
algorithms

Article

Poisson Twister Generator by Cumulative
Frequency Technology

Aleksei F. Deon 1 and Yulian A. Menyaev 2,*
1 Department of Information Systems and Computer Science, Bauman Moscow State Technical University,

2nd Baumanskaya St., 5/1, 105005 Moscow, Russia; DeonAlex@mail.ru
2 Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 W. Markham St.,

Little Rock, AR 72205, USA
* Correspondence: YAMenyaev@uams.edu

Received: 6 April 2019; Accepted: 25 May 2019; Published: 28 May 2019
����������
�������

Abstract: The widely known generators of Poisson random variables are associated with different
modifications of the algorithm based on the convergence in probability of a sequence of uniform
random variables to the created stochastic number. However, in some situations, this approach
yields different discrete Poisson probability distributions and skipping in the generated numbers.
This article offers a new approach for creating Poisson random variables based on the complete twister
generator of uniform random variables, using cumulative frequency technology. The simulation
results confirm that probabilistic and frequency distributions of the obtained stochastic numbers
completely coincide with the theoretical Poisson distribution. Moreover, combining this new approach
with the tuning algorithm of basic twister generation allows for a significant increase in length of the
created sequences without using additional RAM of the computer.

Keywords: pseudorandom number generator; stochastic sequences; Poisson distribution; twister generator

1. Introduction

Using generators of Poisson random variables realizes a stochastic process of creating integer
random numbers η ∈ H having the following probability distribution with respect to the real parameter
α [1,2]:

P(η,α) =
αη

η!
e−α, (1)

where η takes any integer values such as 0, 1, 2, . . . ,∞.
The Poisson model usually describes a scheme of rare events: under certain assumptions about

the nature of a process with random events, the number of elements observed over a fixed time interval
or in a fixed region of space is often a subject of Poisson distribution. Examples include the number
of particles of radioactive decay registered by a counter for some period of time, the number of calls
received to a telephone switching exchange during the designated time, the number of defects in a
piece of cloth or in a tape of fixed length, etc. Thus, Poisson distribution simulates a random variable
that represents the number of events that occurred over a fixed time. These events happened with
some fixed average intensity and independently of each other. At the same time, Poisson distribution
is discrete, which is one of the important limiting cases of a binomial distribution. Therefore, it gives a
good approximation of a binomial distribution for both small and large values. In this case, Poisson
distribution is intensively used in quality control cards, queuing theory, telecommunications, etc.

Poisson distribution has the remarkable properties of initial probabilistic moments with respect to
mathematical expectation m(η,α) = E1(η,α) = α and to dispersion D(η,α) = E2(η,α) = E1

(
η2,α

)
= α.

These and other properties make it possible to use Poisson distribution in theoretical and statistical

Algorithms 2019, 12, 114; doi:10.3390/a12060114 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0001-7735-4016
https://orcid.org/0000-0001-5861-3641
http://dx.doi.org/10.3390/a12060114
http://www.mdpi.com/journal/algorithms
https://www.mdpi.com/1999-4893/12/6/114?type=check_update&version=2

Algorithms 2019, 12, 114 2 of 18

mathematics [3,4], in the study of physical phenomena [5,6], in radio engineering and nuclear
physics [7,8], in informatics and information systems [9], in modeling of data transmission and
networks [10,11], in economics and financial analysis [12], and in other areas up to biological
studies [13–16] and research for medical physics and technics [17–19].

There are various methods for implementing the pseudorandom number generators based on
Poisson distribution. The generator proposed by Knuth [20,21] is widely known and actively used
by his followers. In Wikipedia [22] it is presented in the following form in an arbitrary pseudo-code
language, where parameter α has the notation λ, and the random variable η is equal to k:
algorithm poisson random number (Knuth):
init:
Let L← e−λ, k← 0 and p← 1.
do:

k← k + 1.
Generate uniform random number u in [0,1] and let p← p × u.

while p > L.
return k − 1.

Below is the program code in C# for Microsoft Visual Studio. According to Equation (1), instead of λ,
the parameter α is assigned here, which can be designated by any arbitrary value, for example α = 2.0.
The function KnuthPoisson() creates stochastic integer numbers k, which are analogous to the random
variables η in (1). Their frequency distribution is stored in an array nuK. The function Random.Next()
is used as a generator of uniform random variables. The function PoissonP() places the probabilities
P(η,α) of stochastic events in an array pEta. To form the distribution, a total N = 2w = 216 = 65536 of
uniform random variables are applied. Program names P060102 and cP060102 are chosen arbitrarily.

namespace P060102

{ class cP060102

{ static uint gc = 0; //quantity of uniform generation

static void Main(string[] args)

{ int w = 16; //bit width of uniform integer variable

long N = 1L << w; //random variable quantity

Console.WriteLine(“w = {0} N = {1}”, w, N);

double Alpha = 2.0;

Console.WriteLine(“Alpha = {0:F2}”, Alpha);

Random G = new Random(); //uniform generator p

int wX = 200;

int[] nuK = new int[wX]; //Knuth frequency

for (int i = 0; i < wX; i++) nuK[i] = 0;

int maxK = 0; //distribution length

for (int i = 0; i < N; i++)

