fj algorithms @\py

Article

Time-Universal Data Compression

Boris Ryabko 1

1 TInstitute of Computational Technologies of the Siberian Branch of the Russian Academy of Science,

630090 Novosibirsk, Russia; boris@ryabko.net or b.riabko@g.nsu.ru
Department of Information Technologies, Novosibirsk State University, 630090 Novosibirsk, Russia
1t The preliminary version of this paper is accepted for ISIT 2019, Paris.

check for
Received: 26 April 2019; Accepted: 27 May 2019; Published: 29 May 2019 updates

Abstract: Nowadays, a variety of data-compressors (or archivers) is available, each of which has its
merits, and it is impossible to single out the best ones. Thus, one faces the problem of choosing the best
method to compress a given file, and this problem is more important the larger is the file. It seems natural
to try all the compressors and then choose the one that gives the shortest compressed file, then transfer (or
store) the index number of the best compressor (it requires log m bits, if m is the number of compressors
available) and the compressed file. The only problem is the time, which essentially increases due to the
need to compress the file m times (in order to find the best compressor). We suggest a method of data
compression whose performance is close to optimal, but for which the extra time needed is relatively
small: the ratio of this extra time and the total time of calculation can be limited, in an asymptotic manner,
by an arbitrary positive constant. In short, the main idea of the suggested approach is as follows: in order
to find the best, try all the data compressors, but, when doing so, use for compression only a small part
of the file. Then apply the best data compressors to the whole file. Note that there are many situations
where it may be necessary to find the best data compressor out of a given set. In such a case, it is often
done by comparing compressors empirically. One of the goals of this work is to turn such a selection
process into a part of the data compression method, automating and optimizing it.

Keywords: data compression; universal coding; time-series forecasting

1. Introduction

Nowadays lossless data compressors, or archivers, are widely used in systems of information
transmission and storage. Modern data compressors are based on the results of the theory of source
coding, as well as on the experience and intuition of their developers. Among the theoretical results, we
note, first of all, such deep concepts as entropy, information, and methods of source coding discovered by
Shannon [1]. The next important step was done by Fitingoff [2] and Kolmogorov [3], who described the first
universal code, as well as Krichevsky who described the first such a code with minimal redundancy [4].

Now practically used data compressors are based on the PPM universal code [5] (which is used
along with the arithmetic code [6]), the Lempel-Ziv (LZ) compression methods [7], the Burrows—Wheeler
transform [8] (which is used along with the book-stack (or MTF) code [9-11]), the class of grammar-based
codes [12,13] and some others [14-16]. All these codes are universal. This means that, asymptotically, the
length of the compressed file goes to the smallest possible value (i.e., the Shannon entropy per letter), if the
compressed sequence is generated by a stationary source.

In particular, the universality of practically used codes means that we cannot compare their
performance theoretically, because all of them have the same limit ratio of compression. On the other

Algorithms 2019, 12, 116; d0i:10.3390/a12060116 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0002-7232-9644
http://dx.doi.org/10.3390/a12060116
http://www.mdpi.com/journal/algorithms
https://www.mdpi.com/1999-4893/12/6/116?type=check_update&version=2

Algorithms 2019, 12, 116 2 of 10

hand, the experiments show that the performance of different data compressors depends on a compressed
file and it is impossible to single out one of the best or even remove the worst ones. Thus, there is no
theoretical or experimental way to select the best data compressors for practical use. Hence, if someone
is going to compress a file, he should first select the appropriate data compressor, preferably giving
the best compression. The following obvious two-step method can be applied: first, try all available
compressors and choose the one that gives the shortest compressed file. Then place a byte representation
of its number and the compressed file. When decoding, the decoder first reads the number of the selected
data compressor, and then decodes the rest of the file with the selected data compressor. An obvious
drawback of this approach is the need to spend a lot of time in order to first compress the file by all
the compressors.

In this paper we show that there exists a method that encodes the file with the (close to) optimal
compressor, but uses a relatively small extra time. In short, the main idea of the suggested approach is as
follows: in order to find the best, try all the compressors, but, when doing it, use for compression only a
small part of the file. Then apply the best data compressor for the compression of the whole file. Based on
experiments and some theoretical considerations, we can say that under certain conditions this procedure
is quite effective. That is why we call such methods “time-universal.”

