith particle, i = 1, 2, · · · , q and the global best

position Pg of the particle swarm.
Step 5: Update the position of each particles based on (8).
Step 6: Repeat Step 3 to Step 5 before reaching the given conditions.

Following the description in Section 2, we simply consider the energy function in (3) as the fitness
value of the QPSO algorithm. Then, the individual best position Pi of the ith particle is updated
according to

Pi(k) =

{
Xi(k), when E(Xi(k)) < E(Pi(k− 1)),
Pi(k− 1), when E(Xi(k)) ≥ E(Pi(k− 1)),

(9)

where k− 1 and k represent the k− 1th iteration and kth iteration, respectively. The global best position
Pg of the particle swarm is updated by

Pg(k) = min1≤i≤q{E(Pi(k))}. (10)

Remark 4. The fitness value of the QNSO algorithm could be different from the energy function of the neural
network. A large γ may bring a better performance as it effectively restricts particles to diverge beyond the
feasible region.

QNSO can always find the accurate local minimum of each particle within one iteration.
Compared with general global optimization algorithms (such as PSO), when the number of local
minimum is small, QNSO is extremely insensitive to heuristic parameters; when the number of local
minimum is large, the QNSO algorithm needs sufficient divergence ability of heuristic parameters to
jump out of local minimum. In other words, appropriately larger β in QPSO can be more suitable for
the QNSO algorithm.

Detailed steps of the QNSO algorithm are given in Algorithm 1. During local search process,
the feedback neural network in the algorithm is applied to solve the local optimization problem with
constraints. The QPSO algorithm is applied to perform global search process. Therefore, the advantages
of the QPSO algorithm and the feedback neural network can complement each other. The flow chart of
QNSO is shown in Figure 1.

Algorithms 2019, 12, 138 8 of 22

Algorithm 1 QNSO Algorithm.

1: Set the swarm size q, parameter β, tolerance error precision ε, the maximum number Kmax of
iterations, the expected cost function value Ee, the lower bound of cost function M1 and the
initial step k = 0.

2: Initialize the position Xi ∈ Rn of particles, i = 1, 2, · · · , q, using uniform random distribution,
and get the initial individual best positions and global best position.

3: Carry out the following feedback neural network to obtain a local optimal solution for
each particle:

εẋ = −∇F(x, M1)− γ∂
q
∑

i=1

(
max {0, gi(x)}

)
,

where ε > 0 is a scaling parameter which is introduced to accelerate the convergence rate of the
neural network.

4: Update the individual best position Pi of the ith particle, i = 1, 2, · · · , q and the global best
position Pg of the particle swarm using

Pi(k) =
{

Xi(k), when E(Xi(k)) < E(Pi(k− 1)),
Pi(k− 1), when E(Xi(k)) ≥ E(Pi(k− 1)),

and
Pg(k) := (G1, G2, · · · , Gn) = min1≤i≤q{E(Pi(k))}.

5: Update the position Xi(k + 1) of each particle, that is, the initial conditions of the feedback neural
network, using the following the renewal equations:

pij(k) = αj(k)Pij(k) + [1− αj]Gj(k),

C(k) =
1
q

q

∑
i=1

Pi(k),

Xij(k + 1) = pij(k)± β|Cj(k)−Xij(k)| ln
1

ηij(k)
,

where i = 1, 2, · · · , q, j = 1, 2, · · · , n and αj(k) ∼ U(0, 1), ηij(k) ∼ U(0, 1).
6: The iteration stops if one of the following conditions is satisfied:

(a) The algorithm reaches the maximum iteration value Kmax.
(b) |E(Pg)− Ee| < ε.
(c) Pg stops updating for five consecutive iterations.

Otherwise, set k := k + 1 and go to step 3.

Algorithms 2019, 12, 138 9 of 22

Start

Update the global best position of

each particle by (10)

End

Is the global best

position stable?

Is the accuracy

satisfied?

Is the maximum

iteration number

reached?

Set initial parameters and initialize

the particle positions

Get local optimal solution for each

particle using (7)

Update the individual best positions

of each particle by (9)

Update the center of attraction

potential field and the average

optimal position

Update the particle initial positions

using (8)

Increase iteration number

no

yes
yes

yes

no

no

Figure 1. Flow chart of the QNSO algorithm.

4. Function Tests

In this section, we consider two multimodal benchmark problems, i.e., the constrained six-hump
camel back function [6] and the constrained Rastrigrin function, to illustrate the proposed optimization
approach. The first example is provided to verify the convergence performance of the proposed QNSO
algorithm, while the second example is provided to demonstrate the constraint processing ability
of the algorithm.

