
algorithms

Article

Iterative Numerical Scheme for Non-Isothermal
Two-Phase Flow in Heterogeneous Porous Media

Mohamed F. El-Amin 1,2

1 College of Engineering, Effat University, Jeddah 21478, Saudi Arabia; momousa@effatuniversity.edu.sa;
Tel.: +966-54-256-7083

2 Department of Mathematics, Faculty of Science, Aswan University, Aswan 81528, Egypt

Received: 14 April 2019; Accepted: 28 May 2019; Published: 6 June 2019
����������
�������

Abstract: In the current paper, an iterative algorithm is developed to simulate the problem of
two-phase flow with heat transfer in porous media. The convective body force caused by heat
transfer is described by Boussinesq approximation throughout with the governing equations, namely,
pressure, saturation, and energy. The two coupled equations of pressure and saturation are solved
using the implicit pressure-explicit saturation (IMPES) scheme, while the energy equation is treated
implicitly, and the scheme is called iterative implicit pressure, explicit saturation, implicit temperature
(I-IMPES-IMT). In order to calculate the pressure implicitly, the equations of pressure and saturation
are coupled by linearizing the capillary pressure which is a function of saturation. After that,
the equation of saturation is solved explicitly. Then, the velocity is computed which is used in
the energy equation to calculate the temperature implicitly. The cell-centered finite difference (CCFD)
method is utilized for spatial discretization. Furthermore, a relaxation factor along is used with
the Courant–Friedrichs–Lewy (CFL) condition. Finally, in order to illustrate the efficiency of the
developed algorithm, error estimates for saturation and temperature for different values of time steps
and number of iterations are presented. Moreover, numerical examples of different physical scenarios
of heterogamous media are presented.
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1. Introduction

In the reservoir simulation, there are two numerical methods for solving the governing equations,
namely, implicit pressure, explicit saturation (IMPES) method, and the fully implicit method. For each
cell, the solution of these equations provides a way to estimate specific time-dependent changes in
pressure, saturation, and other key parameters. Although IMPES is much faster than the fully implicit
method, it is much less stable because of the explicit evaluation of mobility terms and capillary pressure
at the previous time step n instead of the current one n + 1 which requires smaller time steps. On the
other hand, as more equations have to be solved in the fully implicit scheme, it requires more CPU
memory. Since the fully implicit method is more stable than IMPES, the simulator can take bigger time
steps. The ongoing research into IMPES mainly focuses on the improvement of its stability (such as
using iterative schemes) and so keeping it fast and robust. The model of two-phase flow in porous
media can be solved numerically using a fully implicit scheme [1–3], or using an implicit-explicit
(IMEX) one [4,5]. The implicit schemes are unconditionally stable but they are time-consuming and
expensive from a computational point of view. Therefore, despite IMEX schemes being conditionally
stable, they are usually chosen to solve large-scale systems such as oil reservoir models using the
IMPES approach. The IMPES schemes have been improved many times (e.g., [6,7]).

The iterative IMPES method is considered to be one of the improved versions of IMPES for
two-phase flow [8–10]. The IMPES approach divides the system of the equation into the pressure
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equation and saturation equation which are solved sequentially. Iterative IMPES uses IMPES instead
of Newton iteration as an iterative scheme for full implicit systems. In some iterative schemes [11,12],
the pressure equation is implicitly solved and for each iteration, an implicit saturation equation with
the implicit capillary pressure is constructed and solved. The iterative method was used along with the
IMPES scheme by Kou and Sun [13] and El-Amin et al. [14]. In [13], an iterative version of the IMPES
scheme was introduced. Kou and Sun [13] linearized the capillary pressure function to be used to
couple the implicit saturation equation into the implicit pressure equation. In [14], an iterative implicit
pressure, explicit saturation, implicit concentration scheme was developed to solve the model of
nanoparticle transport with two-phase flow in porous media.The linearized capillary pressure function
was also used to couple the implicit saturation and pressure equations, while the concentration
equations were treated implicitly. Recently, El-Amin et al. [15] introduced a convergence analysis of
the nonlinear iterative method for two-phase flow and nanoparticle transport in porous media.