{ int k = KnuthPoisson(Alpha, N, G);

nuK[k]++; //Knuth frequency

if (k > maxK) maxK = k; //distribution length

}

Console.WriteLine(“maxK = {0}”, maxK);

double[] pEta = new double[wX]; //probability

long[] nuEta = new long[wX]; //Poisson frequency

int cEta = PoissonP(Alpha, N, pEta, nuEta);

VerifyProbability(N, cEta, pEta, nuEta);

Console.WriteLine(“cEta = {0} ”, cEta);

long snuEta = 0; //sum of Poisson frequency

double spEta = 0.0; //sum of Poisson probability

Algorithms 2019, 12, 114 3 of 18

int snuK = 0; //sum of Knuth frequency

double spK = 0.0; //sum of Knuth probability

Console.Write(“Eta pK nuK”);

Console.Write(“ pEta nuEta”);

Console.WriteLine(“ nuK − nuEta”);

int nEta = cEta > maxK ? cEta : maxK;

for (int i = 0; i <= nEta; i++) //frequency tabling

{ double pK = (double)nuK[i]/(double)N;

int dnu = (int)(nuK[i] − nuEta[i]);

Console.Write(“{0,2} {2,12:F10} {1,10}”,

i, nuK[i], pK);

Console.Write(“ {0,12:F10} {1,10}”,

pEta[i], nuEta[i]);

Console.WriteLine(“ {0,8}”, dnu);

snuK += nuK[i]; //sum of Knuth frequency

spK += pK; //sum of Knuth probability

snuEta += nuEta[i]; //sum of Poisson frequency

spEta += pEta[i]; //sum of Poisson probability

}

Console.Write(“sum spK snuK”);

Console.WriteLine(“ spEta snuEta”);

Console.Write(“ {0,12:F10} {1,10}”,

spK, snuK);

Console.WriteLine(“ {0,12:F10} {1,10}”,

spEta, snuEta);

Console.WriteLine(“gc = {0}”, gc);

Console.ReadKey(); //result viewing

}

//--

static int KnuthPoisson(double Lam, long N, Random G)

{ double L = Math.Exp(-Lam);

double p = 1.0;

double dN = (double)N;

int k = 0;

do

{ k++;

long z = (long)G.Next(); //uniform variable

z = z & (N − 1);

double u = (double)z/dN;

p = p * u;

gc++; //global number of uniform generation

} while (p > L);

return k − 1;

}

//--

static int PoissonP(double alpha, long N,

double[] pEta, long[] nuEta)

{ double emAlpha = Math.Exp(-alpha);

double spEta = 0.0; //probability sum

long snuEta = 0L; //frequency sum

Algorithms 2019, 12, 114 4 of 18

pEta [0] = 1.0 * emAlpha; //Poisson probability p(0)

spEta += pEta[0]; //probability sum

nuEta[0] = (long)Math.Round(pEta[0] * (double)N);

snuEta += nuEta[0]; //frequency sum

double r = alpha; //Tailor first summand

pEta[1] = r * emAlpha; //Poisson probability p(1)

spEta += pEta[1]; //probability sum

nuEta[1] = (long)Math.Round(pEta[1] * (double)N);

snuEta += nuEta[1]; //frequency sum

int Eta = 2; //random variable value

do

{ r *= alpha/(double)Eta; //regular summand of exp

double p = r * emAlpha; //probability p(Eta)

long nu = (long)Math.Round(p * (double)N);

long sd = snuEta + nu;

if (nu == 0L || sd > N) break; //the tail

pEta[Eta] = p; //probability p(Eta)

spEta += p; //probability sum

nuEta[Eta] = nu; //frequency nu(Eta)

snuEta += nu; //frequency sum

Eta++; //next random variable Eta

} while (snuEta < N);

long d = N − snuEta; //tailing frequencies

if (d == 0L) return Eta − 1;

double d1N = (1.0 − spEta)/(double)d;

do

{ pEta[Eta] = d1N; //the tail event probability

nuEta[Eta] = 1; //one-part event

snuEta++; //frequency sum

Eta++;

} while (snuEta < N);

return Eta − 1;

}

//--

static void VerifyProbability(long N, int cEta,

double[] pEta, long[] nuEta)

{ double dN = (double)N;

for (int i = 0; i <= cEta; i++)

pEta[i] = (double)nuEta[i]/dN;

}

//~~

}

}

After starting the program P060102, the following result may be seen on a monitor.

w = 16 N = 65536

Alpha = 2.00

maxK = 12

cEta = 10

Eta pK nuK pEta nuEta nuK − nuEta

Algorithms 2019, 12, 114 5 of 18

0 0.1352539063 8864 0.1353302002 8869 −5

1 0.2691345215 17638 0.2706756592 17739 −101

2 0.2699890137 17694 0.2706756592 17739 −45

3 0.1814422607 11891 0.1804504395 11826 65

4 0.0910491943 5967 0.0902252197 5913 54

5 0.0361175537 2367 0.0360870361 2365 2

6 0.0125427246 822 0.0120239258 788 34

7 0.0032806396 215 0.0034332275 225 −10

8 0.0008850098 58 0.0008544922 56 2

9 0.0002441406 16 0.0001983643 13 3

10 0.0000457764 3 0.0000457764 3 0

11 0.0000000000 0 0.0000000000 0 0

12 0.0000152588 1 0.0000000000 0 1

sum spK snuk spEta snuEta

1.0000000000 65536 1.0000000000 65536

gc = 197025

In this listing, the columns pK and nuK show the values for frequency and probability obtained
by Knuth algorithm. These values correspond well to the analogous ones in the columns pEta and
nuEta, which are calculated by Poisson model (1). However, there are some peculiarities that should be
addressed here.