Example 1. Consider the six-hump camel back function [6]

min f (x1, x2) = (4− 2.1x2
1 +

x4
1

3)x2
1 + x1x2 + 4(x2

2 − 1)x2
2,

subject to −2 ≤ xi ≤ 2, i = 1, 2.

Figure 2 shows the contour map of the six-hump camel back function with box constraints. It is
seen that there are multiple local minima in the area. In fact, the optimization problem has six minima

f (−1.6071,−0.5687) = 2.1043,
f (1.6071, 0.5687) = 2.1043,
f (−1.7036, 0.7961) = −0.2155,
f (1.7036,−0.7961) = −0.2155,
f (0.0898,−0.7127) = −1.0316,
f (−0.0898, 0.7127) = −1.0316.

Algorithms 2019, 12, 138 10 of 22

-0
.5

-0.5

0

0

0

0

0

0

1

1

1 1

1

1
22

2

2 2

2

33

3

3 3

3

55

5

5 5

5

2.1043

2.1043

-0.2155

-0.2155
-1.0316

-1.0316

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

f (x)

x 2

x1

Figure 2. Contour map of f in Example 1, where different color lines represent contours corresponding
to different values of f .

Two of them are the global minima, located at x∗ = (−0.0898, 0.7127) and x∗ = (0.0898, −0.7127),
respectively. To carry out the QNSO algorithm, set swarm size q = 3, parameter β = 1

2 , tolerance
error precision ε = 10−6, the maximum iteration number Kmax = 10, M1 = −20, and γ = 1000.
Before performing the simulation, initialize the position Xij ∈ [−2, 2] of particles, i = 1, 2, 3, j = 1, 2,
using uniform random distribution. After 50 experiments, we obtain the two global minima at every
experiment. Except two experiments, the global minima are found at the first step iteration for most
cases, which shows that the QNSO algorithm has a high efficiency and good accuracy to find the
optimal solution for the problem in this example.

In order to verify the convergence efficiency of the proposed method, we compare the optimization
results of the QNSO algorithm with the results derived by the approaches in [6,29]. For the neural
networks in all the three methods, we take the scaling parameter ε = 10−3. Figures 3–5 show the
convergence of the trajectory of the proposed neural network (7), the projection neural network in [6],
and the recurrent neural network in [29] at the first iteration, respectively. As shown in the figures,
each particle converges to its local optimum shortly. It can be seen that, among the three methods, the
proposed neural network has the fastest convergence speed.

0 1 2 3 4 5 6

10
-6

-2

-1.5

-1

-0.5

0

0.5

1

1.5

x

t (s)

x11

x12

x21

x22

x31

x32

Figure 3. Convergence of the proposed neural network.

Algorithms 2019, 12, 138 11 of 22

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

10
-4

-1

-0.5

0

0.5

1

1.5

t (s)

x

x11

x12

x21

x22

x31

x32

Figure 4. Convergence of the neural network in [6].

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

10
-4

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

t (s)

x

x11

x12

x21

x22

x31

x32

Figure 5. Convergence of the neural network in [29].

Figure 6 shows the behavior of particles in the search process by the proposed QNSO algorithm.
The initial positions of particles are randomly selected. After one iteration, two particles reach the
global minima along the direction perpendicular to the contour.

Algorithms 2019, 12, 138 12 of 22

2.1043

2.1043

-0.2155

-0.2155

-1.0316

-1.0316

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x1

x
2

particle1

particle2

particle3

Figure 6. Moving trails of the three particles using the QNSO algorithm, where different color lines
represent contours corresponding to different values of f and the corresponding values are shown in
Figure 2.

Example 2. Consider the optimization problem of the constrained Rastrigrin function described by

min f (x) =
n
∑

i=1
(x2

i − 10 cos (2πxi) + 10),

subject to −6 ≤ xi ≤ 6,
n
∑

i=1
x2

i ≥ 4.5,

(11)

which has hundreds of local minima and many global minima for n ≥ 4. Note that the origin, which is the global
minimum point for unconstrained Rastrigrin function, is not within the feasible range. The complexity of this
problem depends on the size of n and the number of minima increases exponentially with the increase of n.

To carry out the QNSO algorithm, set the initial parameters of QNSO algorithm: M1 = 0, γ = 1000,
β decreased from 0.9 to 0.3 on the course of the search, swarm size q = 20, tolerance error precision
ε = 10−5, the maximum iteration number Kmax = 500. To establish a reference for comparison with
the QNSO algorithm in this paper, we performed experiments with Rastrigrin function in 2, 4 and
10 dimensions, respectively. Some other optimization methods were also examined for performance
comparisons, including the latest standard particle swarm optimization (SPSO) [31], the adaptive
particle swarm optimization (APSO) [32], the random drift particle swarm optimization (RDPSO) [33],
the firefly algorithm (FA) [34], the repair genetic algorithm (RGA) [35], the QPSO [30], and the method
in [29]. We set swarm size q = 20, tolerance error precision ε = 10−5, the maximum iteration number
Kmax = 500 for all the tested methods. Standard normal distribution was used in RGA as mutation
operator. The parameters for QPSO were the same as those in this paper. Other parameters for SPSO,
APSO, FA, RDPSO and RGA were the same as those recommended in [31–35] and these methods used
the same fitness value (3) with a large γ = 106 to keep optimizations within the feasible range.