The non-isothermal two-phase flow in porous media appears in many natural and industrial
applications such as steam injection in oil recovery, geothermal reservoirs, and other environmental
and engineering applications [16–18].

In the current work, we develop an iterative implicit pressure, explicit saturation, implicit
temperature (I-IMPES-IMT) scheme to simulate the problem of non-isothermal two-phase flow in
porous media. To the best of the author’s knowledge, no research develops a similar scheme to
simulate the non-isothermal two-phase flow in porous media. The remaining sections of this paper are
arranged as follows: in Section 2, we develop a mathematical model consisting of a group of differential
equations, algebraic constraints, and initial/boundary conditions. Then, in Section 3, we introduce
an iterative scheme for the governing equation. The spatial discretization is presented in Section 4.
In Section 5, error estimation and solution verification are discussed and some numerical examples are
listed. Finally, the conclusion is drawn in Section 6.

2. Modeling and Mathematical Formulation

Consider the problem of two-phase flow with convective heat transfer in heterogeneous
porous media. The flow is assumed to be incompressible and immiscible without phase transition.
The variation in density is caused by differences in temperature and is related to the buoyancy effect
which is described by the Boussinesq approximation. The basis of this approximation is that there
are flows in which the temperature varies slightly, in these, the density varies slightly, and this
buoyancy contributes the motion. Therefore, the variation in density is neglected anywhere except
in the buoyancy term. Let ρα,0 be a reference density of the phase α, the temperature is Tr. For small
temperature difference we can write

ρα = ρα,0(1− βα(T − Tr)), βα = − 1
ρα,0

∂ρα

∂T
, α = w, n,

where ρα,0 is a reference density of the phase α. βα is the coefficient of volume expansion. βα is in the
range 10−3–10−4. For a temperature variation of moderate amount, we have

δρα

ρα,0
=
|ρα − ρα,0|

ρα
= βα|T − Tr| << 1.

Thus, the variation in the density and therefore in the specific volume is negligible.
The velocity equation of the phase α is obtained by Darcy’s law,

uα = − krαK
µα
∇(pα + gρα,0(1− βα(T − Tr))z), α = w, n, (1)

where krα is the relative permeability of the phase α; K is the permeability tensor; µα is the α-fluid
viscosity; pα is the phase-α pressure; g is the gravitational acceleration; z is the depth; qα is the external
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mass flow rate; w refers to the wetting phase; and n refers to the non-wetting phase. The temperature
difference may cause a convective flow, which is represented by the Boussinesq approximation in the
body force term of the previous Equation (1).

For measures of central tendency (mean, mode, median), pore-throat sizes (diameters) are
generally greater than 2 mm in conventional reservoir rocks, they range from about 2 to 0.03 mm
in tight-gas sandstones, and range from 0.1 to 0.005 mm in shales [19]. On the other hand, the ratio
between the inertial forces and the viscous forces driving the flow is computed by the Reynolds
number, which is used as a criterion to distinguish between the laminar flow, the turbulent flow, and
the transition zone. For porous media, the Reynolds number is defined as Re = ρuidi/µ, where ui
is the injection velocity and di is the injection width of the inlet. According to Bear [20], Darcy’s law,
which supposes a laminar flow, is valid for Reynolds number less than 1, but the upper limit can be
extended up to 10. This may be because the Reynolds number is calculated based on the discharge
(inlet) flow rate, however, the velocity reduces significantly in the porous media as it depends on the
permeability. For the current problem, the Reynolds number is about 0.6–1.8 for the injected water
depending on the discharge inlet diameter 0.01–0.03 m. Therefore, based on Bear’s classification,
Darcy’s law is valid for our study. Moreover, according to Bear’s classification , the nonlinear effects
are taken into consideration for 10 < Re < 100 [20]. The flow in the current problem is linear, therefore,
no need to consider the Brinkman and Forchheimer effects.