It is important to note that the problems of data compression and time series prediction are very close
mathematically (see, for example, [17]). That is why the proposed approach can be directly applied to time
series forecasting.

To the best of our knowledge, the suggested approach to data compression is new, but the idea to
organize the computation of several algorithms in such a way that any of them worked at certain intervals
of time, and their course depends on intermediate results, is widely used in the theory of algorithms,
randomness testing and artificial intelligence; see [18-21].

2. The Statement of the Problem and Preliminary Example

Let there be a set of data compressors F = {¢1, ¢y, ...} and x1x;... be a sequence of letters from a finite
alphabet A, whose initial part x1...x, should be compressed by some ¢ € F. Let v; be the time spent on
encoding one letter by the data compressor ¢; and suppose that all v; are upper-bounded by a certain
constant v,y i.€. sup;_1,,. i < Upax. (It is possible that v; is unknown beforehand.)

The considered task is to find a data compressor from F which compresses x;...x;; in such a way that
the total time spent for all calculations and compressions does not exceed T (1 +) for some § > 0. Note
that T = vy 1 is the minimum time that must be reserved for compression and JT is the additional
time that can be used to find the good compressor (among ¢1, ¢2, ...). It is important to note that we can
estimate ¢ without knowing the speeds vy, vy,

If the number of data compressors F is finite, say, {¢1, ¢2,..., m}, m > 2, and one chooses ¢y
to compress the file x1x,...x;;, he can use the following two step procedure: encode the file as < k >
¢r(x1x2...x,), where < k > is [logm]-bit binary presentation of k. (The decoder first reads [log m | bits
and finds k, then it finds x;x;...x, decoding @i (x1x2...x,).) Now our goal is to generalize this approach
for the case of infinite F = {¢1, ¢2, ... }. For this purpose we take a probability distribution w = wy, wy, ...
such that all w; > 0. The following is an example of such a distribution:

1
(,Uk — m 7 k — 1,2,3,.... (1)

Clearly, it is a probability distribution, because wy = 1/k —1/(k+1).

Algorithms 2019, 12, 116 3of 10

Now we should take into account the length of a codeword which presents the number k, because
those lengths must be different for different k. So, we should find such ¢y that the value

[—logwi]| + [@r(x1x2...xn) |

is close to minimal. As earlier, the first part | — log wy | is used for encoding number k (codes achieving this
are well-known, e.g., [22].) The decoder first finds k and then x1x3...x, using the decoder corresponding to
@x- Based on this consideration, we give the following

Definition 1. We call any method that encodes a sequence x1xy...xy, 1 > 1, x; € A, by the binary word of the
length [—log wj] + |@j(x1x2...xu)| for some @; € F, a time-adaptive code and denote it by @ﬁomw. The output of
éﬁomw is the following word:

@fompr(xlxz...xn) =< w; > @i(x1x...x), (2

where < w; > is [— log wj|-bit word that encodes i, whereas the time of encoding is not grater than T(1 + &) (here
T = Upax 1).
If for a time-adaptive code @fomw the following equation is valid
6

lim & xX1..xy)/n = inf lim @;(x1..x,)/n,
oo compr(1 71)/ 1:1,2’.”71_”)0(?1(1 Yl)/

this code is called time-universal.

Comment 1 It will be convenient to reckon that the whole sequence is compressed not letter-by-letter,
but by sub-words, each of which, say, a few kilobytes in length. More formally, let, as before, there be a
sequence x1X2 ..., Where x; ,i = 1,2, ... are sub-words whose length (say, L) can be a few kilobytes. In this
case x; € {0,1}8L.

Comment 2 Here and below we did not take into account the time required for the calculation of log w;
and some other auxiliary calculations. If in a certain situation this time is not negligible, it is possible to
reduce T in advance by the required value.

This description and the following discussion are fairly formal, so we give a brief preliminary example
of a time-adaptive code. To do this, we took 22 data compressors from [23] and 14 files of different lengths.
For each file we applied the following three-step scheme: first we took 1% of the file and sequentially
compressed it with all the data compressors. Then we selected the three best compressors, took 5% of the
file, and sequentially compressed it with the three compressors selected. Finally, we selected the best of
these compressors and compressed the file with this compressor. Thus, the total extra time is limited to 22
x 0.01 +3 x 0.05 =0.37,i.e. § < 0.37. Table 1 contains the obtained data.