Tables 1–3 show the computational results, where the best result, the average result, the worst
result, the standard deviation (Std.) result of f (Pg), and the average number of iterations (No. of
Iterations) over 50 experiments are provided. The optimum results are coarsened with boldface in
these tables. Obviously, when the particles and the iterations are limited, the general optimization
algorithm has obvious deficiencies with the increase of the complexity of the problem, but the method

Algorithms 2019, 12, 138 13 of 22

in [29] and QNSO can obtain accurate optimal solutions with good robustness. QNSO requires the
least iterations with a stable optimization efficiency as shown in Tables 1 and 2.

Table 1. Comparing computational efficiency (n = 2).

Methods Best Average Worst Std. No. of Iterations

SPSO [31] 4.9751 4.9925 5.0594 0.0190 500
APSO [32] 4.9758 4.9978 5.0738 0.0211 500

FA [34] 4.9748 4.9748 4.9750 3.6985× 10−5 481.5
RGA [35] 4.9748 5.0164 6.5421 0.7317 414.9

RDPSO [33] 4.9748 4.9774 4.9956 5.7606× 10−3 450.56
QPSO [30] 4.9748 4.9749 4.9760 2.6078× 10−4 327.92

[29] 4.9748 4.9748 4.9748 4.39× 10−8 2.4
QNSO 4.9748 4.9748 4.9748 3.151× 10−9 1.3

Table 2. Comparing computational efficiency (n = 4).

Methods Best Average Worst Std. No. of Iterations

SPSO [31] 5.6356 6.8906 8.2099 0.65794 500
APSO [32] 5.1884 6.7265 8.0925 0.87531 500

FA [34] 4.9793 7.0177 20.9417 3.1047 500
RGA [35] 4.9748 5.0627 7.4586 0.45259 500

RDPSO [33] 4.9748 5.3332 9.0534 0.88538 472.26
QPSO [30] 4.9748 5.2261 5.9917 0.4433 468.6

[29] 4.9748 4.9748 4.9748 5.8247× 10−7 5.34
QNSO 4.9748 4.9748 4.9748 9.5127× 10−8 4.18

Table 3. Comparing computational efficiency (n = 10).

Methods Best Average Worst Std. No. of Iterations

SPSO [31] 27.5833 39.7451 51.0513 6.2649 500
APSO [32] 23.8351 39.3527 50.4733 7.1493 500

FA [34] 30.3567 56.3786 81.7154 12.5423 500
RGA [35] 4.9754 4.9872 5.0509 0.01809 500

RDPSO [33] 4.9748 6.9563 13.2190 2.3012 500
QPSO [30] 4.9748 5.7736 8.9549 0.9786 495.7

[29] 4.9748 4.9748 4.9748 1.5934× 10−6 12.54
QNSO 4.9748 4.9748 4.9748 1.1478× 10−6 14.3

5. Applications

In this section, three optimization problems in applications, including hollow transmission
shaft [36], heat exchangers [37] and crank–rocker mechanism [36], are solved using the proposed
QNSO algorithm.

Application 1. (Hollow transmission shaft) Consider the hollow transmission shaft optimization
problem in [36], where D and d are the outer diameter and inner diameter, d = 8 mm, shaft length
L = 3.6 m. The power transmitted by the shaft is P = 7 kW and the speed n = 1500 r/min. Shaft
material density p = 7800 kg/m2, shear modulus S = 81 GPa, and allowable shear stress τ̄ = 45 MPa,
allowable torsion angle per unit length ϕ̄ = 1.5◦ m. The aim is to minimize the mass of the shaft under
the limitations of torsional strength and torsional stiffness:

(1) Decision variables and cost function

In this problem, there is only one decision variable x := D. According to the design requirements,
the optimization goal is to minimize the mass of the shaft that is, f (x) = π

4 ρL(D2 − d2).
(2) Restrictions

Algorithms 2019, 12, 138 14 of 22

(a) Torsional strength condition is τmax = T
Wn
≤ τ̄, where T is the torque received by the

round shaft, T = 9550 P
n , Wn is the torsional section modulus, Wn = π(D4−d4)

16D .
(b) Torsional stiffness condition is ϕ = T

SJp
≤ ϕ̄, where ϕ is unit length twist angle, G is shear

modulus, Jp is polar moment of inertia, Jp = π(D4−d4)
32 .