The first drawback is due to the fact that string 11 shows 0 by Knuth algorithm. This means
that the generator did not create the 11th random variable, although it did create 12th one. This case
points out the skipping of the 11th variable. In the theoretical Poisson distribution, this situation is
not allowed. For some applications that are not limited to strict constraints, this could be neglected.
However, if the generator is used for the comprehensive modeling of real stochastic situations, it is
better to avoid this.

The second disadvantage is apparent if Knuth generator is launched repeatedly. The monitoring
of the values in columns pK and nuK registers their inconsistency. In probability theory by Kolmogorov
axiomatics [2,23] a change in the probabilistic measure in a given space under any circumstances is
categorically prohibited. The disturbance of the axioms of a space can make it difficult to interpret the
results. This may be crucial when repeated tests are required, for example, in emergency situations, i.e.
when it is necessary to reiterate the special cases.

The third limitation of Knuth algorithm is that counter gc, which summarizes the number of
generated uniform random variables, turned out to be 197025. The cycle of Knuth generator is arbitrary;
hence the value of gc should also be arbitrary. In the current case, value gc = 197025 is almost three
times greater than the number N = 65536 of uniform random variables, from which Knuth algorithm
generates Poisson stochastic variables. This entails uncontrolled repetitions and skipping of basic
random variables together with a loss of their uniformity, which ultimately leads to an insufficient
quality for the results obtained.

So, summing up all the aforementioned points, the aim of this article is to propose a generator
of stochastic variables in strict accordance with the theory of Poisson distribution by having no
excessive and intermediate generations of uniform variables. This is the next step in searching for
better algorithms for Poisson stochastic generation and their optimization.

2. Theory

Poisson stochastic process operates with random variables that linearly depend on a continuous
parameter. Usually, such a parameter is the observation time of a stochastic event, but other
interpretations are possible as well. In this particular case, an interest is represented both by the
time moment t and by the time interval τ following it. The randomness of events in two successive
continuous time intervals [0, t] and (t, t + τ] implies [23] that random events in the quantity η could

Algorithms 2019, 12, 114 6 of 18

occur during the total time duration [0, t + τ]. If events in the quantity k are observed in the interval
[0, t], then a diminution η− k for these events should occur in the half-open interval (t, t + τ]. The first
axiomatic restriction is due to the fact that both intervals are independent, and also that the events
in them separately occur as the substantive cases. The consequence of this restriction is that the
probability of observing the events η on the common interval [0, t + τ] is the joint probability of
independent events:

Pη([0, t + τ]) = Pk
(
[0, t])·Pη−k((t, t + τ])

)
. (2)

In Poisson model the probability Pη−k((t, t + τ]) has a number of serious limitations, which can be
formulated as follows:

1. The probability of events in the time interval (t, t + τ] does not depend on its origin t:

Pη−k((t, t + τ]) = Pη−k((0, τ]). (3)

2. The probability of one event in the time interval (0, τ] depends linearly on the length of the
interval τ with given intensity λ; and the probability o(τ) of observing other events is negligible:

P1((0, τ]) = P1(τ) = λ·τ+ o(τ). (4)

In Equation (4) the notation α = λt (1) is used, which in the theory of probabilities [2] and the
theory of random processes is in common use. Equation (4) excludes an observation of two or more
events simultaneously in the time interval τ. This makes it possible to simplify it without considering
the events with an infinitesimal small probability of a higher order o(τ):

P1(τ) = λ·τ. (5)

Equation (5) allows for reaching the determination of probability of the event absence in the time
interval τ:

P0(τ) = 1− P1(τ) = 1− λ·τ. (6)

Combining together Equations (2) and (6), the probability of the event absence at the time moment
t in the general interval [0, t + τ] could be obtained as follows:

P0(t + τ) = P0(t)·P0(τ) = P0(t)(1− λτ). (7)

This expression (7) leads to the definition of the derivative with respect to probability:

dP0(t)
dτ

= lim
τ→0

P0(t + τ) − P0(t)
τ

= −λP0(t). (8)

The solving of the differential Equation (8) determines the probability of the absence of events
at the time moment t, in which the constant c = 1 is derived from the initial condition P0(0) = 1.
The result is the following:

P0(t) = ce−λt = e−λt. (9)

Equation (9) with allowance for Equation (2) and Constraints (5) and (6) admits calculating the
probability of a single event P1([0, t + τ]) as follows:

P1([0, t + τ]) = P0(t)P1(τ) + P1(t)P0(τ) = e−λtλτ+ P1(t)(1− λτ). (10)

