
algorithms

Article

An Enhanced Lightning Attachment Procedure
Optimization Algorithm

Yanjiao Wang and Xintian Jiang *

School of Electrical Engineering, Northeast Electric Power University, Jilin 132012, China
* Correspondence: 2201700501@neepu.edu.cn

Received: 23 May 2019; Accepted: 28 June 2019; Published: 29 June 2019
����������
�������

Abstract: To overcome the shortcomings of the lightning attachment procedure optimization
(LAPO) algorithm, such as premature convergence and slow convergence speed, an enhanced
lightning attachment procedure optimization (ELAPO) algorithm was proposed in this paper. In
the downward leader movement, the idea of differential evolution was introduced to speed up
population convergence; in the upward leader movement, by superimposing vectors pointing to the
average individual, the individual updating mode was modified to change the direction of individual
evolution, avoid falling into local optimum, and carry out a more fine local information search;
in the performance enhancement stage, opposition-based learning (OBL) was used to replace the
worst individuals, improve the convergence rate of population, and increase the global exploration
capability. Finally, 16 typical benchmark functions in CEC2005 are used to carry out simulation
experiments with LAPO algorithm, four improved algorithms, and ELAPO. Experimental results
showed that ELAPO obtained the better convergence velocity and optimization accuracy.

Keywords: lightning attachment procedure optimization algorithm; differential evolution;
opposition-based learning; meta-heuristic optimization

1. Introduction

The optimization problems in engineering field can be expressed by mathematical models and
solved by mathematical or numerical methods. With the development of science and technology, more
and more engineering optimization problems are developing in the direction of large-scale, multi-peak,
non-linear, and complex. It is difficult to solve them by traditional numerical methods. Meta-heuristic
algorithm is an algorithm designed to solve approximate large-scale difficult optimization problems
without deep adaptation to each problem. In recent decades, in order to overcome the shortcomings of
slow computation speed and low reliability of traditional numerical methods in solving engineering
problems, researchers have proposed a large number of meta-heuristic algorithms [1–3], which are
widely used to solve complex problems in industries and services, from planning to production
management and even engineering [4–8].

Meta-heuristic algorithms have some differences in the optimization mechanism, but they are
similar in the optimization process. They are all “neighborhood search” structures. The algorithm
starts from an initial solution (or a group of) and generates several neighborhood solutions through the
neighborhood function under the control of the key parameters of the algorithm. It updates the current
state according to the acceptance criteria (deterministic, probabilistic, or chaotic) and then adjusts the
key parameters according to the key parameters modification criteria. Repeat the above search steps
until the convergence criteria of the algorithm are satisfied, and finally the optimization results of
the problem are obtained. Meta-heuristic optimization algorithms can be divided into evolutionary
heuristic algorithm, group heuristic algorithm, and physical heuristic algorithm according to different
inspiration sources.

Algorithms 2019, 12, 134; doi:10.3390/a12070134 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
http://dx.doi.org/10.3390/a12070134
http://www.mdpi.com/journal/algorithms
https://www.mdpi.com/1999-4893/12/7/134?type=check_update&version=2

Algorithms 2019, 12, 134 2 of 21

Evolutionary heuristic algorithms are algorithms inspired by biological evolution in nature.
Genetic algorithm [9] is the earliest and representative evolutionary heuristic algorithm, which inspired
by Darwin’s evolutionary theory, it updates the individual through three processes: selection, crossover,
and mutation. Differential evolutionary algorithm (DE) [10], evolution strategy (ES) [11], genetic
programming (GP) [12], covariance-matrix adaptation evolution strategy [13], and biogeography-based
optimizer (BBO) [14] are other methods under this category.

Group heuristic algorithms simulate the population behavior of insects, cattle, birds, and fish.
These groups seek food in a cooperative way. Each member of the population constantly changes
the direction of search by learning from his own experience and the experience of other members.
The prominent feature of group heuristic algorithm is to use individuals in the population to search
cooperatively, so as to find the optimal solution in the solution space. Particle swarm optimization
(PSO) is the most representative algorithm. It is inspired by the foraging behavior of birds. For each
individual, the position is updated according to its current speed, optimal position, and global optimal
position [15]. The other methods that could be classified in this group are the artificial bee colony
algorithm (ABC) [16], monkey search algorithm (MSA) [17], firefly algorithm (FA) [18], grey wolf
optimization algorithm (GWO) [19], moth-flame optimization algorithm (MFO) [20], and so on.

The physical heuristic evolutionary algorithms are inspired by physical phenomena in nature
and in these methods, the physical rules were used to update the solutions in each iteration. For
example, in 2011, inspired by the spiral motion of galaxies in the universe, Shah-Hosseini H proposed
a galaxy-based search algorithm (GbSA) [21]; in 2012, inspired by Newton’s second law, Rashedi E
and others proposed gravitational search algorithms (GSA) [22]; in the same year, Kaveh A et al. were
inspired by the refraction of light and proposed the ray optimization algorithms (RO) [23]; Hatamlou
proposed a heuristic algorithm, which was named the black hole algorithms (BH) based on the black
hole phenomenon in 2013 [24]; in 2016, inspired by the evaporation of water molecules on solid
surfaces, Kaveh A et al. proposed an algorithm named the water evaporation optimization algorithm
(WEO) [25].

Based on the No-Free-Lunch theorem, it cannot be claimed that optimization methods could
solve all the problems. In order to solve a wider range of optimization problems, a new method
has been introduced, in 2017, Iranian scholar A. Foroughi Nematollahi and others, inspired by the
nature of lightning attachment process, proposed the lightning attachment procedure optimization
(LAPO) [26]. It is compared with nine algorithms, such as the particle swarm optimization (PSO),
differential evolution (DE), gray wolf optimizer (GWO), and cuckoo search algorithms (CSA), on four
sets of 29 standard test functions. The results show that the LAPO algorithm has obvious advantages in
convergence speed and accuracy, but similar to other swarm intelligence optimization algorithms, the
LAPO algorithm also has some shortcomings, such as slow convergence speed in the middle and later
stages of the evolutionary search, and easy to fall into local optimum when solving high-dimensional
and multi-peak problems. Since the LAPO algorithm was put forward shortly, it has not been paid
enough attention by scholars in various fields, and the theoretical system of the LAPO algorithm is still
far from perfect. In order to further improve the optimization performance of the LAPO algorithm, an
enhanced lightning attachment procedure optimization algorithm (ELAPO) is proposed in this paper.
The downward leader movement combines the renewal mechanism of differential evolution algorithm
with the original renewal mechanism, and introduces the optimal individuals in the population to
participate in the evolution. Speeds up the convergence rate of the population through the differential
evolution mechanism on the basis of distinguishing the better and worse individuals in the original
algorithm. The upward leader movement changes the direction and step size of individual learning,
and makes the individual jump out of the local optimum. In the process of performance improvement,
the dynamic opposition-based learning (OBL) [27] method is used to replace the original update
operation. Experiments show that this method can effectively improve the convergence speed of the
algorithm. At the same time, to test the ELAPO performance, we tested 16 benchmark functions, and
compared the experimental results with LAPO and four improved optimization algorithms results.

Algorithms 2019, 12, 134 3 of 21

The rest of this paper is organized as follows. Section 2 briefly introduces the principle and process
of the standard LAPO algorithm. Section 3 describes the ELAPO algorithm combined with differential
evolution and opposition-based learning in detail. The experiments and results analysis are reported
in Section 4. Section 5 concludes this paper.

2. The Lightning Attachment Procedure Optimization Algorithm

In nature, there are a large number of positive charges on the upper surface of the thunderstorm
clouds, and a large number of negative charges and a small number of positive charges on the lower
surface. As the charge increases, the edge of the cloud breaks down, creating a trapezoidal downward
pilot that gradually extends to the ground. Affected by this, the space electric field near ground objects
such as lightning rods, conductors, poles, and towers will continue to increase. To a certain extent,
it will lead to an upward return stroke through the ionization channel opened by the downward
trapezoidal pilot, that is, from the ground to the bottom of the cloud, forming a flash-over. When three
or four flash-overs occur, there will be a gap breakdown, accompanied by pulse discharge, forming
thunder and lightning. In this process, many pulsed discharges were carried out. Since each pulse
discharge consumes a large amount of charge accumulated in thunderstorm clouds, the discharge
process will become weaker and weaker until the charge reserve in thunderstorm clouds is exhausted,
the pulse discharge can stop. The point at which the breakdown discharge may occur is defined as the
test point, and the point at which charge depletion occurs is called the strike point.