(c) Outer diameter minimum limit condition is x ≥ d.

Following the above analysis, we summarize the optimization problem as follows:

min f (x) =
π

4
ρL(x2 − d2)× 10−6,

subject to g1(x) = d− x ≤ 0,

g2(x) =
16xT × 109

π(x4 − d4)
− τ̄ × 106 ≤ 0,

g3(x) =
32T × 103

Sπ(x4 − d4)
− ϕ̄× π

180
≤ 0.

(12)

For the above problem (12), one can use the f mincon function in Matlab to obtain a solution
x∗ = 21.6121 mm with f (x∗) = 8.8896 kg [36]. To carry out the QNSO algorithm, we set swarm size
q = 5, parameter β = 1

2 , tolerance error precision ε = 10−6, the maximum iteration number Kmax = 15,
M1 = 0, and γ = 1000. The initial values of the position Xi ∈ [8, 100] of particles, i = 1, 2, · · · , 5,
are randomly chosen. We perform 50 realizations and obtain an optimal solution x∗ = 21.5965 mm
with f (x∗) = 8.8747 kg, which is slightly better than that obtained in [36].

Figure 7 shows the iteration results of the energy function E, the cost function f and the solution x
of the best particle among five particles. As seen from the results, the proposed algorithm successfully
solves the optimization problem with a fast convergence speed and finds a relative ideal solution
within five iterations. Figure 8 depicts the iteration results of the inequality constraint functions and
illustrates the ability of the algorithm to deal with constraints. Table 4 shows the best result, the average
result, the worst result, and the standard deviation result of f (Pg) over 50 realizations.

2 4 6 8 10 12 14

0

1

2
10
4

2 4 6 8 10 12 14

0

100

200

2 4 6 8 10 12 14

0

50

100

k

E

k

f

k

x

Figure 7. Convergence results of E, f and x in Application 1.

Algorithms 2019, 12, 138 15 of 22

2 4 6 8 10 12 14

-100

-50

0

2 4 6 8 10 12 14

-6

-4

-2
10
7

2 4 6 8 10 12 14

-0.05

0

0.05

k

k

k

g
1
(x
)

g
2
(x
)

g
3
(x
)

Figure 8. Iteration results of gi(x) in Application 1, i = 1, 2, 3.

Table 4. Statistical analysis of the results in Application 1.

Best Average Worst Std.

8.8747 8.8759 8.8767 6.62× 10−5

Application 2. (Heat exchangers [37]) Consider three connected heat exchangers as shown Figure 9,
which are used to heat a material temperature from 100◦ to 500◦. Let mcp = 105, where m is the mass
flow rate of the fluid and cp is the specific heat capacity of the fluid. The heat transfer coefficients of the
three heat exchangers are K1 = 120, K2 = 80 and K3 = 40, respectively. For simplicity, the temperature
difference4tm uses arithmetic mean value and the above values are obtained through dimensionless
processing. The aim is to minimize the total heat transfer area by selecting the appropriate temperature.

Figure 9. Flow chart of heat exchangers.

The decision variables are x = [T1, T2]
>. The restrictions are given by 100 ≤ T1 ≤ 300 and

T1 ≤ T2 ≤ 400. It follows from the law of conservation of heat that

mcp(T1 − 100) = mcp(300− T3)⇒ T3 = 400− T1,

mcp(T2 − T1) = mcp(400− T4)⇒ T4 = 400− T2 + T1,

mcp(500− T2) = mcp(600− T5)⇒ T5 = 100− T2.

Algorithms 2019, 12, 138 16 of 22

The arithmetic mean values of temperature difference of heat exchangers are

4tm1 =
300− T1 + T3 − 100

2
= 300− T1,

4tm2 =
400− T2 + T4 − T1

2
= 400− T2,

4tm3 =
600− 500 + T5 − T2

2
= 100.

Therefore, according to the design requirements, the cost function is obtained

f (x) =
105(T1 − 100)
120(300− T1)

+
105(T2 − T1)

80(400− T2)
+

105(500− T2)

4000
.

To sum up, the optimization problem can be written as

min f (x) =
105(x1 − 100)
120(300− x1)

+
105(x2 − x1)

80(400− x2)
+

105(500− x2)

4000
,

subject to g1(x) = 100− x1 ≤ 0,

g2(x) = x1 − 300 ≤ 0,

g3(x) = x1 − x2 ≤ 0,

g4(x) = x2 − 400 ≤ 0.