By analogy with Transformations (7) and (8), Equation (10) leads to the following
differential equation:

dP1(t)
dτ

= λe−λt
− λP1(t). (11)

Algorithms 2019, 12, 114 7 of 18

The solving of Equation (11) determines P1(t) with the initial condition P1(0) = 0:

P1(t) = λte−λt. (12)

Performing successively the Transformations (10)–(12) for all variables η ∈ [0,∞], the distribution
of Poisson probabilities Pη(λt) with respect to quantity η of random events with intensity λ at the time
moment t could be obtained as follows:

Pη(α = λt) =
(λt)η

η!
e−λt =

αη

η!
e−α. (13)

Since the set of η ∈ H = [0,∞] of random events in Kolmogorov axiomatics contains σ-algebra,
the probability measure Pη(α = λt) (13) uniquely determines the cumulative function FH(η,α = λt) of
the distribution probabilities:

FH(η,α = λt) =
η∑

k=0

(λt)k

k!
e−λt =

η∑
k=0

αk

k!
e−α. (14)

Using a definition of number ex =
∞∑

k=0
xk/k! for Equation (14), it follows that FH(η,λ) ∈ [0 : 1].

It should be noted here that a probability space guarantees uniqueness of the determination of the
inverse probability distribution function. If any value h of the cumulative distribution function
FH(ηh,α = λt) = h is given, then a value of the stochastic variable ηh can be obtained as the
inverse transformation ηh = F−1

H (h). Therefore, by specifying the complete uniform random values
F−1

H (η,α = λt) ∈ [0 : 1], it allows uniquely obtaining the stochastic values η of this distribution.
This main mathematical model contains the bases for constructing the generators of random variables
from given functions of their distribution. Let us use this statement for developing the generator
of Poisson stochastic variables. For this it is necessary to get an absolutely complete and uniform
generator, which has no repetitions and skipping of random variables. Let us use here the twister
generator nsDeonYuliTwist32D [24–27], which is of such properties.

In discrete probability space, the number N of events is fixed. For each quantitative variable η,
with the probability p(η,α = λt), it corresponds the frequency ν(η,α = λt) of observation of the
random events:

ν(η,α = λt) = p(η,α = λt)·N = Pη(λt)·N. (15)

According to Kolmogorov axiomatics, the determination of probability p(η,α = λt) takes
precedence over the determination of frequency ν(η,α = λt). Therefore, in general for the values of
frequency ν(η,α = λt) in (15), it is possible to use mathematical rounding in the fractional part for the
multiplication p(η,α = λt)·N.

Below is the program code, in which the twister generator nsDeonYuliTwist32D [26] creates
complete set

[
0 : 2w − 1

]
of uniform integer random variables z, having the length of w bits. Function

PoissonD() creates an array pEta of Poisson probabilities (13) and an array of corresponding frequencies
nuEta (15). The last trailing single frequencies complement an array of frequency distributions nuEta
to the completeness 2w of basic uniform random variables. Therefore, the trailing probabilities pEta
are complemented relying on the trailing single frequencies in nuEta. Such a negligible deviation
in the rest of the distribution (13) allows for preserving the completeness of generation of Poisson
stochastic variables based on initial generation of uniform random variables z ∈

[
0 : 2w − 1

]
. The values

of the cumulative frequency function are located in an array of summarized frequencies snuEta.
Inverse function F−1

H (ηh,α = λt) is created by using function SearchEta() in accordance with a searching
algorithm for the index of element in an array of the cumulative frequencies cnuEta. Program names
P060202 and cP060202 are taken by chance.

Algorithms 2019, 12, 114 8 of 18

using nsDeonYuliTwist32D; //complete twister generator

//of integer uniform numbers

namespace P060202

{ class cP060202

{ static void Main(string[] args)

{ int w = 32; //bit width of uniform integer variable

long N = 1L << w; //random variable quantity

Console.WriteLine(“w = {0} N = {1}”, w, N);

double Alpha = 2.0;

Console.WriteLine(“Alpha = {0:F2}”, Alpha);

int wX = 200;

double[] pEta = new double[wX]; //Poisson probability

long[] nuEta = new long[wX]; //Poisson frequency

long[] cnuEta = new long[wX]; //cumulative frequency

int cEta = PoissonDY(Alpha, pEta, nuEta, cnuEta, N);

VerifyProbability(N, cEta, pEta, nuEta, cnuEta);

Console.WriteLine(“cEta = {0}”, cEta);

cDeonYuliTwist32D DYG = new cDeonYuliTwist32D();

DYG.SetW(w); //set bit width of uniform variable

DYG.Start(); //start uniform generator

long[] nuDYG = new long[wX];//frequencies of generator

for (int i = 0; i < wX; i++) nuDYG[i] = 0;

for (long j = 0; j < N; j++)

{ long z = DYG.Next(); //uniform variable

int Eta = SearchEta(z, cnuEta, cEta);

nuDYG[Eta]++; //uniform variable counter

}

double spEta = 0.0; //sum of Poisson probability

long snuEta = 0; //sum of Poisson frequency

long snuDYG = 0; //sum of variables by generator

Console.Write(“Eta pEta nuEta”);

Console.WriteLine(“ cnuEta nuDYG”);

for (int Eta = 0; Eta <= cEta; Eta++)