Algorithms 2019, 12, 116

40f 10

Table 1. Three-step compression. Extra-time § = 0.37.

File Length (bites)

Best Compressor

Chosen Compressor Chosen/Best (Ratio of Length)

BIB
BOOK1
BOOK 2
GEO
NEWS
OBJ1
OBJ2
PAPER1
PAPER2
PIC
PROGC
PROGL
PROGP
TRANS

111,261
768,771
610,856
102,400
377,109
21,504
246,814
53,161
82,199
513,216
39,611
71,646
49,379
93,695

nanozip
nanozip
nanozip
nanozip
nanozip
nanozip
nanozip
nanozip
nanozip
zpaq
nanozip
nanozip
Ipag8
lpag8

Ipag8
nanozip
nanozip

ccm
nanozip
tornado

Ipag8
tornado
tornado

bbb
tornado
tornado
tornado

Ipag8

1.06

1

1
1.07

1
1.23
1.08
1.52
1.54
1.25
1.42
1.44

14

Table 2 shows that the larger the file, the better the compression. The following table gives some
insight into the effect of the extra time. Here we used the same three-step scheme, but the size of the parts
was 2% and 10% for the first step and the second, respectively, while the extra time was 0.74.

Table 2. Three-step compression. Extra-time § = 0.74.

File Legth Best Compressor Chosen Compressor Chosen/Best (Ratio of Length)
BIB 111,261 nanozip nanozip 1
BOOK1 768,771 nanozip nanozip 1
BOOK 2 610,856 nanozip nanozip 1
GEO 102,400 nanozip nanozip 1
NEWS 377,109 nanozip Ipqlv2 1.14
OBJ1 21,504 nanozip ccm 1.17
OBJ2 246,814 nanozip nanozip 1
PAPER1 53,161 nanozip Ipag8 1.19
PAPER2 82,199 nanozip nanozip 1
PIC 513,216 zpaq bbb 1.25
PROGC 39,611 nanozip Ipag8 1.04
PROGL 71,646 nanozip Ipag8 1.03
PROGP 49,379 Ipag8 lpag8 1
TRANS 93,695 lpaq8 Ipag8 1

From the tables it can be seen that the performance of the considered scheme increases significantly
when the additional time increases. It worth noting, that if one applied all 22 data compressors to the
whole file, the extra time would be 21 instead of 0.74.

3. The Time-Universal Code for the Finite Set of Data Compressors

3.1. Theoretical Consideration

Suppose that there is a file x1x>...x,;, and data compressors @1, ..., ¢, 1 > 1,m > 1. Let, as before, v;

be the time spent on encoding one letter by the data compressor ¢;,

Umax = mMax v, T =nov,

i=1,..n

®)

Algorithms 2019, 12, 116 50f 10

and let
T=T(1+6),5>0. 4)

The goal is to find the data compressor ¢;, j = 1, ...,m, that compresses the file x1x;...x, in the best
way in time T.

Apparently, the following two-step method is the simplest.

Step 1. Calculate r = [6T/ (mvax) |.

Step 2. Compress the file x1x,...x, by ¢ and find the length of compressed file |¢;(x7...x,)|, then,
likewise, find |¢a(x1...x,)|, etc.

Step 3. Calculate s = argmin;—q_, |@i(x1...X;)|

Step 4. Compress the whole file x1x;...x, by ¢s and compose the codeword (s) ¢s(x7...x), where (s)
is [log m|-bit word with the presentation of s.

It will be shown that even this simple method is time universal. On the other hand, there are a lot
of quite reasonable approaches to build the time-adaptive codes. For example, it could be natural to try
a three step procedure, which was considered in the previous part (see Tables 1 and 2), as well as many
other versions. Probably, it could be useful to use multidimensional optimization approaches, such as
machine learning, so-called deep learning, etc. That is why, we consider only some general conditions
needed for time-universality.

Let us give some needed definitions. Suppose, a time-adaptive data-compressor & is applied to
x = x1...xt . For any ¢; we define

T;(t) = max{r : ¢;(x1...x,) was calculated, when extra time 6 T was exhausted}.