(13)

In [37], the obtained minimum cost function value is 7049.4191 by using sequence quadratic
programming. To carry out the QNSO algorithm, we set swarm size q = 5, parameter β = 1

2 , tolerance
error precision ε = 10−6, the maximum iteration number Kmax = 6, M1 = 0, and γ = 1000. The initial
values of the position Xij ∈ [0, 400] of particles, i = 1, 2, · · · , 5, j = 1, 2, are randomly chosen. Since the
problem is relatively simple, after performing the simulation, we can obtain the optimal solution at
the first iteration almost every time. We perform 50 realizations and obtain the same results which
are shown in Table 5. Figure 10 shows the behavior of particles in the search process in the phase plot
by the proposed QNSO algorithm. It can be found that all particles move into the feasible region and
reach some local optimal solutions.

0 50 100 150 200 250 300 350 400

0

50

100

150

200

250

300

350

400

450

500

x1

x
2

particle1

particle2

particle3

particle4

particle5

Figure 10. Moving trails of the particles using the QNSO algorithm in Application 2 (dotted line:
feasible region).

Algorithms 2019, 12, 138 17 of 22

Table 5. Optimization results in Application 2.

f (x∗) x∗1 x∗2 g1(x∗) g2(x∗) g3(x∗) g4(x∗)

7049.2493 182.0179 295.6012 −82.01787 −117.9821 −113.5834 −104.3988

Application 3. (Crank–rocker mechanism [36]) Consider a crank–rocker mechanism as shown in
Figure 11. The anti-clockwise angle is calculated with the frame AD as the baseline. ψ0 and ϕ0

correspond to the position angles of the rocker and the crank respectively when the rocker is in the
right limit position. The minimum transmission angle γmin is greater than 45◦. The crank–rocker
mechanism is required to be designed when the crank is transferred from ϕ0 to ϕ0 +

π
2 and the output

angle ψ of the rocker meets the following predetermined motion rules ψs: ψs = ψ0 +
1
6 (ϕ− ϕ0)

2.

Figure 11. Crank–rocker mechanism.

It is shown in Figure 11 that the lengths of the four shafts are marked as l1, l2, l3 and l4, respectively.
l1 is the length of short shaft. Set l1 be the unit length that is, l1 = 1. Set the decision variable
x := [l2, l3, l4]>. It follows from the cosine theorem that

ψ0 = π − arccos
l2
4 + l2

3 − (l1 + l2)2

2l4l3
,

ϕ0 = arccos
l2
4 + (l1 + l2)2 − l2

3
2l4(l1 + l2)

.

According to the design requirements, the optimization goal is to minimize

f (x) =
∫ ϕ0+π/2

ϕ0

(ψ− ψs)
2.

To numerically minimize f (x), discretizing the cost function by dividing the interval
[ϕ0, ϕ0 + π/2] into 50 parts yields

f (x) =
p=50
∑

p=0
(ψp − ψsp)2.

The actual output angle of the crank–rocker mechanism is ψp which can be calculated by

ψp =

{
π − αp − βp, 0 ≤ ϕp ≤ π,

π − αp + βp, π ≤ ϕp ≤ 2π,
ϕp = ϕ0 +

π
2

p
50 , p = 1, 2, · · · , 50,

Algorithms 2019, 12, 138 18 of 22

where
rp =

√
l2
1 + l2

4 − 2l1l4 cos ϕp,

αp = arccos
r2

p + l2
3 − l2

2

2l3rp
,

βp = arccos
r2

p + l2
4 − l2

1

2l4rp
.

The minimum transmission angle constraints are given by

cos γ =

l2
2 + l2

3 − (l4 − l1)2

2l2l3
≤ cos 45◦, δ ≤ 90◦,

(l4 + l1)2 − l2
2 − l2

3
2l2l3

≤ cos 45◦, δ > 90◦,

which are equivalent to
l2
2 + l2

3 − (l4 − l1)2 −
√

2l2l3 ≤ 0,

(l4 + l1)2 − l2
2 − l2

3 −
√

2l2l3 ≤ 0.

The length constraints are given by

l2 ≥ l1, l3 ≥ l1, l4 ≥ l1,

l1 + l4 ≤ l2 + l3,

l1 + l2 ≤ l4 + l3,

l1 + l3 ≤ l2 + l4.

Following the above analysis, we summarize the optimization problem as follows:

min f (x) =
p=50

∑
p=0

(ψp(x)− ψsp(x))2,

subject to g1(x) = x2
1 + x2

2 − (x3 − 1)2 −
√

2x1x2 ≤ 0,

g2(x) = (x3 + 1)2 − x2
1 − x2

2 −
√

2x1x2 ≤ 0,

g3(x) = 1− x1 ≤ 0,

g4(x) = 1− x2 ≤ 0,

g5(x) = 1− x3 ≤ 0,

g6(x) = 1 + x3 − x1 − x2 ≤ 0,

g7(x) = 1 + x2 − x1 − x3 ≤ 0,

g8(x) = 1 + x1 − x3 − x2 ≤ 0,

(14)

where
ψsp(x) = ψ0(x) +

1
6
(ϕp(x)− ϕ0(x))2,

ψp(x) =

{
π − αp(x)− βp(x), 0 ≤ ϕp ≤ π,
π − αp(x) + βp(x), π ≤ ϕp ≤ 2π,

ϕp(x) = ϕ0(x) +
π

2
p

50
, p = 1, 2, · · · , 50,

ϕ0(x) = arccos
x2

3 + (1 + x1)
2 − x2

2
2x3(1 + x1)