{ Console.WriteLine(

“{0,2} {1,12:F10} {2,10} {3,10} {4,10}”,

Eta, pEta[Eta], nuEta[Eta],

cnuEta[Eta], nuDYG[Eta]);

spEta += pEta[Eta];

snuEta += nuEta[Eta];

snuDYG += nuDYG[Eta];

}

Console.Write(“Sum spEta snuEta”);

Console.WriteLine(“ snuDYG”);

Console.Write(“ {0,12:F10} {1,10}”,

spEta, snuEta);

Console.WriteLine(“ {0,10}”, snuDYG);

Console.ReadKey(); //result viewing

}

//--

Algorithms 2019, 12, 114 9 of 18

static int PoissonDY (double alpha, double[] pEta,

long[] nuEta, long[] cnuEta, long N)

{ double emAlpha = Math.Exp(−alpha);

double spEta = 0.0; //sum of probability

long snuEta = 0L; //sum of frequency

pEta[0] = 1.0 * emAlpha; //Poisson probability p(0)

spEta += pEta[0]; //sum of probability

nuEta[0] = (long)Math.Round(pEta[0] * (double)N);

snuEta += nuEta[0]; //sum of frequency

cnuEta[0] = snuEta; //cumulative frequency cnu(0)

double r = alpha; //Tailor first summand

pEta[1] = r * emAlpha; //Poisson probability p(1)

spEta += pEta[1]; //sum of probability

nuEta[1] = (long)Math.Round(pEta[1] * (double)N);

snuEta += nuEta[1]; //sum of frequency

cnuEta[1] = snuEta; //cumulative frequency cnu(1)

int Eta = 2; //random variable

do

{ r *= alpha/(double)Eta; //regular summand of exp

double p = r * emAlpha; //probability p(Eta)

long nu = (long)Math.Round(p * (double)N);

long sd = snuEta + nu;

if (nu == 0L || sd > N) break; //the tail

pEta[Eta] = p; //probability p(Eta)

spEta += p; //sum of probability

nuEta[Eta] = nu; //frequency nu(Eta)

snuEta += nu; //sum of frequency

cnuEta[Eta] = snuEta; //cumulative frequency

Eta++; //next random variablecлeдyющaяEta
} while (snuEta < N);

Eta--;

long d = N − snuEta; //tailing frequencies

if (d == 0L) return Eta;

double d1N = (1.0 − spEta)/(double)d;

do

{ Eta++;

pEta[Eta] = d1N; //probability of a tail event

nuEta[Eta] = 1; //one-frequency event

snuEta++; //sum of frequency

cnuEta[Eta] = snuEta; //cumulative frequency

} while (snuEta < N);

return Eta;

}

//--

static void VerifyProbability (long N, int cEta,

double[] pEta, long[] nuEta, long[] cnuEta)

{ double dN = (double)N;

for (int i = 0; i <= cEta; i++)

pEta[i] = (double)nuEta[i]/dN;

}

Algorithms 2019, 12, 114 10 of 18

//--

static int SearchEta (long z, long[] cnuEta, int cEta)

{ int Eta = 0;

for (; Eta <= cEta; Eta++)

if (z < cnuEta[Eta]) break;

return Eta;

}

//~~

}

}

After launching the program P060202 the following listing appears on the monitor.

w = 32 N = 4294967296

Alpha = 2.00

cEta = 16

Eta pEta nuEta cnuEta nuDYG

0 0.1353352831 581260615 581260615 581260615

1 0.2706705665 1162521231 1743781846 1162521231

2 0.2706705665 1162521231 2906303077 1162521231

3 0.1804470443 775014154 3681317231 775014154

4 0.0902235222 387507077 4068824308 387507077

5 0.0360894089 155002831 4223827139 155002831

6 0.0120298029 51667610 4275494749 51667610

7 0.0034370865 14762174 4290256923 14762174

8 0.0008592717 3690544 4293947467 3690544

9 0.0001909493 820121 4294767588 820121

10 0.0000381898 164024 4294931612 164024

11 0.0000069437 29823 4294961435 29823

12 0.0000011572 4970 4294966405 4970

13 0.0000001781 765 4294967170 765

14 0.0000000254 109 4294967279 109

15 0.0000000035 15 4294967294 15

16 0.0000000005 2 4294967296 2

Sum spEta snuEta snuDYG

1.000000000 4294967296 4294967296

In this listing, the pEta column contains Poisson probabilities distribution (13). In the next column
nuEta, there is a corresponding frequency distribution. The sum of all frequencies snuEta = 4294967296
has to be coincided with generation of the basic uniform random variables having w = 32 bits in the
total quantity of N = 2w = 232 = 4294967296 . The counters nuDYG of the last column confirm the
complete coincidence of distribution of the generated random variables with the theoretical frequency
distribution nuEta.

At this step, the theoretical issues are solved. With the currently reached result, the technology of
the cumulative analysis provides an impeccable generation of the random variables with a frequency
distribution according to Poisson probabilities. Testing of P060202 with w ∈ [3 : 32] and α ∈ [0.1 : 10]
confirms an impeccability of received results.