The saturation equation which represents the mass conservation law can be written as

φ
∂sα

∂t
+∇ · uα = qα, ∑

α

sα = 1, α = w, n, (2)

where φ [–] is the porosity, and sα is the saturation of the phase α. If we sum the two equations of
saturation, (2), namely, α = w and α = n, whilst implementing the constraint sw + sn = 1, we reach
the following pressure equation

∇ · ut = −∇ · λtK∇
(

pw + gρw,0 (1− βw(T − Tr)) z
)
−∇ · λnK

∇
(

pc + g∆ρ0 (1− βn(T − Tr)) z
)
= qt, (3)

where ut = uw + un is the total velocity; pc = pn − pw is the capillary pressure; ∆ρ0 = ρn,0 − ρw,0

is the density difference; λα = krα/µα is the phase mobility; λt = λw + λn is the total mobility;
and qt = qw + qn is the total source mass transfer. Equation (3) with the following saturation equation
are solved simultaneously to compute the pressure of water phase:

φ
∂sw

∂t
= −∇ · λwK∇(pw + gρw,0(1− βw(T − Tr))∇z) + qw. (4)

Therefore, we can update the saturation using the following equation:

φ
∂sw

∂t
− qw = −∇ · ( fwua), (5)

where fw = λw/λt is the flow fraction, uw = fwua and ua = −λtK∇pw + gρw,0(1− βw(T − Tr))∇z.
The relative permeability of the two phases is defined as

krw = k0
rwS2, krn = k0

rn (1− S)2 ,

where S = sw−swr
1−snr−swr

is the normalized wetting phase saturation, such that, snr is the residual
non-wetting saturation, swr is the irreducible saturation, 0 ≤ S ≤ 1. In addition, k0

rw =

krw (S = 1) , k0
rw = krw (S = 1).
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Assume that the two fluid phases and the solid phase are of local thermal equilibrium of low flow
velocities and relatively small grain sizes (cf. Hassanizadeh [21]):

Tmatrix = Tf luids = T.

This yields the conservation equation of energy for a two-phase system, consisting of a solid
phase plus fluid phases [16,22]:

∂

∂t

[
(1− φ)ρscp,s + φ ∑

α

sαραcp,α

]
T + ∑

α

ραuα · ∇T = ∇ ·(
(1− φ)hs + φ ∑

α

τsαhα

)
∇T + ρQT , α = w, n, (6)

where ρs [kg/m3] is density of the solid phase; cp,s [kg/m3] is the heat capacity of the solid phase;
cp,α [J/Kg·K] is the heat capacity of the fluid phase α; T [K] is the temperature; QT [m3/s] is the heat
source term; τ is the tortuosity of the water phase; and hs [J/K·m·s] is the thermal conductivity of the
solid phase. The thermal conductivity of the phase α is expressed as

hα = hα,d + hdisp, (7)

where hα,d is the deterministic thermal conductivity of the phase α, while the mechanical
thermal-dispersion tensor, hdisp, may be written as

φswτhdisp = dt,w|uw|I + (dl,w − dt,w)
uwuT

w
|uw|

. (8)

Therefore,

hα = (φswτhα,d + dt,w|uw|)I + (dl,w − dt,w)
uwuT

w
|uw|

, (9)

where dl,w is the longitudinal dispersion coefficient and dt,w is the transverse dispersion coefficient.
The capillary pressure is defined by

pc(T, S) = −pe(T) log S,

where pe(T) is the entry pressure which is a function of temperature [23],

pe(T) = pe0
σ(T)
σ(T0)