,

ψ0(x) = π − arccos
x2

3 + x2
2 − (1 + x1)

2

2x3x2
,

Algorithms 2019, 12, 138 19 of 22

αp(x) = arccos
r2

p(x) + x2
2 − x2

1

2x2rp(x)
,

βp(x) = arccos
r2

p(x) + x2
3 − 1

2x3rp(x)
,

rp(x) =
√

1 + x2
3 − 2x3 cos ϕp.

In this problem, the cost function and constraints are more complicated than those problems
in Applications 1 and 2. In [36], the obtained cost function value is 0.0051 at the optimal solution
x∗ = (5.6695, 2.9143, 7.0000) when the upper bound of x is limited to (8, 8, 7). For comparison, we also
impose the upper bound of x as (8, 8, 7). To carry out the QNSO algorithm, we set swarm size q = 20,
the parameter β decreased from 1 to 0.5, tolerance error precision ε = 10−6, the maximum iteration
number Kmax = 500, M1 = 0, and γ = 1000. The initial values of the position Xij ∈ [1, 10] of particles,
i = 1, 2, · · · , 20, j = 1, 2, 3 are randomly chosen.

We perform 20 realizations and obtain x∗ = (5.6691, 2.9145, 7.0000), the minimum cost function
value is 0.0050983, which is better than the result obtained in [36]. Figures 12–14 show the transient
behaviors of x1, x2 and x3 of the proposed neural network initialized from 20 random particles for
each state, respectively. It can be found that all states converge instantaneously local optimal solutions
since the cost function itself has many local optima and the searching space is divided into many
nonconvex areas by the constraints. Therefore, more iterations have been required to make full use of
interconnections of particles so that the QNSO algorithm is able to fully exploit the parallel nature of
the computation and produce results that are more globally optimal. Table 6 shows the best result,
the average result, the worst result, and the standard deviation result of f (Pg) over 20 experiments.

Table 6. Statistical analysis of the results in Application 3.

Best Average Worst Std.

5.0983× 10−3 5.1364× 10−3 5.4642× 10−3 1.1526× 10−4

0 0.5 1 1.5

10
-6

1

2

3

4

5

6

7

8

9

10

t (s)

x
1

Figure 12. Transient behaviors of the proposed neural network state x1.

Algorithms 2019, 12, 138 20 of 22

0 0.5 1 1.5

10
-6

1

2

3

4

5

6

7

8

9

10

t (s)

x
2

Figure 13. Transient behaviors of the proposed neural network state x2.

0 0.5 1 1.5

10
-6

1

2

3

4

5

6

7

8

9

10

t (s)

x
3

Figure 14. Transient behaviors of the proposed neural network state x3.

6. Conclusions

We have presented the design of a new global optimization method called a quantum-behaved
neurodynamic swarm optimization (QNSO) approach. This method is composed of an efficient
neural network and the quantum-behaved swarm optimization. As the QPSO algorithm is used, the
search process in the QNSO method has a high convergence rate. In addition, the global searching
ability of particle swarm optimization and the local searching and constraint-processing abilities of
neurodynamic optimization can complement each other very well. Meanwhile, the QNSO method and
its implementation have been described extensively in the context. Then, the QNSO method has been
illustrated with two function tests. Finally, the presented method has been applied to the optimization
of three applications.

Algorithms 2019, 12, 138 21 of 22

Author Contributions: Conceptualization, X.L.; Research and experiments, Z.J.; Writing—original draft
preparation, Z.J. and X.C.; Writing—review and editing, X.L.

Funding: This research received no external funding.