3. Construction and Results

Below is class nsDeonYuliCPoissonTwist32D, in which the random variables are created in
accordance with Poisson distribution (13). This class is derived over the base one nsDeonYuliTwist32D

Algorithms 2019, 12, 114 11 of 18

of the twister generator of uniform random variables [24–27], which in DieHard Tests [28–32] shows
an absolute uniform distribution. An example of generation of Poisson stochastic variables is given
here later in program P060302.

using nsDeonYuliTwist32D; //complete twister generator

//of integer uniform numbers

namespace nsDeonYuliCPoissonTwist32D

{ class cDeonYuliCPoissonTwist32D : cDeonYuliTwist32D

{ public long N; //quantity of uniform events

public double dN; //quantity of uniform events

public double Alpha = 2.0; //Alpha parameter

double emAlpha; //exp(−Alpha)

public int cEta; //maximal Eta

public double[] pC; //probability distribution

public long[] nuC; //frequency distribution

public long[] cnuC; //cumulative frequencies

//--

public cDeonYuliCPoissonTwist32D () {}

//--

public void CStart(double alpha)

{ Alpha = alpha; //Alpha parameter

base.Start(); //uniform twister generator

CStartInside();

}

//--

public void CTimeStart(double alpha)

{ Alpha = alpha; //Alpha parameter

base.TimeStart(); //uniform twister generator

CStartInside();

}

//--

void CStartInside()

{ int wX = 200;

pC = new double[wX]; //probability distribution

nuC = new long[wX]; //frequency distribution

cnuC = new long[wX]; //cumulative frequencies

emAlpha = Math.Exp(−Alpha); //exp(−Alpha)

N = (long)N1 + 1L; //quantity of uniform events

dN = (double)N; //quantity of uniform events

cEta = CPoissonDY(); //probability and frequency

CVerifyProbability(); //probability verification

}

//--

public int CNext()

{ uint z =base.Next(); //uniform random variable

return CSearchEta(z); //Poisson random variable

}

//--

int CPoissonDY()

{ double spC = 0.0; //probability sum

long snuC = 0L; //frequency sum

Algorithms 2019, 12, 114 12 of 18

pC[0] = 1.0 * emAlpha; //Poisson probability p(0)

spC += pC[0]; //probability sum

nuC[0] = (long)Math.Round(pC[0] * dN);//frequency nu(0)

snuC += nuC[0]; //frequency sum

cnuC[0] = snuC; //cumulative frequency cnu(0)

double r = Alpha; //Tailor first summand

pC[1] = r * emAlpha; //Poisson probability p(1)

spC += pC[1]; //probability sum

nuC[1] = (long)Math.Round(pC[1] * dN);//frequency nu(1)

snuC += nuC[1]; //frequency sum

cnuC[1] = snuC; //cumulative frequency cnu(1)

int Eta = 2; //random variable

do

{ r *= Alpha/(double)Eta; //regular summand of exp

double p = r * emAlpha; //probability p(Eta)

long nu = (long)Math.Round(p * dN);

if (nu == 0L) break; //a tail zero frequencies

long sd = snuC + nu;

if (nu == 0L || sd > N) break; //the tail

pC[Eta] = p; //probability p(Eta)

spC += p; //probability sum

nuC[Eta] = nu; //frquency nu(Eta)

snuC += nu; //frequency sum

cnuC[Eta] = snuC; //cumulative frequency

Eta++; //the next random variable Eta

} while (snuC < N);

Eta--;

long d = N − snuC; //a tail frequencies

if (d == 0L) return Eta;

double d1N = (1.0 − spC)/(double)d;

do

{ Eta++;

pC[Eta] = d1N; //a tail event probability

nuC[Eta] = 1; //one-frequency event

snuC++; //frequency sum

cnuC[Eta] = snuC; //cumulative frequency

} while (snuC < N);

return Eta;

}

//--

void CVerifyProbability()

{ for (int i = 0; i <= cEta; i++)

pC[i] = (double)nuC[i]/dN;

}

//--

int CSearchEta(uint z)

{ int Eta = 0;

for (; Eta <= cEta; Eta++)

if (z < cnuC[Eta]) break;

return Eta;

Algorithms 2019, 12, 114 13 of 18

}

//~~

}

}

As an example, let us use the following program code showing the complete generation of Poisson
stochastic variables on a base space of uniform values having the bit length w = 7 (for arbitrary w ≤ 32
the listing of N = 2w=32 = 4294967296 random numbers is too long to present here). This allows
demonstrating in a visual form the work of the twister generator nsDeonYuliCPoissonTwist32D with
observance of Poisson distribution. Program names P060302 and cP060302 are assigned arbitrarily.

using nsDeonYuliCPoissonTwist32D; //Poisson twister generator

//by technology of cumulative frequencies

namespace P060302

{ class cP060302

{ static void Main(string[] args)

{ cDeonYuliCPoissonTwist32D PT =

new cDeonYuliCPoissonTwist32D();

int w = 7; //bit width of uniform random variable

PT.SetW(w); //set bit width of uniform variable

double Alpha = 2.0; //Alpha parameter

PT.CStart(Alpha); //start generator

// PT.CTimeStart(Alpha);//start generator using time value

Console.WriteLine(“w = {0} N = {1}”, PT.w, PT.N);