To simulate the process of lightning formation, the LAPO abstracts the test points between the
cloud and ground as individuals, the electric field corresponding to the test points as fitness, and
the downward trapezoidal pilot, upward return stroke and pulse discharge processes of lightning
as three evolutionary operations, namely downward leader movement, upward leader movement,
and branch fading. Branch decline runs through the other two evolutionary processes and gradually
guides individual evolution. The key operation details of the LAPO algorithm are as follows:

2.1. Initialize the Population

Population is the set of all decision variables in the definition domain of optimization problems. In
the LAPO algorithm, individuals in the population represent test points where breakdown may occur,
and each individual in the population can serve as a starting point for downward or upward leaders.
Suppose that the upper limit of the definition domain is ub and the lower limit is lb. Individuals are
generated according to formula (1) to form the initial population.

Xt
i, j = lb + (ub− lb) × rand. (1)

In the formula Xt
i, j represents the j-dimensional (j = 1, 2, 3, , D) particle of the i-th (i = 1, 2, 3,

. , NP) individual of the population in the t-th generation. In the initialization stage, t = 0, rand is
a random number between [0,1].

2.2. Downward Leader Movement

During lightning downward leader movement, all test points are considered as potential next
jump points for a particular test point. Since lightning has random behavior, individual j (i , j)
is randomly selected in the population for test point i. If the electric field of j is higher than the
average value, that is, the fitness of j is better than Fave, which is the fitness of the average individual

Algorithms 2019, 12, 134 4 of 21

Xave =
1

NP

NP∑
i=1

Xi, lightning will jump to that point, otherwise lightning will move in another direction,

as shown in formula (2):

Xt
inew =

 Xt
i + rand×

(
Xave + rand×

(
Xt

j

))
, Ft

j < Fave

Xt
i − rand×

(
Xave + rand×

(
Xt

j

))
, else

. (2)

In the formula, rand is a random number between [0,1], and j is a randomly selected individual, which
is not equal to i.

2.3. Upward Leader Movement

In the process of upward leader movement, all particles move upward along the charge channel
opened by the downward leader and distribute exponentially in the channel. The updating mode of
each particle’s position is shown in formula (3).

Xinew = Xi + rand× S× (Xmin −Xmax). (3)

Among them, Xmin and Xmax are represented as the best and the worst individual of the current
population respectively, and the exponential factor S is shown in formula (4).

S = 1−
(t

tmax

)
× exp

(
−

t
tmax

)
. (4)

t and tmax represent the number of iterations and the maximum number of iterations respectively.

2.4. Branch Fading

In the whole process of lightning formation, if the electric field of the new test point is higher
than that of the previous point, the lightning branch will be generated and the pulse discharge will
continue. On the contrary, the branch will disappear and the lightning formation will stop.

The LAPO algorithm simulates the above-mentioned fading process and chooses individuals
according to formula (5).

Xt+1
i =

{
Xt

inew Ft
inew < Ft

i
Xt

i otherwise
. (5)

The above two parts of the evolutionary operations, the downward leader movement and the
upward leader movement, are selected and updated by branch fading, and for the individuals beyond
the boundary generated in the downward and upward leader searches, the boundary absorption
method is used, that is, the individuals beyond the boundary are placed on the boundary.

2.5. Enhancement of the Performance

In order to improve the performance of the algorithm, the average of the whole population was
calculated and the fitness of the average solution was obtained in each generation. If the fitness of
the worst individual was worse than the fitness of the average individual, the worst individual was
replaced by the average solution.

In summary, LAPO performs the enhancement of the performance, the downward leader
movement, and the upward leader movement in turn in each iteration, and each evolutionary process
is accompanied by branch fading and boundary value processing, as shown in Figure 1.

Algorithms 2019, 12, 134 5 of 21

Algorithms 2019, 12, 134 5 of 23

Figure 1. Flow chart of the lightning attachment procedure optimization (LAPO) algorithm.

3. The Enhanced Lightning Attachment Procedure Optimization Algorithm

To further improve the convergence accuracy and speed of the LAPO algorithm, a lightning
attachment procedure optimization algorithm based on combined differential learning and
opposition-based learning was proposed.

Start

Initialize population X and calculate its fitness F

Calculation the mean value of X (Xav)

Evaluate the population through the objective of X and
Xave(F and Fav)

If max(F)>Fav? X(ind(max(F)),:)=Xav
F(ind(max(F),1)=Fav

Updata Xav and Fav

for i=1:NP

Perform downward leader movement
with Eq.(2)

YES

NO

Check the upper and lower boundaries of new
individuals and update them

NO

i=NP?

Branch fading with Eq.(5)

Executing the Upward leader movement through
Eq.(3)and Eq.(4)

Computation
accuracy？

for i=1:NP

Branch fading with Eq.(5)

i=NP?

End

NO

YES

YES

Check the upper and lower boundaries of new
individuals and update them

NO

YES

Figure 1. Flow chart of the lightning attachment procedure optimization (LAPO) algorithm.

Algorithms 2019, 12, 134 6 of 21

3. The Enhanced Lightning Attachment Procedure Optimization Algorithm

To further improve the convergence accuracy and speed of the LAPO algorithm, a lightning
attachment procedure optimization algorithm based on combined differential learning and
opposition-based learning was proposed.

3.1. Improved Downward Leader Movement

In the downward leader movement of the LAPO algorithm, the individual updates according to
formula (2). After an in-depth analysis, it was found that the updating method had the following defects:

Firstly, since individual i is not directly related to the evolutionary information of individual j and
the average individual, it seems unreasonable to determine the updating mode of individual i based
solely on the fitness relationship between individual j and the average individual.

Secondly, because of the multiplication of individual j and rand, the evolution of each individual
is more dependent on the average individual. With the evolution, each individual will gather near the
average individual, that is to say, the overall population diversity maintenance ability of the algorithm
is not good and easy to fall into local optimum.

Thirdly, only one random individual is selected to learn from the average individual and the
current individual, which does not guarantee the “best selection”. If the selected individual is the
worst individual or the poorer individual, it will affect the evolution speed of the downward leader.

In view of this, this paper improves formula (2), as shown in formula (6).

Xt
inew =

 Xt
i + rand×

(
Xave −Xt

j

)
+ rand× (Xbest −Xt

i), Ft
i < Fave

Xave − rand×
(
Xt

i −Xt
j

)
+ rand× (Xbest −Xave), Ft

i > Fave
. (6)

In the formula, Xt
j is a randomly selected particle different from individual i, Xbest represents the best

individual in the current population, Xave and Fave are represented as the average individual and the
fitness value of the average individual respectively.

As can be seen from formula (6), it has the following advantages:
Firstly, we regard individuals whose fitness value was better than the average fitness value as

better individuals. For these individuals, they used themselves as base vectors to search around
themselves. For the other solutions whose evolutionary information was not good enough, they used
the central individual as base vectors to update and search around the average individuals. Obviously,
compared with the LAPO algorithm, which only searches near the individual itself, the improved
update method converged faster.

Secondly, compared with LAPO’s over-learning mode to the average individual, the proposed
method integrated the individual j, the average individual, and the optimal individual, and introduced
more combinations to enable the particles to obtain more local information, which was more conducive
to maintaining the diversity of the population.

Thirdly, compared with the original update method, formula (6) refers to the update strategy of
differential evolution algorithm, by adding two differential vectors to control the directive of evolution,
avoiding over-learning to a particle and falling into local optimum, and removing the step factor
rand before individual j in the original LAPO algorithm, thus avoiding the blindness of random step
size, and individual j directly participates in the evolution process, which further accelerated the
convergence speed of the algorithm.

Figure 2 takes the better individuals as an example to further describe the downward leader’s
update strategy.

Algorithms 2019, 12, 134 7 of 21
Algorithms 2019, 12, 134 7 of 23

Figure 2. Diagram of the better individual renewal.

Take individual i as an example, if it is a better one, individual i adds the difference vector
t

best iX X− , which is from individual t
iX to the best individual, close to the search area where the

optimal individual is located, and then adds the difference vector t
ave jX X− which is from

individual j to the average individual, reach to t
inewX . Since the j individual is randomly selected and

the direction of the second difference vector is randomly generated, the current individuals can get
more evolutionary directions and traverse the search interval where the excellent individuals are
located more quickly.

3.2. Improvement of Upward Leader Movement

It can be seen from formula (4) that in the upward leader movement of LAPO, individuals are
updated by learning from the best and worst individuals. As we all know, the worst individual
carries relatively less information for evolution, there is a low probability of producing excellent
individuals through them, which results in ineffective search and reduces the convergence speed of
the algorithm.