,

such that

σ(T) = 0.3258
(

1− T
647.3

)1.256
− 0.148

(
1− T

647.3

)2.256

is the surface tension.
The initial and boundary conditions are given by

sw = s0
w, T = T0 in Ω at t = 0, (10)

pw (or pn) = pD on ΓD, (11)

ut · n = qN , sw (or Sn) = SN , T = TN , on ΓN , (12)
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where Ω is the computational domain; ΓD is the Dirichlet boundary; ΓN is the Neumann boundary,
such that ΓD ∩ ΓN = Φ. n is the outward unit normal vector to the boundary; pD is the pressure on
ΓD; and qN the inflow rate on ΓN .

3. Iterative Method

The governing Equations (3)–(6), are strongly coupled and highly nonlinear. In order to treat
such a type of complexity, we may use an iterative method [24]. The time interval [0, T] is discretized
into a number of NT time steps, ∆tn = tn+1 − tn, n + 1 refers to the current time step, and n refers to
the previous time step. Apply iterations of NI iterations for each time step, such that k + 1 refers to
the current iteration step and k refers to the previous iteration step. The time discretization of time
derivatives is achieved by using the backward Euler. The discretized pressure equation takes the form

−∇ · λt

(
sn+1,k

w

)
K∇(pn+1,k+1

w + gρw,0(1− βw(Tn+1,k − Tr))∇z)−∇ ·

λn

(
sn+1,k

w

)
K∇

(
pn+1,k+1

c + g∆ρ0(1− βw(Tn+1,k − Tr))∇z
)
= qt. (13)

The capillary pressure pn+1,k+1
c is linearized as

pc

(
sn+1,k+1

w , Tn+1,k
)
∼= pc

(
sn+1,k

w , Tn+1,k
)
+

∂pc

∂sw
|sn+1,k

w ,Tn+1,k

(
sn+1,k+1

w − sn
w

)
. (14)

Using the saturation equation to find

sn+1,k+1
w − sn

w = −∆tn

φ

[
∇ · λn+1,k

w K∇(pn+1,k+1
w + gρw,0(1− βw(Tn+1,k − Tr))∇z)

]
. (15)

The above three equations are solved to compute the wetting phase pressure. Then, saturation is
updated using the explicit equation

φ
sn+1,k+1

w − sn
w

∆tn + αr∇ ·
(

f n+1,k
w un+1,k+1

a

)
= qn+1

w , (16)

where
un+1,k+1

a = −λn+1,k
t K∇pn+1,k+1

w + gρw,0(1− βw(Tn+1,k − Tr))∇z.

In the above equation, the advection term is multiplied with the relaxation factor, αr. In order to
ensure the stability of the proposed scheme, we employ the stability Courant–Friedrichs–Lewy (CFL)
condition (CFL < 1) to estimate a relaxation factor. The convection terms in the discretized saturation
and temperature equations are multiplied by the following relaxation factor:

αr = min(
c1

max(CFL)
, c2), 0 ≤ c1, c2 ≤ 1, αrCFL < 1.

The energy equation is computed implicitly by the following scheme:

1
∆tn

[(
(1− φ)ρscp,s + φ ∑

α

sn+1,k+1
α ρα(Tn+1,k)cp,α

)
Tn+1,k+1−(

(1− φ)ρscp,s + φ ∑
α

sn
αρα(Tn)cp,α

)
Tn

]
+ αr ∑

α

ραun+1,k+1
α · ∇Tn+1,k+1 = ∇ · (17)(

(1− φ)hs + φ ∑
α

τsn+1,k+1
α hn+1,k+1

α

)
∇Tn+1,k+1 + Qn+1

T , α = w, n,
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where

hn+1,k+1
α = (φsn+1,k+1

w τhα,d + dt,w|uw|n+1,k+1)I + (dl,w − dt,w)
un+1,k+1

w un+1,k+1T
w

|uw|n+1,k+1 .