Console.WriteLine(“Alpha = {0:F2}”, Alpha);

Console.WriteLine(“cEta = {0}”, PT.cEta);

int wX = 200;

int[] nuG = new int[wX]; //frequencies of generator

for (int i = 0; i< wX; i++) nuG[i] = 0;

for (int i = 0, j = 1; i< PT.N; i++, j++)

{ int Eta = PT.CNext(); //Poisson variable

Console.Write(“{0,5}”, Eta);

if (j % 8 == 0) Console.WriteLine();

nuG[Eta]++; //counter of random variable

}

Console.WriteLine();

double spEta = 0.0; //Poisson probability sum

long snuEta = 0; //Poisson frequency sum

int snuG = 0; //frequency sum by generator

Console.Write(“Eta pC nuC”);

Console.WriteLine(“ cnuC nuDYG”);

for (int Eta = 0; Eta<= PT.cEta; Eta++)

{ Console.WriteLine(

“{0,2} {1,12:F10} {2,8} {3,8} {4,8}”,

Eta, PT.pC[Eta], PT.nuC[Eta],

PT.cnuC[Eta], nuG[Eta]);

spEta += PT.pC[Eta];

snuEta += PT.nuC[Eta];

snuG += nuG[Eta];

}

Console.Write(“Sum spC snuC”);

Algorithms 2019, 12, 114 14 of 18

Console.WriteLine(“ snuDYG”);

Console.WriteLine(

“ {0,12:F10} {1,8} {2,8}”,

spEta, snuEta, snuG);

Console.ReadKey(); //result viewing

}

}

}

After executing the program P060302 the following result appears on monitor.

w = 7 N = 128

Alpha = 2.00

cEta = 6

1 6 3 1 3 1 1 2

2 1 0 2 0 2 3 3

3 2 1 4 2 3 0 0

0 4 2 1 3 0 1 2

1 1 5 2 0 1 2 3

3 2 1 4 1 3 4 0

0 4 2 1 2 0 1 1

1 1 4 2 5 1 2 2

2 2 1 3 1 2 4 5

5 3 2 1 2 5 1 1

1 0 3 2 4 1 2 2

2 2 1 3 1 2 3 4

4 3 2 0 2 4 0 1

1 0 3 1 4 1 2 2

2 1 0 3 1 2 3 3

3 3 2 0 2 3 0 1

Eta pC nuC cnuC nuDYG

0 0.1328125000 17 17 17

1 0.2734375000 35 52 35

2 0.2734375000 35 87 35

3 0.1796875000 23 110 23

4 0.0937500000 12 122 12

5 0.0390625000 5 127 5

6 0.0078125000 1 128 1

sum spC snuC snuDYG

1.0000000000 128 128

This result shows a stochastic sequence of random variables generated by twister generator
nsDeonYuliCPoissonTwist32D. The direct calculation by this listing confirms that all the elements
including the random variables, their probabilities and frequencies do indeed satisfy Poisson
distribution. Similar results could be obtained for other quantities as well, for example with a
length of w ≤ 32 bits.

4. Discussion

As mentioned at the beginning of this article, Poisson distribution has basic properties of initial
probabilistic moments in terms of mathematical expectation and dispersion. The mathematical
expectation for this type of a distribution characterizes the average number of successful results at any

Algorithms 2019, 12, 114 15 of 18

interval. Usually, it is determined on a basis of the experimentally obtained data for a certain situation.
Next, if the mathematical expectation is determined, then the dispersion is known also because of
the distribution properties of Poisson probabilities. If it turns out that the values of the mathematical
expectation and the dispersion are sufficiently close, then the hypothesis of the distribution of certain
random variables in accordance with Poisson law is correct. However, if there is a meaningful difference
in the obtained values of these characteristics, this would testify against the hypothesis of Poisson
distribution of the given random variables.

Therefore, first of all, it is necessary to confirm two basic aforementioned properties of Poisson
distribution on equality of parameter α to mathematical expectation and dispersion. Below is the
program code that validates this. The generator in it creates the random variables in quantity
N = 2w = 232 = 4294967296. Program names P060402 and cP060402 are chosen by chance.

using nsDeonYuliCPoissonTwist32D; //Poisson twister generator

//by technology of cumulative frequencies

namespace P060402

{ class cP060402

{ static void Main(string[] args)

{ cDeonYuliCPoissonTwist32D PT =

new cDeonYuliCPoissonTwist32D();

PT.SetW(32); //bit width of random variable

double Alpha = 2.0; //Alpha parameter

PT.CStart(Alpha); //start generator

Console.WriteLine(“w = {0} N = {1}”, PT.w, PT.N);

Console.WriteLine(“Alpha = {0:F2}”, Alpha);

double p1 = 1.0/(double)PT.N; //event probability

double m = 0.0; //mathematical expectation

double D = 0.0; //dispersion

for (long i = 0; i< PT.N; i++)

{ int Eta = PT.CNext(); //random variable

m += Eta * p1; //mathematical expectation

D += Eta * Eta * p1; //dispersion

}

D = D − m * m;

Console.WriteLine(“m = {0:F10}”, m);

Console.WriteLine(“D = {0:F10}”, D);

Console.ReadKey(); //result viewing

}

}

}

After running the program P060402, the following listing appears on the monitor.

w = 32 N = 4294967296

Alpha = 2.00

m = 2.0000000014

D = 2.0000000116

This listing shows the obtained values of mathematical expectation m and dispersion D. Their
negligible difference from the value of parameter α = 2.0 is related to the discreteness of Poisson model
in probabilities and frequencies of the events.