Since the average individual contains evolutionary information of all individuals to some
extent. Using average individuals instead of the worst individual to participate in evolution will
inevitably increase the probability of obtaining better individuals and maintain the diversity of the
population while improving the convergence rate. To this end, the updated formula of the upward
leader, formula (4), is adjusted as follows:

()inew i ave minX = X +rand S X X× × − . (7)

Combining formula (5), comparison formula (4), and formula (7), we can find that: In the early
stage of evolution, S value is relatively large, and the proportion of learning results from other
individuals is relatively large, while the average individual is much better than the worst one, and
carries more information conducive to evolution, so learning from ave minX X− is obviously faster
than learning from min maxX X− , and as evolution proceeds, each solution tends to be optimal, the
range of ave minX X− is obviously smaller than min maxX X− , with the value of S decreases. That is to
say, formula (7) has a relatively small search range, which is more conducive to the fine search near
itself and improves the convergence accuracy of the algorithm. Moreover, ave minX X− is a vector
pointing to the average individual, which can effectively jump out of the local optimum by
superposition it.

3.3. The Improved Enhancement Performance

The original algorithm updates the worst individual in each generation by comparing the
fitness values of the newly generated average individual with the worst individual in the population
and retaining the better one of them. According to the analysis of the experimental results and

bestX
aveX

t
jX

t
iX

t
inewX

1l

1rand l×

2l

2rand l×

Figure 2. Diagram of the better individual renewal.

Take individual i as an example, if it is a better one, individual i adds the difference vector
Xbest −Xt

i , which is from individual Xt
i to the best individual, close to the search area where the optimal

individual is located, and then adds the difference vector Xave −Xt
j which is from individual j to the

average individual, reach to Xt
inew. Since the j individual is randomly selected and the direction of the

second difference vector is randomly generated, the current individuals can get more evolutionary
directions and traverse the search interval where the excellent individuals are located more quickly.

3.2. Improvement of Upward Leader Movement

It can be seen from formula (4) that in the upward leader movement of LAPO, individuals are
updated by learning from the best and worst individuals. As we all know, the worst individual carries
relatively less information for evolution, there is a low probability of producing excellent individuals
through them, which results in ineffective search and reduces the convergence speed of the algorithm.

Since the average individual contains evolutionary information of all individuals to some extent.
Using average individuals instead of the worst individual to participate in evolution will inevitably
increase the probability of obtaining better individuals and maintain the diversity of the population
while improving the convergence rate. To this end, the updated formula of the upward leader, formula
(4), is adjusted as follows:

Xinew = Xi + rand× S× (Xave −Xmin). (7)

Combining formula (5), comparison formula (4), and formula (7), we can find that: In the early
stage of evolution, S value is relatively large, and the proportion of learning results from other
individuals is relatively large, while the average individual is much better than the worst one, and
carries more information conducive to evolution, so learning from Xave −Xmin is obviously faster than
learning from Xmin −Xmax, and as evolution proceeds, each solution tends to be optimal, the range of
Xave −Xmin is obviously smaller than Xmin −Xmax, with the value of S decreases. That is to say, formula
(7) has a relatively small search range, which is more conducive to the fine search near itself and
improves the convergence accuracy of the algorithm. Moreover, Xave −Xmin is a vector pointing to the
average individual, which can effectively jump out of the local optimum by superposition it.

Algorithms 2019, 12, 134 8 of 21

3.3. The Improved Enhancement Performance

The original algorithm updates the worst individual in each generation by comparing the fitness
values of the newly generated average individual with the worst individual in the population and
retaining the better one of them. According to the analysis of the experimental results and formulas,
this operation can increase the convergence speed of the algorithm to a certain extent, but there is still
room to improve its convergence speed.

Literature [27] points out that the opposition-based learning (OBL) of a particle is usually better
than that of the original particle, so the probability of the average particle after the OBL is better than
that of the original average individual. It is possible that the average individual after the OBL will
take part in the evolution instead of the worst individual, which will lead to a faster convergence rate.
In order to further accelerate the convergence speed of the algorithm, an improved opposition-based
learning strategy as shown in formula (8) was adopted.

X∗i j(t) = k
(
a j(t) + b j(t)

)
−Xt

i j, a j(t) = min(Xi j(t)), b j(t) = max(Xi j(t)), (8)

where Xt
i j represents the component of the first solution on the j-dimension, X∗i j(t) is its corresponding

reverse solution, a j(t), b j(t) are the minimum and maximum values of the current search interval on
the j-dimension, i = 1, 2, . . . , NP, j = 1, 2, . . .D. The learning strategies obtained by different values of k
are also different. Three strategies, k = 0.5, 1, and rand, are given in [27]. To verify the effectiveness of
the improved strategy, the dynamic opposition-based learning strategy LAPO algorithm combined
with k = 0.5, 1, rand, and the original LAPO algorithm were compared when the number of iterations
was set to 500 generations. Experiments were carried out on typical single-peak function Sphere and
multi-peak function Ackley, respectively. The results are shown in Figure 3, which show that for LAPO,
when k = 0.5 and k = rand, the dynamic opposition-based learning strategy converged faster than
the original algorithm, where k = rand had a relatively faster convergence rate. In order to improve
the convergence speed of the algorithm, the formula (9) with k = rand was used to update the worst
particle in this paper.

Algorithms 2019, 12, 134 8 of 23

formulas, this operation can increase the convergence speed of the algorithm to a certain extent, but
there is still room to improve its convergence speed.

Literature [27] points out that the opposition-based learning (OBL) of a particle is usually better
than that of the original particle, so the probability of the average particle after the OBL is better than
that of the original average individual. It is possible that the average individual after the OBL will
take part in the evolution instead of the worst individual, which will lead to a faster convergence
rate. In order to further accelerate the convergence speed of the algorithm, an improved
opposition-based learning strategy as shown in formula (9) was adopted.

() () ()()* t
ij j j ij j ij j ijX t = k a t +b t - X ,a (t)= min(X (t)),b (t)= max(X (t))

,
 (8)

where t
ijX represents the component of the first solution on the j-dimension, ()*

ijX t is its
corresponding reverse solution, ja (t) , jb (t) are the minimum and maximum values of the current
search interval on the j-dimension, 1,2,..., , 1,2,...i NP j D= = . The learning strategies obtained by
different values of k are also different. Three strategies, k = 0.5, 1, and rand, are given in [27]. To
verify the effectiveness of the improved strategy, the dynamic opposition-based learning strategy
LAPO algorithm combined with k = 0.5, 1, rand, and the original LAPO algorithm were compared
when the number of iterations was set to 500 generations. Experiments were carried out on typical
single-peak function Sphere and multi-peak function Ackley, respectively. The results are shown in
Figure 3, which show that for LAPO, when k = 0.5 and k = rand, the dynamic opposition-based
learning strategy converged faster than the original algorithm, where k = rand had a relatively faster
convergence rate. In order to improve the convergence speed of the algorithm, the formula (9) with k
= rand was used to update the worst particle in this paper.

(a) Contrast Graph on Function Sphere (b) Contrast Graph on Function Ackley

Figure 3. The comparison of LAPO and LAPO combined with opposition-based learning (OBL).

3.4. The Pseudo Code of the ELAPO Algorithm

Initialize the first population of test points randomly in the specific range

Calculate the fitness of test points

while the end criterion is not achieved

Set the test point with the worst fitness as Xw

for j = 1:D

_

() min((:,))
() max((:,))

() * (() ()) ()w new j j ave

a j X j
b j X j
X t rand a t b t X t

=
=

= + −
end

0 100 200 300 400 500
10

-25

10
-20

10
-15

10
-10

10
-5

10
0

10
5 Sphere

Iteration

B
es

t s
co

re
 o

bt
ai

ne
d

so
 fa

r

LAPO
LAPO-1
LAPO-0.5
LAPO-rand

0 100 200 300 400 500
10

-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2 Ackley

Iteration

B
es

t s
co

re
 o

bt
ai

ne
d

so
 fa

r

LAPO
LAPO-1
LAPO-0.5
LAPO-rand

Figure 3. The comparison of LAPO and LAPO combined with opposition-based learning (OBL).