The advection term in the energy Equation (17) is also multiplied by the relaxation factor,
αr. Finally, the variables, λw,λn,λt, fw, and ρα, are updated. This procedure is repeated until
approaching convergence.

4. Spatial Discretization

The cell-centered finite difference (CCFD) is a type of finite volume method and is locally
conservative. In the case of rectangular elements, it was proven early on by Wheeler and Yotov [25]
and Arbogast et al. [26] to be equivalent to the mixed finite element method. In the CCFD method,
the velocity is located on the edges, while the pressure and permeability in the cell centers. Now,
we apply the CCFD scheme to the system of Equations (13)–(17), to obtain the full implicit iterative
discretization. The discretization form of the pressure equation may be given as

Aa

(
sn+1,k

w , Tn+1,k
)

pn+1,k+1
w + Ac

(
sn+1,k

w , Tn+1,k
)

Pd

(
sn+1,k+1

w , Tn+1,k
)

= AT

(
Tn+1,k

)
+ Qn+1

ac .

(18)

In the above equation, the two matrices, Aa and Ac, depend on the vectors sw and T from the
previous iteration step. On the other hand, the matrix Aa depends only on the vector T from the
previous iteration step. Moreover, the capillary pressure approximation (14) can be discretized as

Pd

(
sn+1,k+1

w , Tn+1,k
)
= Pc

(
sn+1,k

w , Tn+1,k
)
+ dPs

(
sn+1,k

w , Tn+1,k
) [

sn+1,k+1
w − sn

w

]
, (19)

such that the matrix dPs is diagonally defined, for Nc total number of cells, by

dPs

(
sn+1,k

w , Tn+1,k
)
= diag

(
dPs

(
sn+1,k

w,h , Tn+1,k
w,h

))
, h = 1, 2, ..., Nc. (20)

It is clear that the derivative of pc is a function of pc itself, as the saturation at each spatial point
varies with time even though it is discontinuously distributed in space.

The spatial discretization of the saturation equation to be coupled with the pressure equation
given as

M
sn+1,k+1

w − sn
w

∆tn + Aw

(
sn+1,k

w , Tn+1,k
)

Pn+1,k+1
w = Qn+1

w , (21)

such that M is a diagonal matrix appearing from the porosity coefficient. The coupled pressure
equation can be obtained from substituting (20) and (21) into (19), i.e.,

At

(
sn+1,k

w , Tn+1,k
)

Pn+1,k+1
w = Qt

(
sn+1,k

w , Tn+1,k
)

, (22)

where
At = Aa − ∆tnAcdPsM−1Aw,

and
Qt = AT + Qn+1

ac −Ac

[
pc + dPs

(
sn

w − sn+1,k
w

)]
− ∆tnAcdPsM−1Qn+1

w .

The upwind scheme is used to treat the convection term of Equation (16) to obtain

M
sn+1,k+1

w − sn
w

∆tn + As

(
sn+1,k

w , Pn+1,k+1
w

)
fw

(
sn+1,k

w

)
= Qn+1

s . (23)
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Then, update fn+1,k+1
w i.e., un+1,k+1

w to be used in the energy Equation (17),

1
∆tn MT

[
Bm

(
sn+1,k+1

w , Tn+1,k
)

Tn+1,k+1 − Bm (sn
w, Tn)Tn

]
+

Bw

(
sn+1,k+1

w , Pn+1,k+1
w , Tn+1,k

)
Tn+1,k+1−

BD

(
sn+1,k+1

w , Pn+1,k+1
w

)
Tn+1,k+1 = Qn+1

T .

(24)

Re-arrange Equation (24) to take the form

Bt

(
sn+1,k+1

w , Pn+1,k+1
w , Tn+1,k

)
Tn+1,k+1 = QTt (sn

w, Tn) , (25)

where
Bt = Bm

(
sn+1,k+1

w , sn+1,k
w

)
+ ∆tnM−1

T (Bw − BD) ,

and
QTt = ∆tnM−1

T Qn+1
c + Bm(sn

w, sn
w)T

n.