Acknowledgments: This work is partially supported by the National Natural Science Foundation of China
(61473136, 61807016), China Postdoctoral Science Foundation (2018M642160), and Jiangxi Natural Science
Foundation Youth Project (20161BAB212032).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Al-Gallaf, E.; Mutib, K.A.; Hamdan, H. Artificial neural network dexterous robotics hand optimal control
methodology: Grasping and manipulation forces optimization. Artif. Life Robot. 2010, 15, 408–412. [CrossRef]

2. Xia, Y.S.; Leung, H.; Bosse, E. Neural data fusion algorithms based on a linearly constrained least square
method. IEEE Trans. Neural Netw. 2002, 13, 320–329. [PubMed]

3. Livieris, I.E. Forecasting economy-related data utilizing weight-constrained recurrent neural networks.
Algorithms 2019, 12, 85. [CrossRef]

4. Boyd, S.; Vandenberghe, L. Convex Optimization; Cambridge University Press: New York, NY, USA, 2004.
5. Bazaraa, M.S.; Sherali, H.D.; Shetty, C.M. Nonlinear Programming: Theory and Algorithms, 3rd ed.;

John Wiley and Sons: Hoboken, NJ, USA, 2006.
6. Yan, Z.; Wang, J.; Li, G. A collective neurodynamic optimization approach to bound-constrained nonconvex

optimization. Neural Netw. 2014, 55, 20–29. [CrossRef] [PubMed]
7. Zheng, X.; Shi, J. A modified sufficient descent Polak-Ribiére-Polyak type conjugate gradient method for

unconstrained optimization problems. Algorithms 2018, 11, 133. [CrossRef]
8. Yang, Y.; Cao, J. A feedback neural network for solving convex constraint optimization problems.

Appl. Math. Comput. 2008, 201, 340–350. [CrossRef]
9. Xia, Y.S. A new neural network for solving linear and quadratic programming problems. IEEE Trans.

Neural Netw. 1996, 7, 1544–1548. [PubMed]
10. Xia, Y.S.; Wang, J. A dual neural network for kinematic control of redundant robot manipulators. IEEE Trans.

Cybern. 2001, 31, 147–154.
11. Effati, S.; Mansoori, A.; Eshaghnezhad, M. An efficient projection neural network for solving bilinear

programming problems. Neurocomputing 2015, 168, 1188–1197. [CrossRef]
12. Liu, Q.; Cao, J.; Xia, Y. A delayed neural network for solving linear projection equations and its analysis.

IEEE Trans. Neural Netw. 2005, 16, 834–843. [CrossRef]
13. Ioannis, E.L. Improving the classification efficiency of an ann utilizing a new training methodology.

Informatics 2019, 6, 1.
14. Leung, Y.; Chen, K.Z.; Gao, X.B. A high-performance feedback neural network for solving convex nonlinear

programming problems. IEEE Trans. Neural Netw. 2003, 14, 1469–1477. [CrossRef] [PubMed]
15. Nazemi, A.; Tahmasbi, N. A high performance neural network model for solving chance constrained

optimization problems. Neurocomputing 2013, 121, 540–550. [CrossRef]
16. Mansoori, A.; Effati, S.; Eshaghnezhad, M. A neural network to solve quadratic programming problems

with fuzzy parameters. Fuzzy Optim. Decis. Mak. 2016, 17, 75–101. [CrossRef]
17. Mansoori, A.; Effati, S. An efficient neurodynamic model to solve nonlinear programming problems with

fuzzy parameters. Neurocomputing 2019, 334, 125–133. [CrossRef]
18. Xia, Y.S.; Kamel, M. Cooperative recurrent neural networks for solving L1 estimation problems with general

linear constraints. Neural Comput. 2008, 20, 844–872. [CrossRef] [PubMed]
19. Che, H.; Wang, J. A two-timescale duplex neurodynamic approach to biconvex optimization. IEEE Trans.

Neural Netw. Learn. Syst. 2018. [CrossRef] [PubMed]
20. Yang, Y.; Cao, J.; Xu, X.; Liu, J. A generalized neural network for solving a class of minimax optimization

problems with linear constraints. Appl. Math. Comput. 2012, 218, 7528–7537. [CrossRef]
21. Li, Q.; Liu, Y.; Zhu, L. Neural network for nonsmooth pseudoconvex optimization with general constraints.

Neurocomputing 2014, 131, 336–347. [CrossRef]
22. Li, G.; Yan, Z.; Wang, J. A one-layer recurrent neural network for constrained nonconvex optimization.

Neural Netw. 2015, 61, 10–21. [CrossRef]

http://dx.doi.org/10.1007/s10015-010-0831-6
http://www.ncbi.nlm.nih.gov/pubmed/18244434
http://dx.doi.org/10.3390/a12040085
http://dx.doi.org/10.1016/j.neunet.2014.03.006
http://www.ncbi.nlm.nih.gov/pubmed/24705545
http://dx.doi.org/10.3390/a11090133
http://dx.doi.org/10.1016/j.amc.2007.12.029
http://www.ncbi.nlm.nih.gov/pubmed/18263554
http://dx.doi.org/10.1016/j.neucom.2015.05.003
http://dx.doi.org/10.1109/TNN.2005.849834
http://dx.doi.org/10.1109/TNN.2003.820852
http://www.ncbi.nlm.nih.gov/pubmed/18244592
http://dx.doi.org/10.1016/j.neucom.2013.05.034
http://dx.doi.org/10.1007/s10700-016-9261-9
http://dx.doi.org/10.1016/j.neucom.2019.01.012
http://dx.doi.org/10.1162/neco.2007.10-06-376
http://www.ncbi.nlm.nih.gov/pubmed/18370841
http://dx.doi.org/10.1109/TNNLS.2018.2884788
http://www.ncbi.nlm.nih.gov/pubmed/30602424
http://dx.doi.org/10.1016/j.amc.2012.01.020
http://dx.doi.org/10.1016/j.neucom.2013.10.008
http://dx.doi.org/10.1016/j.neunet.2014.09.009