Algorithms 2019, 12, 134 9 of 21

3.4. The Pseudo Code of the ELAPO Algorithm

Initialize the first population of test points randomly in the specific range
Calculate the fitness of test points
while the end criterion is not achieved
Set the test point with the worst fitness as Xw

for j = 1:D
a(j) = min(X(:, j))
b(j) = max(X(:, j))

Xw_new(t) = rand ∗ (a j(t) + b j(t)) −Xave(t)
end
if the fitness of Xw_new is better than the fitness of Xw

Xw = Xw_new

Fw = Fw_new

end
Obtain Xave which is the mean value of all the test points

Calculate the fitness of Xave as Fave

for i = 1:NP (each test point)
Select Xt

j randomly which is not equal to Xt
i

Set the test point with the best fitness as Xt
best

for j = 1:D (number of variables)
Update the variables of Xt

i based on Equation (6), as Xt
inew

Check the boundary. If the particle exceeds the boundary value, it is generated randomly within the boundary.
end

Calculate the fitness of Xt
inew

if the fitness of Xt
inew is better than Xt

i
Xt

i = Xt
inew
end

end
for i = 1:NP (each test point)

for j = 1:D (number of variables)
Update the variables of Xt

i based on Equation (8) as Xt
i_new

Check the boundary. If the particle exceeds the boundary value, it is generated randomly within the boundary.
end
Calculation the fitness of Xt

i_new
if the fitness of Xt

i_new is better than Xt
i

Xt
i = Xt

i_new
end

end
XBEST = the test point with the best fitness
FBEST = the best fitness
end
return XBEST, FBEST

4. Analysis of the Simulation Results

In order to test the performance of the proposed ELAPO, a series of experiments were carried
out in this section. All experiments were implemented on CPU: Intel (R) Core (TM) i5-4200H, 4G
memory, and 2.8GHz main frequency computer. The program was implemented in the language of
Matlab R2014a.

The experiment selected 16 benchmark functions in CEC2005 [28]. Among them, f1–f8 were
unimode functions, f9–f16 were multimodal functions, the dimensions of the test functions from f1 to
f14 were all set in 30 dimensions, and the dimensions of the test functions f15 and f16 were set in two
dimensions, the specific functions are shown in Table 1.

Algorithms 2019, 12, 134 10 of 21

Table 1. Test Functions.

Name Function Range Optimal

f1 sumPower f (x) =
D∑

i=1
|xi|

(i+1) [−1, 1] 0

f2 Sphere f (x) =
D∑

i=1
xi

2 [−100, 100] 0

f3 SumSquares f (x) =
D∑

i=1
ix2

i [−10, 10] 0

f4 Step f (x) =
D∑

i=1
(xi + 0.5)2 [−1.28, 1.28] 0

f5 Schwefel 2.22 f (x) =
D∑

i=1
|xi|+

∏D
i=1|xi| [−10, 10] 0

f6 Schwefel 1.2 f (x) =
D∑

i=1

 i∑
j=1

x j

2

[−100, 100] 0

f7 Schwefel2.21 f (x) =
D

max
i=1
{|xi|} [−100, 100] 0

f8 Schwefel1.2 with
Noise f (x) =

 D∑
i=1

 i∑
j=1

x j

2× (
1 + 0.4

∣∣∣N(0, 1)
∣∣∣) [−100, 100] 0

f9 Rastrigin f (x) =
D∑

i=1

(
x2

i − 10 cos(2πxi) + 10
)

[−5.12, 5.12] 0

f10 Shifted Rotated
Rastrigin’s f (x) =

D∑
i=1

(
10

i−1
D−1 xi

)2

− 10 cos(2π10
i

D−1 xi) + 10 [−5.12, 5.12] 0

f11 Griewank f (x) = 1
4000

(
D∑

i=1
(xi − 100)2

)
−

(∏D
i=1 cos

(
xi−100
√

i

))
+ 1 [−600, 600] 0

f12 Ackley f (x) = −20 exp

−0.2

√
1
n

D∑
i=1

x2
i

− exp
(

1
n

D∑
i=1

cos(2πxi)

)
+ 20 + e [−32, 32] 0

f13 Weierstrass f (x) =
D∑

i=1

(
kmax∑
k=0

[
ak cos

(
2πbk(zi + 0.5)

)])
−D

kmax∑
k=0

[
ak cos

(
2πbk

· 0.5
)]

a = 0.5, b = 3, kmax = 20
[−0.5, 0.5] 0

f14 Himmelblau f (x) = 1
D
∑D

i=1

[
x4

i − 16x2
i + 5xi

]
[−5, 5] −78.3323

f15 Cross-in-tray f (x) = −0.0001

∣∣∣∣∣∣∣sin(x1) sin(x2) exp

∣∣∣∣∣∣∣100−

√
x2

1+x2
2

π

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣+ 1

0.1

[−10, 10] −2.0626

f16 Six-hump
Camel f (x) = (4− 2.1x2

1 +
x4

1
3)x2

1 + x1x2 + (−4 + 4x2
2)x

2
2

[−5.12, 5.12] −1.0316

In order to further validate the advantages of ELAPO, the ELAPO algorithm was compared with
the basic LAPO algorithm and the other four algorithms that have better optimization results in recent
years, including: All-dimension neighborhood based particle swarm optimization with randomly
selected neighbors (ADN-RSN-PSO) [29], enhanced artificial bee colony algorithms with adaptive
differential operators (ABCADE) [30], an optimization algorithm for teaching and learning based on
hybrid learning strategies (DSTLBO) [31], and a self-adaptive differential evolution algorithm with
improved mutation strategy (IMSaDE) [32].

Algorithms 2019, 12, 134 11 of 21

During the experiment, the parameters of the contrast algorithm were set as those in the literature.
Except the number of population and the maximum number of function evaluations LAPO and
DSTLBO did not involve any parameters. For this reason, Table 2 gives the parameter settings of other
algorithms, all from the original literature.

In order to ensure fairness, the population number of each algorithm was 30, and the maximum
number of function evaluations was 90,000. In order to avoid the harmful effect of the randomness of a
single operation, each algorithm was run 30 times independently for each test function and recorded
the maximum, average, minimum, variance of 30 experimental results, and the success rate of reaching
the appointed precision and recorded Friedman ranking based on the average. The appointed precision
was 10−10 for the benchmark functions whose optimal was 0, for the benchmark functions f14, f15, and
f16 whose optimal was not equal to 0, the appointed precision was −78, −1.8, and −0.8 respectively.
The statistical results are shown in Table 3.

Table 2. Arithmetic parameter settings.

Algorithms Parameter

ADN-RSN-PSO W = 0.7298, c1 = c2 = 2.05
ABCADE SN = 50, limit = 200, m = 5, n = 10, c 1 = 0.9, c 2 = 0.999
IMSaDE NEP = 7([0.1,0.3]*NP), ST = 3, CRl = 0.3, Cru = 1, Fl = 0.1, Fu = 0.9

At the same time, in order to compare the differences of each method, two non-parametric tests,
Friedman and Holm [33,34], were used to check the data in Table 3. Firstly, Friedman rank mean of
each algorithm was calculated and recorded from large to small. Friedman statistics were calculated to
test whether there were significant differences between the six algorithms. If there were differences,
the Holm test was used to further analyze whether there were significant differences between ELAPO
algorithm and the other five algorithms. The test results are shown in Table 4.

By analyzing the data in Table 3; Table 4, the following conclusions can be drawn:
It can be seen from Table 4 that ADN-RSN-PSO algorithm could reach global optimal only on f15

and f16; ABCADE algorithm could reach global optimal only on f14, f15, and f16, and had a certain
probability to convergence to the optimal on f4, f11, and f13; DSTLBO could reach convergence to the
optimal on f1, f9, f10, f13, f15, and f16, and had a certain probability to convergence to the optimal
on f2, f3, f6, and f12; IMSaDE could reach convergence to the optimal on f15 and f16, but still had a
certain probability to converge to the optimal on f11 and f12; the LAPO could reach convergence to the
optimal on f13, f15, and f16, there was also a certain probability for f9 to converge to the optimal; for
the ELAPO could reach convergence to the optimal on all the functions except f5, f6, f7, f8, and f12,
but had a best convergence accuracy on f5, while for f6, f7, f8, and f12, the convergence accuracy was
second best.

In order to compare the differences of each method, a Friedman test was taken to check the data
in Table 3. First, we assumed that there was no significant difference between the six algorithms. It can
be calculated in Table 4 by formula (9).

χ5
r =

12n
k(k + 1)

(
k∑

i=1

R2
i −

k(k + 1)2

4
) (9)

in which, k refers to the number of algorithms and n refers to the number of data sets of each algorithm
and the result is χ5

r = 39.232, greater than the critical value 11.07 at the degree of freedom df = 6 − 1 =

5 and a = 0.05 in the chi-square distribution, rejecting the zero hypotheses, that is, the six algorithms in
this experiment have significant differences at the 5% significant level.

Algorithms 2019, 12, 134 12 of 21

Table 3. Convergence accuracy.