5. Numerical Investigations

In this section, we present error estimations for the time dependent variables, and introduce
two numerical examples to check the validity and the efficiency of the proposed scheme. The rate of
injection on the inlet boundary is used to calculate the normal velocity, ui = φdi (PVI), here PVI is
the pore volume injection and di is inlet diameter. Table 1 shows the physical parameters definitions
and values.

Table 1. Values of the physical parameters.

Parameter Value Units

Tin 360 K
T0, Tr 300 K

hs 0.718 W/(m/K)
hw 0.6 W/(m/K)
hn 0.2 W/(m/K)
ρs 2500 kg/m3

ρw 1000 kg/m3

ρn 660 kg/m3

cp,s 800 J/kg·K
cp,w 4000 J/kg·K
cp,n 2300 J/kg·K
βw 0.005 K−1

βn 0.003 K−1

Swr, Snr 0.001 –
φ 0.3 –

µw 1 cP = 1.0 × 10−3 Pa·s
µn 0.45 cP

krw0, krn0 1 –
Pe 50 bar = 1.0 × 105 Pa

The error estimates for saturation and temperature are presented in Table 2 for different values of
the time steps number (TSN) and iterations number (ITN). A domain of size 1.0 × 0.5 m discretized by
40 × 30 is used in this error estimation. Non-iterative calculations are carried out at 2000, 1000, 500,
and 100 time steps. In addition, we carried out some calculations for 10, 30, and 50 iterations with
100 time steps. As there is no exact solution for such a complicated problem, we created a reference
case of highly dense mesh and a very small time step which is very close to the exact solution. It is
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under the same conditions but as mentioned above the non-iterative case is just a reference. Table 2
illustrates that the error deceases as the number of time steps and number of iterations increase. It is
also clear that the temperature converges faster than saturation.

Table 2. Error estimates for different values of the time steps number (TSN) and iterations
number (ITN).

TSN ITN ‖sn+1,k+1
w − sn+1

w ‖ ‖Tn+1,k+1− Tn+1‖

2000 1 1.6205 × 10−3 6.9198 × 10−4

1000 1 3.2422 × 10−3 1.3857 × 10−3

500 1 6.4895 × 10−3 2.7781 × 10−3

100 1 3.2657 × 10−2 1.4169 × 10−2

100 10 1.3387 × 10−2 5.8768 × 10−6

100 30 1.2699 × 10−2 8.7596 × 10−8

100 50 1.2699 × 10−2 8.7596 × 10−8

Moreover, in Table 3, the comparison of error estimates of saturation ‖sn+1,k+1
w − sn+1

w ‖ with
a previous work [15] are presented for 40× 30 of spatial discretization. The reference case sn+1

w = 0.9565
is calculated at the point (0.06, 0.053) for non-iterative dense mesh of 200 × 150 for the domain
0.6 × 0.4 m over a total of 2000 time steps. The iterative case is taken after 100 time steps without
iteration (ITN = 1), at ITN = 10, and ITN = 30. The comparison shows a good agreement.

Table 3. Comparison of error estimates of saturation ‖sn+1,k+1
w − sn+1

w ‖ with a previous work.

ITN Present Work Previous Work [15]

1 0.0093 0.0096
10 0.0094 0.0096
30 0.0093 0.0094

In the following, two examples are provided and discussed for heterogeneous media. The first
example is a real field high-heterogeneous permeability media [27]. The spatial discretization is taken
as 120× 50 of a uniform rectangular mesh. A hot wetting fluid is injecting at a flow rate of 0.1 pore
volume injection (PVI) into the left bottom corner of the domain. Four cases of injections are taken into
consideration, i.e., continue until reaches 0.35, 0.5, 0.75, and 0.85 PV (pore volume). In this example,
we used a time step size of 0.01 and a maximum number of iterations of 50. Figure 1 shows the contours
of the saturation of the wetting phase after 0.35, 0.5, 0.75, and 0.85 PV. It is interesting to observe
discontinuities in the saturation distribution caused by the heterogeneity. Moreover, the contours of
temperature at the heterogenous medium are plotted in Figure 2. It seems to be that the heterogeneity
of the medium has no effect on the temperature distribution.