Theorem 1. Let there be an infinite word x1xs... and time-adaptive method ® which is based on the finite set of
data compressors ¢, ..., pm. If its additional time of calculation is not grater than 0T and the following properties
are valid:
(i) the limits lim;_co @;(x1...X¢) /t exist fori =1,2,...,m,
(ii) fori =1,2,..,m
lim Ti(i’) = o, (5)

t—o0

(iii) for any t the method ®(x1...x;) uses such a compressor @s for which, for any i

(—logws + [ps(x1--27, (1))) /T (t) < (—logwi + [@i(x1..27,1))|) /T (E), (6)
Then ®(xy...x,) is time universal, that is

lim ®(xy..x¢)/t = inf lLim |@;(xq..x;)|/¢ (7)
t—ro0 i=1,2,...t—0o
A proof is given in the Appendix A, but here we give some informal comments. First, note that
property (i) means that any data compressor will participate in the competition to find the best one. Second,
if the sequence x;x7... is generated by a stationary source and all ¢; are universal codes, then the property
(iii) is valid with probability 1 (See, for example, [22]). Hence, this theorem is valid for this case. Besides,
note that this this theorem is valid for methods described earlier.

3.2. Experiments

We conducted several experiments to evaluate the effectiveness of the proposed approach in
practice. For this purpose we took 20 data compressor from the “squeeze chart (lossless data
compression benchmarks)”, http://www.squeezechart.com/index.html and files from this site http:

http://www.squeezechart.com/index.html
http://corpus.canterbury.ac.nz/descriptions/
http://corpus.canterbury.ac.nz/descriptions/

Algorithms 2019, 12, 116 6 of 10

/ /corpus.canterbury.ac.nz/descriptions/, and http://tolstoy.ru/creativity /90-volume-collection-of-the-
works/ (Information about their size is given in the tables below). It is worth noting, that we do
not change the collection of the data compressors and the files during experiments. The results are
presented in the following tables, where the expression “worst/best” means the ratio of the longest
length of the compressed file and the shortest one (for different data compressors). More formally,
worst /best = max; ;1,20 (|¢i]/|9;j|). The expression “chosen/best” is a similar value for a chosen data
compressor and the best one. The value “chosen/best” is the frequency of occurrence of the event “the
best compressor was selected”.

Table 3 shows the results of the two-step method, where we took 3% in the first step. Thus, the total
extra time is limited to 20 x 0.03 = 0.6,i.e., 5 < 0.6.

Table 3. Two-step compression. Extra-time § = 20 x 0.03 = 0.6.

Length of File (byte) Number of Files Ratio “Chosen Best” Average “Worst/best” Average “Chosen/Best”

<10° 1496 8% 112.87% 103.57%
105-10°6 1122 45.72% 131.22% 102.04%
106-108 384 71% 147.95% 100.99%

Here ratio “chosen best” means a proportion of cases in which the best method was chosen.
Table 4 shows the effect of the extra time J on the efficiency of the method (In this case we took 5% in
the first step).

Table 4. Two-step compression. Extra-time 6 =20 x 0.05 = 1.

Length of File (byte) Number of Files Ratio “Chosen Best” Average “Worst/Best” Average “Chosen/Best”

<10° 1496 16% 112.87% 102.14%
10°-10°0 1122 53.63% 131.22% 101.33%
106-108 384 73% 147.95% 100.84%

Table 5 contains information about the three step method. Here we took 3% in the first step and then
took five data compressors with the best performance. Then, in the second step, we tested those five data
compressors taking 5% from the file. Hence, the extra time equals 20 x 0.03 + 5 x 0.05 = 0.85.

Table 5. Three-step compression. Extra-time § = 20 x 0.03 + 5 x 0.05 = 0.85.