Function Statistic ADN-RSN-PSO ABCADE DSTLBO IMSaDE LAPO ELAPO

f1

Min 1.9433 × 105 1.0604 × 10−122 0 9.1175 × 10−190 1.2787 × 10−140 0
Mean 7.0621 × 10−3 5.0305 × 10−96 0 8.4357 × 10−171 1.4429 × 10−131 0
Max 6.0864 × 10−2 1.5085 × 10−94 0 8.5523 × 10−170 3.7225 × 10−130 0
Std 1.3886 × 10−2 2.7540 × 10−95 0 0 6.7837 × 10−131 0

Robustness 0 100 100 100 100 100
Rank 6 5 1.5 3 4 1.5

f2

Min 2.7340 × 10−9 6.1134 × 10−49 0 5.6607 × 10−95 1.3390 × 10−36 0
Mean 4.5246 × 10−1 4.3991 × 10−42 2.4682 × 10−318 4.4691 × 10−88 1.2060 × 10−33 0
Max 8.1548 6.9662 × 10−41 7.2645 × 10−317 4.8224 × 10−87 1.3582 × 10−32 0
Std 1.5287 1.3292 × 10−41 0 1.2051 × 10−87 3.0653 × 10−33 0

Robustness 0 100 100 100 100 100
Rank 6 4 2 3 5 1

f3

Min 2.0553× 10−13 2.9427× 10−51 0 2.0072 × 10−95 1.1679 × 10−38 0
Mean 2.5192 1.1781× 10−41 1.1660 × 10−321 1.1548 × 10−88 1.4772 × 10−33 0
Max 4.9549 × 101 2.7244× 10−40 3.4760 × 10−320 3.4405 × 10−87 2.4542 × 10−32 0
Std 9.134 5.0461× 10−41 0 6.2801 × 10−88 4.8781 × 10−33 0

Robustness 10 100 100 100 100 100
Rank 6 4 2 3 5 1

f4

Min 3.3295 0 4.2081 3.0815 × 10−33 2.0431 × 10−17 0
Mean 5.6636 5.9986 × 10−32 5.476 1.1884 × 10−31 2.8720 × 10−16 1.0812 × 10−29

Max 7.5679 8.0735 × 10−31 7.0288 1.5068 × 10−30 1.4498 × 10−15 4.2786 × 10−29

Std 1.1575 1.4892 × 10−31 8.6427 × 10−1 2.7273 × 10−31 3.6114 × 10−16 1.7057 × 10−29

Robustness 0 100 0 100 100 100
Rank 6 1 5 2 4 3

f5

Min 5.2882 × 10−5 4.7392 × 10−32 5.7955 × 10−169 6.2444 × 10−53 5.1613 × 10−21 2.2875 × 10−175

Mean 2.1283 2.9518 × 10−25 1.8017 × 10−162 2.9148 × 10−49 1.8239 × 10−19 7.2628 × 10−171

Max 1.4320 × 101 5.0681 × 10−24 2.3000 × 10−161 3.1393 × 10−48 1.0955 × 10−18 1.5612 × 10−169

Std 3.6429 9.9107 × 10−25 5.8809 × 10−162 8.1886 × 10−49 2.5217 × 10−19 0
Robustness 0 100 100 100 100 100

Rank 6 4 2 3 5 1

Algorithms 2019, 12, 134 13 of 21

Table 3. Cont.

Function Statistic ADN-RSN-PSO ABCADE DSTLBO IMSaDE LAPO ELAPO

f6

Min 7.9614 × 10−11 4.9825 × 10−1 0 1.7910 × 10−13 3.6024 × 10−5 2.0577 × 10−204

Mean 3.6063 × 101 2.1321 × 101 1.4778 × 10−317 2.2465 × 10−9 2.7988 × 10−4 3.8434 × 10−188

Max 9.1658 × 102 1.0491 × 102 4.4236 × 10−316 6.6102 × 10−8 8.6964 × 10−4 1.1172 × 10−186

Std 1.6698 × 102 2.3468 × 101 0 1.2061 × 10−8 2.1707 × 10−4 0
Robustness 3.33 0 100 83.33 0 100

Rank 6 5 1 3 4 2

f7

Min 1.4991 × 10−5 5.4163 5.0526 × 10−162 1.9698 × 10−2 1.1755 × 10−21 1.4981 × 10−122

Mean 2.2665 × 10−1 1.2694 × 101 9.8249 × 10−155 1.7505 × 10−1 1.5051 × 10−19 2.1015 × 10−116

Max 2.6331 2.1428 × 101 1.5939 × 10−153 5.8210 × 10−1 1.4967 × 10−18 3.4242 × 10−115

Std 5.3499 × 10−1 3.9118 3.6036 × 10−154 1.4560 × 10−1 2.8717 × 10−19 6.6285 × 10−116

Robustness 0 0 100 0 100 100
Rank 6 5 1 4 3 2

f8

Min 9.1385 × 10−7 3.7190 × 10−13 1.9123 × 10−315 4.2590 × 10−51 7.2925 × 10−18 1.5064 × 10−298

Mean 4.2904 × 102 6.4605 × 10−6 4.1842 × 10−298 6.1752 × 10−30 7.6451 × 10−17 1.7716 × 10−288

Max 4.1982 × 103 7.5741 × 10−5 7.4227 × 10−297 1.8141 × 10−28 3.1112 × 10−16 3.2124 × 10−287

Std 1.0583 × 103 1.8898 × 10−5 0 3.3101 × 10−29 6.9792 × 10−17 0
Robustness 0 26.67 100 100 100 100

Rank 6 5 1 3 4 2

f9

Min 8.0008 × 10−7 0 0 6.9647 0 0
Mean 1.3883 × 101 1.9899 × 10−1 0 1.9655 × 101 4.9931 1.368
Max 1.4700 × 102 9.9496 × 10−1 0 7.1757 × 101 9.8831 × 101 1.5045 × 101

Std 3.7141 × 101 4.0479 × 10−1 0 1.4266 × 101 2.0014 × 101 4.1857
Robustness 0 80 100 0 93.33 90

Rank 5 2 1 6 4 3

f10

Min 3.8725 × 10−13 1.7764 × 10−15 0 0 5.7384 × 10−2 0
Mean 4.2506 × 10−2 2.8422 × 10−15 0 1.5395 × 10−15 1.1063 0
Max 4.4505 × 10−1 1.7764 × 10−14 0 1.7764 × 10−15 4.6539 0
Std 1.0456 × 10−1 3.0447 × 10−15 0 6.1417 × 10−16 1.0863 0

Robustness 6.67 100 100 100 0 100
Rank 5 4 1.5 3 6 1.5

Algorithms 2019, 12, 134 14 of 21

Table 3. Cont.

Function Statistic ADN-RSN-PSO ABCADE DSTLBO IMSaDE LAPO ELAPO

f11

Min 2.8111 × 101 0 3.1916 × 101 0 6.2061 × 10−14 0
Mean 5.2552 × 101 1.1102 × 10−16 5.4567 × 101 1.3323 × 10−16 2.7950 × 10−3 0
Max 7.8919 × 101 2.2204 × 10−16 7.1519 × 101 4.4409 × 10−16 4.9323 × 10−3 0
Std 1.1032 × 101 4.1233 × 10−17 7.837 7.9313 × 10−17 2.4859 × 10−3 0

Robustness 0 100 0 100 43.33 100
Rank 5 2 6 3 4 1

f12

Min 2.8188 × 10−5 7.1054 × 10−15 0 3.5527 × 10−15 6.2061 × 10−14 3.5527 × 10−15

Mean 7.2291 × 10−1 1.4211 × 10−14 2.7237 × 10−15 1.0725 2.7950 × 10−3 3.9080 × 10−15

Max 6.5883 3.1974 × 10−14 3.5527 × 10−15 5.3162 4.9323 × 10−3 7.1054 × 10−15

Std 1.6003 7.6368 × 10−15 1.5283 × 10−15 1.1266 2.4859 × 10−3 1.0840 × 10−15

Robustness 0 100 100 36.67 43.33 100
Rank 5 3 1 6 4 2

f13

Min 7.2301 × 10−1 0 0 4.3238 × 10−2 0 0
Mean 3.9722 1.0394 × 10−3 0 9.1739 × 10−1 0 0
Max 6.0091 3.1181 × 10−2 0 3.4394 0 0
Std 2.4463 5.6928 × 10−3 0 9.1925 × 10−1 0 0

Robustness 0 96.67 100 0 100 100
Rank 6 4 2 5 2 2

f14

Min −5.3861 × 101
−7.8332 × 101

−5.3644 × 101
−7.7390 × 101

−6.1359 × 101
−7.8332 × 101

Mean −4.6574 × 101
−7.8332 × 101

−4.7669 × 101
−7.4720 × 101

−5.8293 × 101
−6.8451 × 101

Max −3.8905 × 101
−7.8332 × 101

−4.2338 × 101
−7.2678 × 101

−5.6084 × 101
−5.3228 × 101

Std 3.1993 1.3964 × 10−14 2.4718 1.5473 1.6251 4.6141
Robustness 0 100 0 0 0 6.67

Rank 6 1 5 2 4 3

f15

Min −2.0626 −2.0626 −2.0626 −2.0626 −2.0626 −2.0626
Mean −2.0626 −2.0626 −2.0626 −2.0626 −2.0626 −2.0626
Max −2.0626 −2.0626 −2.0626 −2.0626 −2.0626 −2.0626
Std 1.0856 × 10−12 4.2561 × 10−4 2.8300 × 10−6 4.0365 × 10−6 6.0550 × 10−8 9.0336 × 10−16

Robustness 100 100 100 100 100 100
Rank 2 6 4 5 3 1

Algorithms 2019, 12, 134 15 of 21

Table 3. Cont.