In the second example, the medium is artificial and heterogeneous, such that the it consists of two
subdomains with different permeability distribution (0.1 md for the barrier and 100 md for the rest
of the domain); a similar configuration to the first example. The spatial discretization is 120× 50 of
uniform rectangular mesh. An injection rate of 0.1 PVI of hot water at the left bottom corner is used.
Four cases of injections are taken into consideration, i.e., continuous until it reaches 0.35, 0.5, 0.75,
and 0.85 PV (pore volume). The time step equals 0.01. The distributions of water saturation is shown
in Figure 3, while the temperature distribution is shown in Figure 4. Again, one can make a similar
observation that the saturation distribution is clearly affected by the medium heterogeneity which is
not the case for temperature distribution.
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Figure 1. Distribution of the saturation on heterogenous permeability map after 0.35, 0.5, 0.75, and 0.85
pore volume (PV).

Figure 2. Distribution of the temperature on heterogenous permeability map after 0.35, 0.5, 0.75,
and 0.85 PV.
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Figure 3. Distribution of saturation on regular permeability map.

Figure 4. Distribution of the temperature on regular permeability map after 0.75 PV.

Finally, let us discuss some results to express the effectiveness of the proposed method
(see Figures 5–8). The domain of this test with a heterogeneous permeability is of size 0.2 × 0.2 m
and a grid map of 20 × 20. The time step is 0.14. The results are plotted at NIT = 1 (non-iterative
case) and NIT = 5, 10, 15 (iterative cases). In Figure 5, the saturation profiles at y = 0.01 m are plotted
against the x-axis for different number of iterations (NIT). The lower graph is zoomed in. It can be
seen from this figure, that there is a difference between the non-iterative case and the iterative cases.
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In addition, there are small differences between the iterative cases themselves which vanish as the NIT
increases. A similar explanation can be presented for the temperature which is introduced in Figure 6,
where the temperature profiles at y = 0.04 m are plotted against the x-axis for different number of
iterations. The corresponding contours of saturation and temperature are presented, respectively,
in Figures 7 and 8.

Figure 5. Saturation profiles at y = 0.01 m against x-axis for different number of iterations (NIT).
The lower graph is scaled up.
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Figure 6. Temperature profiles at y = 0.04 m against x-axis for different number of iterations. The lower
graph is scaled up.
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Figure 7. Distribution of saturation on heterogeneous permeability for different number of iterations.

Figure 8. Distribution of saturation on heterogeneous permeability for different number of iterations.

6. Conclusions

This paper dealt with the issue of non-isothermal two-phase flow in porous media. The model
consists of an equation of flow that includes a term of body force represented by the approximation
of Boussinesq and capillary forces, in addition to saturation and energy equations. We develop
an iterative implicit pressure, explicit saturation, implicit temperature scheme to solve the system of
the governing equations. In order to control the solution convergence, a relaxation factor is formulated
as a function of the CFL stability condition. The pressure and saturation equations are coupled via
a linearized capillary pressure. Then, the saturation equation is explicitly solved, while the energy
equation is calculated implicitly. Both porosity and permeability are updated after each iteration
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loop. To demonstrate the performance of the current approach, some error estimates are presented
for various values of number of time steps and number of iterations. Two numerical examples are
provided. It was found that the medium heterogeneity has a clear effect on the saturation distribution
while the opposite is true for the temperature distribution. Finally, the effectiveness of the proposed
method has been discussed in terms of the number of iterations.
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