Length of File (byte) Number of Files Ratio “Chosen Best” Average “Worst/Best” Average “Chosen/Best”

<10° 1496 14% 112.87% 102.48%
10°-10° 1122 54.9% 131.22% 101.92%
100-108 384 73% 147.95% 100.86%

Table 6 gives an example of four step method. Here we took 1% in the first step and then took
five data compressors with the best performance. Then, in the second step, we tested those five data
compressors taking 2% from each file. Basing on the obtained data, we chose three best and tested them
on 5% parts. At last, the best of them was used for compression of the whole file. Hence, the extra time
equals 20 x 0.01 +5 x 0.02 43 x 0.05 = 0.45.

http://corpus.canterbury.ac.nz/descriptions/
http://corpus.canterbury.ac.nz/descriptions/
http://tolstoy.ru/creativity/90-volume-collection-of-the-works/
http://tolstoy.ru/creativity/90-volume-collection-of-the-works/

Algorithms 2019, 12, 116 7 of 10

Table 6. Four-step compression. Extra-time 20 x 0.01 +5 x 0.02 4-3 x 0.05 = 0.45.

Length of File (byte) Number of Files Ratio “Chosen Best” Average “Worst/Best” Average “Chosen/Best”

<10° 1496 10% 112.87% 103.12%
10%-10° 1122 44.69% 131.22% 102.54%
106-108 384 72% 147.95% 100.88%

If we compare Table 6 and Table 3, we can see that the performance of the four step method is better
than two step method, where the extra time is significantly less for the four step method. The same is valid
for the considered example of the three step method.

We can see that the three- and four-step methods make sense because they make it possible to reduce
the additional time while maintaining the better quality of the method. Also, we can make another
important conclusion. All tables show that the method is more efficient for large files. Indeed, the ratio
“chosen/best” and the average value “chosen/best” decreases where the file lengths increases. Moreover,
the average value “worst/best” increases where the file lengths increases.

4. The Time-Universal Code for Stationary Ergodic Sources

In this section we describe a time-universal code for stationary sources. It is based on optimal
universal codes for Markov chains, developed by Krichevsky [4,24] and the twice-universal code [25].
Denote by M;, i = 1,2, ... the set of Markov chains with memory (connectivity) 7, and let My be the set of
Bernoulli sources. For stationary ergodic i and an integer r we denote by /1, (i) the r-order entropy (per
letter) and let hio (1) be the limit entropy; see for definitions [22].

Krichevsky [4,24] described the codes yy, ¢, ... which are asymptotically optimal for My, My, ...,
correspondingly. If the sequence x1x;..x; , X; € A, is generated by a source y € M;, the following
inequalities are valid almost surely (a.s.):

hi(u) < 9i(xrxn) |/t < hi(p) + ((JA] = 1)|A[+C) /1, ®)

where t grows. (Here C is a constant.) The length of a codeword of the twice-universal code p is defined as
the following “mixture”:
lo(x1..x¢)| = —log Y wits 219G x)l, 9)
i=0
(It is well-known in information theory [22] that there exists a code with such codeword lengths,
because).\, . cat 2~ lp(a-x)l = 1) This code is called twice-universal because for any M;,i =0,1,..., and
i € M; the equality (8) is valid (with different C). Besides, for any stationary ergodic source y a.s.

tlgl;lo |pi(x1...xt)|/t = hoo(]/t) (10)

Let us estimate the time of calculations necessary when using p. First, note that it suffices to sum a
finite number of terms in (9), because all the terms 2 9ilx-x)l gre equal for i > t. On the other hand, the
number of different terms grows, where t — oo and, hence, the encoder should calculate 2= li(xrxt)| for
growing number i’s. It is known [24] that the time spent on coding one letter is close for different codes
Y;,1=0,12,..

Hence, the time spent for encoding one letter by the code p grows to infinity, when ¢ grows.
The described below time-universal code ¥° has the same asymptotic performance, but the time spent for
encoding one letter is a constant.

Algorithms 2019, 12, 116 8 of 10
In order to describe the time-universal code ¥° we give some definitions. Let, as before, v be an
upper-bound of the time spent for encoding one letter by any ;, x;...x; be the generated word,
T=to, N(t) =6T/v =151,

m(t) = |loglog N(t)], s(t) = [N(t)/ (m(t) +1)]. 1)

Denote by ¥ the following method:
Step 1. Calculate m(t),s(t) and

o (1 X5(1)) |, [91 (X1 X5 (1)) s woor [Py (X1-%5)) -

Step 2. Find such a j that
i (x1.25(1)) | = i_mi’f}q(t) Wi (21251 |-
Step 3. Calculate the codeword ¢;(x;...xt) and output
‘I"S(xl...xt) =<j> zpj(xl...xt),
where < j > is the [~ log wj 1 |-bit codeword of j. The decoding is obvious.