Function Statistic ADN-RSN-PSO ABCADE DSTLBO IMSaDE LAPO ELAPO

f16

Min −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316
Mean −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316
Max −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316
Std 1.3596 × 10−5 1.3074 × 10−4 2.5463 × 10−12 4.5168 × 10−16 1.4600 × 10−7 4.5168 × 10−16

Robustness 100 100 100 100 100 100
Rank 5 6 3 2 4 2

Algorithms 2019, 12, 134 16 of 21

Table 4. The results of the non-parametric test.

Fridman Holm

i Algorithm Rank mean (Ri) Zi = (Ri −R6)

√
k(k+1)

6n = (Ri −R6)/0.6614 pi α/(k− i)

1 ADN-RSN-PSO 5.4375 5.4808 0.0000 0.01

2 LAPO 4.0625 3.4019 0.0009 0.0125
3 ABCADE 3.8125 3.0238 0.0035 0.0166
4 IMSaDE 3.5 2.5514 0.011 0.025
5 DSTLBO 2.4375 0.9450 0.3221 0.05
6 ELAPO 1.8125 / / /

To further compare the performance of the six algorithms, assuming that the convergence
performance of ELAPO is better than the other five methods. Comparing pi and α/(k− i), if pi <
α/(k− i) at the 5% significant level, then reject the original hypothesis, that is, the ELAPO have
significant differences to the algorithm i. By observing the data in the table, we found that only
p5 < α/(k− 5), Holm Test rejects the other four hypotheses and accepts the fifth hypothesis, which
means that the performance of the ELAPO algorithm in this paper was equivalent to that of DSTLBO
in the above test functions, while the other four p values were less than α/(k− i), which means that the
performance of ELAPO was obviously better than ADN-RSN-PSO, ABCADE, IMSaDE, and LAPO.
Although the accuracy of the ELAPO algorithm was not significantly higher than that of DSTLBO,
it had a smaller average rank. Comprehensive analysis of the experimental results of ELAPO in
single-peak function and multi-peak function shows that ELAPO was relatively balanced in the search
calculation of two kinds of functions, and for all functions, the improved ELAPO algorithm was
superior to the LAPO algorithm in solving accuracy.

From the perspective of robustness, the ELAPO algorithm proposed in this paper had a low success
rate only on f9 and f14, while the solution of other functions was relatively stable. DSTLBO had a low
success rate on f4, f11, and f14 functions and belongs to sub-stability, while ADN-RSN-PSO, ABCADE,
IMSaDE, and LAPO had a relatively low success rate in achieving the specified accuracy of the solution
function. Through comparative analysis, the proposed ELAPO algorithm had better robustness.

In addition, in order to intuitively see the convergence of each algorithm, experiments were
carried out with the number of evaluations of 30,000 times, and the following experimental comparison
figures were obtained, in which the abscissa represents the number of evaluation times of the function
and the ordinate represents the logarithmic value of the fitness values obtained.

It can be seen from Figure 4 that the convergence speed of ELAPO proposed in this paper was
relatively fast when solving single-peak functions f2, f3, f4, and f5, while the convergence speed of f8
and DSTLBO was similar, f1, f6, and f7 were worse than DSTLBO, but the convergence speed of ELAPO
was faster than ADN-RSN-PSO, ABCADE, IMSaDE, and LAPO when solving the above functions.
When solving multimodal functions f9–f13, f15, and f16, the ELAPO algorithm in this paper had a
faster convergence speed, while in function f14, the convergence speed in the early stage of evolution
had no obvious advantage, but in the middle stage of evolution, there was a clear tendency to jump
out of the local optimum.

Algorithms 2019, 12, 134 17 of 21

Algorithms 2019, 12, 134 19 of 23

From the perspective of robustness, the ELAPO algorithm proposed in this paper had a low
success rate only on f9 and f14, while the solution of other functions was relatively stable. DSTLBO
had a low success rate on f4, f11, and f14 functions and belongs to sub-stability, while
ADN-RSN-PSO, ABCADE, IMSaDE, and LAPO had a relatively low success rate in achieving the
specified accuracy of the solution function. Through comparative analysis, the proposed ELAPO
algorithm had better robustness.

In addition, in order to intuitively see the convergence of each algorithm, experiments were
carried out with the number of evaluations of 30,000 times, and the following experimental
comparison figures were obtained, in which the abscissa represents the number of evaluation times
of the function and the ordinate represents the logarithmic value of the fitness values obtained.

(a) f1 Convergence curve (b) f2 Convergence curve

(c) f3 Convergence curve (d) f4 Convergence curve

(e) f5 Convergence curve (f) f6 Convergence curve

0 0.5 1 1.5 2 2.5 3

x 10
4

10
-250

10
-200

10
-150

10
-100

10
-50

10
0

10
50

Number of Function Evaluation

Lo
g

of
 F

itn
es

s

ADN-RSN-PSO
ABCADE
DSTLBO
IMSaDE
LAPO
ELAPO

0 0.5 1 1.5 2 2.5 3

x 10
4

10
-120

10
-100

10
-80

10
-60

10
-40

10
-20

10
0

10
20

Number of Function Evaluation

Lo
g

of
 F

itn
es

s

ADN-RSN-PSO
ABCADE
DSTLBO
IMSaDE
LAPO
ELAPO

0 0.5 1 1.5 2 2.5 3

x 10
4

10
-120

10
-100

10
-80

10
-60

10
-40

10
-20

10
0

10
20

Number of Function Evaluation

Lo
g

of
 F

itn
es

s

ADN-RSN-PSO
ABCADE
DSTLBO
IMSaDE
LAPO
ELAPO

0 0.5 1 1.5 2 2.5 3

x 10
4

10
-30

10
-25

10
-20

10
-15

10
-10

10
-5

10
0

10
5

Number of Function Evaluation

Lo
g

of
 F

itn
es

s

ADN-RSN-PSO
ABCADE
DSTLBO
IMSaDE
LAPO
ELAPO

0 0.5 1 1.5 2 2.5 3

x 10
4

10
-60

10
-50

10
-40

10
-30

10
-20

10
-10

10
0

10
10

10
20

Number of Function Evaluation

Lo
g

of
 F

itn
es

s

ADN-RSN-PSO
ABCADE
DSTLBO
IMSaDE
LAPO
ELAPO

0 0.5 1 1.5 2 2.5 3

x 10
4

10
-120

10
-100

10
-80

10
-60

10
-40

10
-20

10
0

10
20

Number of Function Evaluation

Lo
g

of
 F

itn
es

s

ADN-RSN-PSO
ABCADE
DSTLBO
IMSaDE
LAPO
ELAPO

Figure 4. Cont.