Algorithms 2019, 12, 138 22 of 22

23. Bian, W.; Ma, L.; Qin, S.; Xue, X. Neural network for nonsmooth pseudoconvex optimization with general
convex constraints. Neural Netw. 2018, 101, 1–14. [CrossRef]

24. Kennedy, J. Particle swarm optimization. In Proceedings of IEEE International Conference on Neural
Networks, Perth, Australia, 27 November–1 December 1995; pp. 1942–1948.

25. Van den Bergh, F. An Analysis of Particle Swarm Optimizers. Ph.D. Thesis, Natural and Agricultural Science
Department, University of Pretoria, Pretoria, South Africa, 2001.

26. Goudarzi, S.; Hassan, W.H.; Anisi, M.H.; Soleymani, A.; Sookhak, M.; Khurram Khan, M.; Hashim, A.A.;
Zareei, M. ABC-PSO for vertical handover in heterogeneous wireless networks. Neurocomputing 2017, 256,
63–81. [CrossRef]

27. He, G.; Huang, N. A modified particle swarm optimization algorithm with applications. Appl. Math. Comput.
2012, 219, 1053–1060. [CrossRef]

28. Dai, H.P.; Chen, D.D.; Zheng, Z.S. Effects of random values for particle swarm optimization algorithm.
Algorithms 2018, 11, 23. [CrossRef]

29. Yan, Z.; Fan, J.; Wang, J. A collective neurodynamic approach to constrained global optimization. IEEE Trans.
Neural Netw. Learn. Syst. 2017, 28, 1206–1215. [CrossRef]

30. Sun, J.; Feng, B.; Xu, W. Particle swarm optimization with particles having quantum behavior. In Proceedings
of the 2004 Congress on Evolutionary Computation, Portland, OR, USA, 19–23 June 2004; Volume 1,
pp. 325–331.

31. Zambrano-Bigiarini, M.; Clerc, M.; Rojas, R. Standard particle swarm optimisation 2011 at CEC-2013:
A baseline for future PSO improvements. In Proceedings of the IEEE Congress on Evolutionary Computation,
Cancun, Mexico, 20–23 June 2013; pp. 2337–2344.

32. Zhan, Z.; Zhang, J. Adaptive particle swarm optimization. IEEE Trans. Syst. Man Cybern. 2009, 39, 1362–1381.
[CrossRef]

33. Sun, J.; Palade, V.; Wu, X.J.; Fang, W.; Wang, Z.Y. Solving the power economic dispatch problem with
generator constraints by random drift particle swarm optimization. IEEE Trans. Ind. Inf. 2014, 10, 222–232.
[CrossRef]

34. Yang, X.S.; Hosseini, S.S.S.; Gandomi, A.H. Firefly algorithm for solving non-convex economic dispatch
problems with valve loading effect. Appl. Soft Comput. 2012, 12, 1180–1186. [CrossRef]

35. Dakuo, H.; Fuli, W.; Mingxing, J. An improved genetic algorithm for a type of nonlinear programming
problems. In Proceedings of the IEEE International Conference on Automation and Logistics, Qingdao, China,
1–3 September 2008.

36. Zhang, Y. Engineering Optimization Design and MATLAB Implementation; Tsinghua University Press:
Beijing, China, 2011.

37. Huang, H.J. Computer Simulation of Practical Chemical Engineering: Application of Matlab in Chemical Engineering;
Chemical Industry Press: Beijing, China, 2004.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.neunet.2018.01.008
http://dx.doi.org/10.1016/j.neucom.2016.08.136
http://dx.doi.org/10.1016/j.amc.2012.07.010
http://dx.doi.org/10.3390/a11020023
http://dx.doi.org/10.1109/TNNLS.2016.2524619
http://dx.doi.org/10.1109/TSMCB.2009.2015956
http://dx.doi.org/10.1109/TII.2013.2267392
http://dx.doi.org/10.1016/j.asoc.2011.09.017
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Problem Statement and Model Description
	Quantum-Behaved Neurodynamic Swarm Approach
	Function Tests
	Applications
	Conclusions
	References