Theorem 2. Let x1x;... be a sequence generated by a stationary source and the code ¥° be applied. Then this code is
time-universal, i.e., a.s.
tlim |90 (x1..07)| /t = inf lim |g;(xq...x¢)| /L. (12)
— 00

i=0,1,... t—00

Funding: This research was funded by Russian Foundation for Basic Research grant number 18-29-03005.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A

Proof of Theorem 1. Let A; = lim;_,c0 |@;(x7...X¢)|/t and @i, be such a data compressor that A,,;;, = min;
A;. Having taken into account that the set of data compressors F is finite, we can see that for any € > 0
there exists such t; that forall ¢; € Fand t > t;

(| @i(x1..x¢)| —logw;)/t — Ai| < e. (A1)

From (ii) we obtain that there exists such f, that 7;(t;) > t; foralli = 1,..,m. Letn > t; and d be
applied to x1x . .. x,. Suppose that a data-compressor ¢s was chosen, when & was applied. Hence,

(—logws + |@s(x1.-Xg ())/ Ts (1) < (—log Wpin + [@min (X121, (n))/ Tinin (1) (A2)
From (A1) we can see that
(—logws + |@s (X1 X (1)) /Ts(n) > As — € (A3)

and
(_ log Win + |(Pmin(x1-~'x’rmi,,l(n) |)/Tmin(n) < Amin + €. (A4)

Algorithms 2019, 12, 116 90of 10

From the inequalities (A2)—(A4) we obtain A; < Ay, + 2€. Taking into account, that, by definition,
Amin < As we get
/\min <As < /\min + 2e. (AS)

Let us estimate ®(xy...x;,)/n. When ®(x;...x,,) was applied, the data compressor ¢ was chosen.
Hence, from (A1) we get
As —€ < D(x1..x0) /1 < As + €.

From those inequalities and (A5) we can see that
Apin — € < D(x1...) /11 < Ayin + 3€.

It is true for any € > 0, hence, limy, o ®(x1...x,1) /1 = Ayis. The theorem is proven. [

Proof of Theorem 2. It is known in Information Theory [22] that /i, (#) > hy 1 (1) > heo(pt) for any r and
(by definition) lim;, e /1, () = hoo(1t). Let € > 0 and r be such an integer that /1, — he < €. From (11) we
can see that there exists such t; that m(t) > rif t > t;. Taking into account (8) and (11), we can see that
there exists t, for which a.s. ||, (x1...x;)| /t — by ()| < € if t > t,. From the description of ¥° (the step 3)
we can see that there exists such t3 > max{ty, tp} for which a.s.

iy (1) |/ = oo ()] < {197 (xr-xe) |/ = Pr ()|

+(he (1) —heo(pt)) < 2€,

if t > t3. By definition,
\‘I"s(xl...xt)|/t < (|¢pr(xq...xt)| — log wyi1) /t.

Having taken into account that € is an arbitrary number and two latest inequalities as well as the fact that
a.s. infi_g1, limy_ye0 [Py (x1...x¢)|/t = heo(pt), we obtain (12). The theorem is proven. [

References

Shannon, C. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379-423.
Fitingof, B.M. Optimal encoding for unknown and changing statistics of messages. Probl. Inform. Transm. 1966, 2,
3-11.

3. Kolmogorov, A.N. Three approaches to the quantitative definition of information. Probl. Inform. Transm. 1965, 1,
3-11. [CrossRef]

4. Krichevsky, R. A relation between the plausibility of information about a source and encoding redundancy.
Probl. Inform. Transm. 1968, 4, 48-57.

5. Cleary, J.; Witten, I. Data compression using adaptive coding and partial string matching. IEEE Trans. Commun.
1984, 32, 396-402. [CrossRef]

6. Rissanen, J.; Langdon, G.G. Arithmetic coding. IBM J. Res. Dev. 1979, 23, 149-162. [CrossRef]

7. Ziv,].; Lempel, A. A universal algorithm for sequential data compression. IEEE Trans. Inf. Theory 1977, 23,
337-343. [CrossRef]

8. A Block-Sorting Lossless Data Compression Algorithm. Available online: https:/ /www.hpl.hp.com/techreports/
Compaq-DEC/SRC-RR-124.pdf (accessed on 15 May 2019).