Algorithms 2019, 12, 134 18 of 21
Algorithms 2019, 12, 134 20 of 23

(g) f7 Convergence curve (h) f8 Convergence curve

(i) f9 Convergence curve (j) f10 Convergence curve

(k) f11 Convergence curve (l) f12 Convergence curve

(m) f13 Convergence curve (n) f14 Convergence curve

0 0.5 1 1.5 2 2.5 3

x 10
4

10
-140

10
-120

10
-100

10
-80

10
-60

10
-40

10
-20

10
0

10
20

Number of Function Evaluation

Lo
g

of
 F

itn
es

s

ADN-RSN-PSO
ABCADE
DSTLBO
IMSaDE
LAPO
ELAPO

0 0.5 1 1.5 2 2.5 3

x 10
4

10
-100

10
-80

10
-60

10
-40

10
-20

10
0

10
20

Number of Function Evaluation

Lo
g

of
 F

itn
es

s

ADN-RSN-PSO
ABCADE
DSTLBO
IMSaDE
LAPO
ELAPO

0 0.5 1 1.5 2 2.5 3

x 10
4

10
-15

10
-10

10
-5

10
0

10
5

Number of Function Evaluation

Lo
g

of
 F

itn
es

s

ADN-RSN-PSO
ABCADE
DSTLBO
IMSaDE
LAPO
ELAPO

0 0.5 1 1.5 2 2.5 3

x 10
4

10
-15

10
-10

10
-5

10
0

10
5

Number of Function Evaluation

Lo
g

of
 F

itn
es

s

ADN-RSN-PSO
ABCADE
DSTLBO
IMSaDE
LAPO
ELAPO

0 0.5 1 1.5 2 2.5 3

x 10
4

10
-20

10
-15

10
-10

10
-5

10
0

10
5

Number of Function Evaluation

Lo
g

of
 F

itn
es

s

ADN-RSN-PSO
ABCADE
DSTLBO
IMSaDE
LAPO
ELAPO

0 0.5 1 1.5 2 2.5 3

x 10
4

10
-15

10
-10

10
-5

10
0

10
5

Number of Function Evaluation

Lo
g

of
 F

itn
es

s

ADN-RSN-PSO
ABCADE
DSTLBO
IMSaDE
LAPO
ELAPO

0 0.5 1 1.5 2 2.5 3

x 10
4

10
-15

10
-10

10
-5

10
0

10
5

Number of Function Evaluation

Lo
g

of
 F

itn
es

s

ADN-RSN-PSO
ABCADE
DSTLBO
IMSaDE
LAPO
ELAPO

0 0.5 1 1.5 2 2.5 3

x 10
4

-10
1.2

-10
1.3

-10
1.4

-10
1.5

-10
1.6

-10
1.7

-10
1.8

Number of Function Evaluation

Lo
g

of
 F

itn
es

s

ADN-RSN-PSO
ABCADE
DSTLBO
IMSaDE
LAPO
ELAPO

Figure 4. Cont.

Algorithms 2019, 12, 134 19 of 21Algorithms 2019, 12, 134 21 of 23

(o) f15 Convergence curve (p) f16 Convergence curve

Figure 4. The figure of function convergence.

It can be seen from Figure 4 that the convergence speed of ELAPO proposed in this paper was
relatively fast when solving single-peak functions f2, f3, f4, and f5, while the convergence speed of f8
and DSTLBO was similar, f1, f6, and f7 were worse than DSTLBO, but the convergence speed of
ELAPO was faster than ADN-RSN-PSO, ABCADE, IMSaDE, and LAPO when solving the above
functions. When solving multimodal functions f9–f13, f15, and f16, the ELAPO algorithm in this
paper had a faster convergence speed, while in function f14, the convergence speed in the early stage
of evolution had no obvious advantage, but in the middle stage of evolution, there was a clear
tendency to jump out of the local optimum.

5. Conclusions and Future Research

In this paper, an improved physical heuristic algorithm ELAPO was proposed. In the
downward leader movement by updating the better and the worse particles with a different way
and replacing the worst particles in the population with opposition-based learning in the part of
enhancement performance, the convergence speed of the algorithm was accelerated. The upward
leader jumps out of the local optimum by changing the direction and step size of particle learning. In
order to verify the performance of ELAPO, eight single-mode functions and eight multi-mode
functions were tested, and the experimental results were compared with those of the better
algorithms in recent years. The comparison and analysis of the results showed that the ELAPO
algorithm proposed in this paper was superior in solving accuracy and speed, and its performance
was stable. The ELAPO algorithm proposed in this paper had certain improvement significance
compared with the original algorithm.

In this paper, we only considered the global optimization, and the algorithm could be extended
to solve other problems such as constrained optimization problems. In future work, we plan to
apply ELAPO to solve real-world domain-specific problems, such as computational offloading
problems in mobile edge computing [35].

Author Contributions: Writing—original draft, X.J.; Writing—review & editing, Y.W. and X.J.

Funding: The authors disclosed receipt of the following financial support for the research, authorship of this
article: This work was supported in part by the National Natural Science Foundation of China under grants
NO.61501107and NO.61603073, and the Project of Scientific and Technological Innovation Development of Jilin
NO.201750227 and NO.201750219.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Boussaid, I.; Lepagnot, J.; Siarry, P. A survey on optimization metaheuristics. Inf. Sci. 2013, 237, 82–117.
2. Gogna, A.; Tayal, A. Metaheuristics: Review and application. J. Exp. Theor. Artif. Intell. 2013, 25, 503–526.

0.5 1 1.5 2 2.5 3

x 10
4

-10
0.3

-10
0.31

Number of Function Evaluation

Lo
ga

rit
hm

 o
f f

itn
es

s
va

lu
e

ADN-RSN-PSO
ABCADE
DSTLBO
IMSaDE
LAPO
ELAPO

0.5 1 1.5 2 2.5 3

x 10
4

-10
-0.8

-10
-0.6

-10
-0.4

-10
-0.2

-10
0

Number of Function Evaluation

Lo
ga

rit
hm

 o
f f

itn
es

s
va

lu
e

ADN-RSN-PSO
ABCADE
DSTLBO
IMSaDE
LAPO
ELAPO

Figure 4. The figure of function convergence.

5. Conclusions and Future Research

In this paper, an improved physical heuristic algorithm ELAPO was proposed. In the downward
leader movement by updating the better and the worse particles with a different way and replacing
the worst particles in the population with opposition-based learning in the part of enhancement
performance, the convergence speed of the algorithm was accelerated. The upward leader jumps out
of the local optimum by changing the direction and step size of particle learning. In order to verify
the performance of ELAPO, eight single-mode functions and eight multi-mode functions were tested,
and the experimental results were compared with those of the better algorithms in recent years. The
comparison and analysis of the results showed that the ELAPO algorithm proposed in this paper
was superior in solving accuracy and speed, and its performance was stable. The ELAPO algorithm
proposed in this paper had certain improvement significance compared with the original algorithm.

In this paper, we only considered the global optimization, and the algorithm could be extended to
solve other problems such as constrained optimization problems. In future work, we plan to apply
ELAPO to solve real-world domain-specific problems, such as computational offloading problems in
mobile edge computing [35].

Author Contributions: Writing—original draft, X.J.; Writing—review & editing, Y.W. and X.J.

Funding: The authors disclosed receipt of the following financial support for the research, authorship of this
article: This work was supported in part by the National Natural Science Foundation of China under grants
NO.61501107and NO.61603073, and the Project of Scientific and Technological Innovation Development of Jilin
NO.201750227 and NO.201750219.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Boussaid, I.; Lepagnot, J.; Siarry, P. A survey on optimization metaheuristics. Inf. Sci. 2013, 237, 82–117.
[CrossRef]

2. Gogna, A.; Tayal, A. Metaheuristics: Review and application. J. Exp. Theor. Artif. Intell. 2013, 25, 503–526.
[CrossRef]

3. Mahdavi, S.; Shiri, M.E.; Rahnamayan, S. Metaheuristics in large-scale global continues optimization:
A survey. Inf. Sci. 2015, 295, 407–428. [CrossRef]

4. Liu, Y.K.; Li, M.K.; Xie, C.L.; Peng, M.J.; Xie, F. Path-planning research in radioactive environment based on
particle swarm algorithm. Prog. Nucl. Energy 2014, 74, 184–192. [CrossRef]

5. Wari, E.; Zhu, W. A survey on metaheuristics for optimization in food manufacturing industry. Appl. Soft
Comput. 2016, 46, 328–343. [CrossRef]

6. Pyrz, M.; Krzywoblocki, M. Crashworthiness Optimization of Thin-Walled Tubes Using Macro Element
Method and Evolutionary Algorithm. Thin Walled Struct. 2017, 112, 12–19. [CrossRef]

http://dx.doi.org/10.1016/j.ins.2013.02.041
http://dx.doi.org/10.1080/0952813X.2013.782347
http://dx.doi.org/10.1016/j.ins.2014.10.042
http://dx.doi.org/10.1016/j.pnucene.2014.03.002
http://dx.doi.org/10.1016/j.asoc.2016.04.034
http://dx.doi.org/10.1016/j.tws.2016.11.022

Algorithms 2019, 12, 134 20 of 21

7. Kadin, Y.; Gamba, M.; Faid, M. Identification of the Hydrogen Diffusion Parameters in Bearing Steel by
Evolutionary Algorithm. J. Alloys Compd. 2017, 705, 475–485. [CrossRef]

8. Shieh, M.D.; Li, Y.; Yang, C.C. Comparison of multi-objective evolutionary algorithms in hybrid Kansei
engineering system for product form design. Adv. Eng. Inf. 2018, 36, 31–42. [CrossRef]

9. Yang, J.H.; Honavar, V. Feature Subset Selection Using a Genetic Algorithm. In Feature Extraction, Construction
and Selection; Springer: Boston, MA, USA, 1998; pp. 117–136.

10. Storn, R.; Price, K. Differential Evolution—A Simple and Efficient Heuristic for Global Optimization over
Continuous Spaces. J. Glob. Optim. 1997, 11, 341–359. [CrossRef]

11. Knowles, J.; Corne, D. The Pareto Archived Evolution Strategy: A New Baseline Algorithm for Pareto
Multiobjective Optimisation. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99,
Washington, DC, USA, 6–9 July 1999.

12. Banzhaf, W.; Koza, J.R.; Ryan, C.; Spector, L.; Jacob, C. Genetic programming. IEEE Intell. Syst. 2000, 15,
74–84. [CrossRef]

13. Hansen, N.; Ostermeier, A. Completely Derandomized Self-Adaptation in Evolution Strategies. Evol. Comput.
2001, 9, 159–195. [CrossRef]

14. Simon, D. Biogeography-based optimization. IEEE Trans. Evol. Comput. 2008, 12, 702–713. [CrossRef]
15. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the IEEE International Conference

on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; pp. 1942–1948.
16. Basturk, B.; Karaboga, D. An artificial bee colony (ABC) algorithm for numeric function optimization.

In Proceedings of the IEEE Swarm Intelligence Symposium, Indianapolis, IN, USA, 12–14 May 2006;
pp. 687–697.

17. Mucherino, A.; Seref, O. Monkey search: A novel metaheuristic search for global optimization. AIP Conf.
Proc. 2007, 953, 162–173.

18. Yang, X.S. Firefly Algorithms for Multimodal Optimization. In Proceedings of the 5th International
Symposium on Stochastic Algorithms, Foundations and Applications, Sapporo, Japan, 26–28 October 2009;
pp. 169–178.

19. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
20. Mirjalili, S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl. Based

Syst. 2015, 89, 228–249. [CrossRef]
21. Shah-Hosseini, H. Principal components analysis by the galaxy-based search algorithm: A novel metaheuristic

for continuous optimisation. Int. J. Comput. Sci. Eng. 2011, 6, 132–140.
22. Rashedi, E.; Nezamabadi-Pour, H.; Saryazdi, S. GSA: A Gravitational Search Algorithm. Inf. Sci. 2009, 179,

2232–2248. [CrossRef]
23. Kaveh, A.; Khayatazad, M. A new meta-heuristic method: Ray Optimization. Comput. Struct. 2012, 112,

283–294. [CrossRef]
24. Hatamlou, A. Black hole: A new heuristic optimization approach for data clustering. Inf. Sci. 2013, 222,

175–184. [CrossRef]
25. Kaveh, A.; Bakhshpoori, T. Water Evaporation Optimization: A Novel Physically Inspired Optimization

Algorithm. Comput. Struct. 2016, 167, 69–85. [CrossRef]
26. Nematollahi, A.F.; Rahiminejad, A.; Vahidi, B. A Novel Physical Based Meta-Heuristic Optimization Method

Known as Lightning Attachment Procedure Optimization. Appl. Soft Comput. 2017, 59, 596–621. [CrossRef]
27. Wang, H.; Wu, Z.; Liu, Y.; Wang, J.; Jiang, D.; Chen, L. Space transformation search: A new evolutionary

technique. In Proceedings of the First ACM/SIGEVO Summit on Genetic and Evolutionary Computation,
Shanghai, China, 12–14 June 2009; pp. 537–544.

28. Suganthan, P.N.; Hansen, N.; Liang, J.J.; Deb, K.; Chen, Y.P.; Auger, A.; Tiwari, S. Problem
Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization.
Available online: https://www.researchgate.net/profile/Ponnuthurai_Suganthan/publication/235710019_
Problem_Definitions_and_Evaluation_Criteria_for_the_CEC_2005_Special_Session_on_Real-Parameter_
Optimization/links/0c960525d3990de15c000000/Problem-Definitions-and-Evaluation-Criteria-for-the-
CEC-2005-Special-Session-on-Real-Parameter-Optimization.pdf (accessed on 29 June 2019).

29. Sun, W.; Lin, A.; Yu, H.; Liang, Q.; Wu, G. All-dimension neighborhood based particle swarm optimization
with randomly selected neighbors. Inf. Sci. 2017, 405, 141–156. [CrossRef]

http://dx.doi.org/10.1016/j.jallcom.2017.02.208
http://dx.doi.org/10.1016/j.aei.2018.02.002
http://dx.doi.org/10.1023/A:1008202821328
http://dx.doi.org/10.1109/5254.846288
http://dx.doi.org/10.1162/106365601750190398
http://dx.doi.org/10.1109/TEVC.2008.919004
http://dx.doi.org/10.1016/j.advengsoft.2013.12.007
http://dx.doi.org/10.1016/j.knosys.2015.07.006
http://dx.doi.org/10.1016/j.ins.2009.03.004
http://dx.doi.org/10.1016/j.compstruc.2012.09.003
http://dx.doi.org/10.1016/j.ins.2012.08.023
http://dx.doi.org/10.1016/j.compstruc.2016.01.008
http://dx.doi.org/10.1016/j.asoc.2017.06.033
https://www.researchgate.net/profile/Ponnuthurai_Suganthan/publication/235710019_Problem_Definitions_and_Evaluation_Criteria_for_the_CEC_2005_Special_Session_on_Real-Parameter_Optimization/links/0c960525d3990de15c000000/Problem-Definitions-and-Evaluation-Criteria-for-the-CEC-2005-Special-Session-on-Real-Parameter-Optimization.pdf
https://www.researchgate.net/profile/Ponnuthurai_Suganthan/publication/235710019_Problem_Definitions_and_Evaluation_Criteria_for_the_CEC_2005_Special_Session_on_Real-Parameter_Optimization/links/0c960525d3990de15c000000/Problem-Definitions-and-Evaluation-Criteria-for-the-CEC-2005-Special-Session-on-Real-Parameter-Optimization.pdf
https://www.researchgate.net/profile/Ponnuthurai_Suganthan/publication/235710019_Problem_Definitions_and_Evaluation_Criteria_for_the_CEC_2005_Special_Session_on_Real-Parameter_Optimization/links/0c960525d3990de15c000000/Problem-Definitions-and-Evaluation-Criteria-for-the-CEC-2005-Special-Session-on-Real-Parameter-Optimization.pdf
https://www.researchgate.net/profile/Ponnuthurai_Suganthan/publication/235710019_Problem_Definitions_and_Evaluation_Criteria_for_the_CEC_2005_Special_Session_on_Real-Parameter_Optimization/links/0c960525d3990de15c000000/Problem-Definitions-and-Evaluation-Criteria-for-the-CEC-2005-Special-Session-on-Real-Parameter-Optimization.pdf
http://dx.doi.org/10.1016/j.ins.2017.04.007

Algorithms 2019, 12, 134 21 of 21

30. Liang, Z.; Hu, K.; Zhu, Q.; Zhu, Z. An Enhanced Artificial Bee Colony Algorithm with Adaptive Differential
Operators. Appl. Soft Comput. 2017, 58, 480–494. [CrossRef]

31. Bi, X.-J.; Wang, J.-H. Teaching-learning-based optimization algorithm with hybrid learning strategy. J. Zhejiang
Univ. Eng. Sci. 2017, 51, 1024–1031.

32. Wang, S.; Li, Y.; Yang, H.; Liu, H. Self-adaptive differential evolution algorithm with improved mutation
strategy. Soft Comput. 2018, 22, 3433–3447. [CrossRef]

33. Demišar, J.; Schuurmans, D. Statistical Comparisons of Classifiers over Multiple Data Sets. J. Mach. Learn.
Res. 2006, 7, 1–30.

34. Derrac, J.; García, S.; Molina, D.; Herrera, F. A practical tutorial on the use of nonparametric statistical tests
as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput.
2011, 1, 3–18. [CrossRef]

35. Guo, F.; Zhang, H.; Ji, H.; Li, X.; Leung, V.C. An Efficient Computation Offloading Management Scheme in
the Densely Deployed Small Cell Networks with Mobile Edge Computing. IEEE/ACM Trans. Netw. 2018, 26,
2651–2664. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.asoc.2017.05.005
http://dx.doi.org/10.1007/s00500-017-2588-5
http://dx.doi.org/10.1016/j.swevo.2011.02.002
http://dx.doi.org/10.1109/TNET.2018.2873002
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The Lightning Attachment Procedure Optimization Algorithm
	Initialize the Population
	Downward Leader Movement
	Upward Leader Movement
	Branch Fading
	Enhancement of the Performance

	The Enhanced Lightning Attachment Procedure Optimization Algorithm
	Improved Downward Leader Movement
	Improvement of Upward Leader Movement
	The Improved Enhancement Performance
	The Pseudo Code of the ELAPO Algorithm

	Analysis of the Simulation Results
	Conclusions and Future Research
	References