9. Ryabko, B.Y. Data compression by means of a “book stack”. Probl. Inf. Transm. 1980, 16, 265-269.

10. Bentley, J.; Sleator, D.; Tarjan, R.; Wei, V. A locally adaptive data compression scheme. Commun. ACM 1986, 29,
320-330. [CrossRef]

11. Ryabko, B.; Horspool, N.R.; Cormack, G.V.; Sekar, S.; Ahuja, S.B. Technical correspondence. Commun. ACM 1987,
30, 792-797.

http://dx.doi.org/10.1080/00207166808803030
http://dx.doi.org/10.1109/TCOM.1984.1096090
http://dx.doi.org/10.1147/rd.232.0149
http://dx.doi.org/10.1109/TIT.1977.1055714
https://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.pdf
https://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.pdf
http://dx.doi.org/10.1145/5684.5688

Algorithms 2019, 12, 116 10 of 10

12.

13.

14.

15.
16.

17.

18.

19.
20.

21.

22.
23.

24.

25.

Kieffer,].C.; Yang, E.H. Grammar-based codes: A new class of universal lossless source codes. IEEE Trans.
Inf. Theory 2000, 46, 737-754. [CrossRef]

Yang, E.H.; Kieffer,].C. Efficient universal lossless data compression algorithms based on a greedy sequential
grammar transform. i. without context models. IEEE Trans. Inf. Theory 2000, 46, 755-777. [CrossRef]

Drmota, M.; Reznik, Y.A.; Szpankowski, W. Tunstall code, Khodak variations, and random walks. IEEE Trans.
Inf. Theory 2010, 56, 2928-2937. [CrossRef]

Ryabko, B. A fast on-line adaptive code. IEEE Trans. Inf. Theory 1992, 28, 1400-1404. [CrossRef]

Willems, EM.].; Shtarkov, Y.M.; Tjalkens, T.]. The context-tree weighting method: Basic properties. IEEE Trans.
Inf. Theory 1995, 41, 653-664. [CrossRef]

Ryabko, B.; Astola, J.; Malyutov, M. Compression-Based Methods of Statistical Analysis and Prediction of Time Series;
Springer International Publishing: Cham, Switzerland, 2016.

Li, M.; Vitanyi, P. An Introduction to Kolmogorov Complexity and Its Applications, 3rd ed.; Springer: New York, NY,
USA, 2008.

Calude, C.S. Information and Randomness—An Algorithmic Perspective, 2nd ed.; Springer: Berlin, Germany, 2002.
Downey, R.; Hirschfeldt, D.R.; Nies, A.; Terwijn, S.A. Calibrating randomness. Bull. Symb. Log. 2006, 12, 411-491.
[CrossRef]

Hutter, M. Universal Artificial Intelligence: Sequential Decisions based on Algorithmic Probability; Springer: Berlin,
Germany, 2005.

Cover, TM.; Thomas,].A. Elements of Information Theory; Wiley-Interscience: New York, NY, USA, 2006.
Mahoney, M. Data Compression Programs. Available online: http://mattmahoneynet/dc/ (accessed on
15 March 2019).

Krichevsky, R. Universal Compression and Retrival; Kluwer Academic Publishers: Dordrecht, The Netherlands,
1993.

Ryabko, B. Twice-universal coding. Probl. Inf. Transm. 1984, 3, 173-177.

@ (© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/18.841160
http://dx.doi.org/10.1109/18.841161
http://dx.doi.org/10.1109/TIT.2010.2046248
http://dx.doi.org/10.1109/18.144725
http://dx.doi.org/10.1109/18.382012
http://dx.doi.org/10.2178/bsl/1154698741
http://mattmahoney.net/dc/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The Statement of the Problem and Preliminary Example
	The Time-Universal Code for the Finite Set of Data Compressors
	Theoretical Consideration
	Experiments

	The Time-Universal Code for Stationary Ergodic Sources
	
	References