Further, a general discussion should also supplement the estimates of possible generation of the
random variables with respect to Poisson distribution. To do this, let us refer to the capabilities of

Algorithms 2019, 12, 114 16 of 18

the basic twister generator nsDeonYuliTwist32D, which is used here for uniform random variables
creation. For a given length of w bits it realizes several complete twisting sequences. Initial
sequence contains N = 2w non-repeating numbers distributed uniformly and randomly in interval
[0 : 2w

− 1]. For utilization, the constants a and c of the twister generation of the random variable
xi = (axi−1 + c)mod 2w obtained from the value of the previous variable xi−1 are used. When the
generator completes the creation of one series consisting of N = 2w random variables, it automatically
proceeds to the creation of the next twisting series, in which N = 2w elements are obtained as well.
So, for each pair of twister constants a and c, the twisting uniform sequences in quantity NT could
be created:

NT = w·2w. (16)

Consequently, one complete twisting cycle (16) with unchanged a and c realizes the
following quantity Ns for uniform random variables that allows the creation of the same number of
Poisson stochastic variables:

Ns = N·NT = 2w
·w·2w = w·22w. (17)

To obtain a complete cycle of all Poisson stochastic series with quantity Ns = w·22w of the random
variables in each complete twister (17), it is necessary to take into account the varieties of coefficients a
and c in the twister transformation xi = (axi−1 + c)mod 2w . The values of these coefficients must not
exceed the interval limit a, c ∈ [0 : 2w

− 1] of all uniform variables in the single series. Quantity Na of
the coefficient a is defined as:

Na =
N
4

=
2w

22 = 2w−2. (18)

During the generation of uniform random variables, the values of the coefficients c have to be
odd, i.e., c mod 2 , 0. Their quantity Nc is defined as the following:

Nc =
N
2

=
2w

21
= 2w−1. (19)

Collecting Equations (16)–(19) together, the estimate for the total number Nsac of the random
variables is defined in the following manner:

Nsac = Ns·Na·Nc = w22w2w−2ww−1 = w·24w−3. (20)

Finally, the information concerning non-repeatable cycle NI has the following estimation:

NI = 2wNsac = 2w224w−3
. (21)

As an example, let us get the real values of these estimations for the bit length w = 32. In this case,
each series contains N = 232 = 4294967296 Poisson stochastic variables, and in each of these series
Poisson distribution is observed absolutely. In this case, the total number of generated Poisson
stochastic variables is Nsac(w = 32) = 32·24·32−3 = 25

·2125 = 2130 , and the value of the non-repeatable
cycle (21) is defined as NI(w = 32) = 2252130

= 22135
.

Therefore, the complete discrete simulation of the random variables with Poisson distribution using
the aforementioned basic twister generator confirms the important properties in terms of mathematical
expectation and dispersion. Moreover, an automatic extension of the series of initial uniform random
variables extends significantly the periods of non-repeatability (Equations (20) and (21)) for the series
of Poisson stochastic variables. This notably exceeds the features of the known generators, which bases
the probabilistic convergence algorithm.

5. Conclusions

An analysis of the source material shows that algorithms for generation of Poisson stochastic
variables according to the probabilistic convergence technology lead to different realizations of

Algorithms 2019, 12, 114 17 of 18

distributions. Moreover, the skipping of elements in such distributions may also occur, which is
inappropriate in the theory of Poisson stochastic processes. Since the quality of the generators depends
on the basic generations used for uniform random variables, it has been proposed here to use the twister
generator nsDeonYuliCPoissonTwist32D to ensure the completeness of technology of the cumulative
array of frequencies in Poisson space. This approach allows for reducing the time of operations
and improving the quality of generation. In the discrete probabilistic Poisson space, the test results
confirmed the complete coincidence of the distributions of the obtained stochastic variables with the
ones received in theoretical modeling. Moreover, an automatic tuning of the parameters of the basic
twister uniform generator nsDeonYuliTwist32D allows obtaining a significant increase in the overall
period of non-repeatable generation of Poisson stochastic variables.

Author Contributions: Paper writing, conceptualization and methodology, programming and analysis,
investigation and data curation, algorithm improvement were done by A.F.D. Paper writing, conceptualization,
validation, original draft preparation, reviewing and editing, project administration and supervision were done
by Y.A.M. All authors have read and approved the final manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors are thankful to Matthew Vandenberg, J. Alex Watts, Jacqueline Nolan and Walter
Harrington (University of Arkansas for Medical Sciences, Little Rock, AR, USA) for the proofreading.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Feller, W. An Introduction to Probability Theory and Its Applications, 3rd ed.; John Wiley & Sons: Hoboken, NJ,
USA, 2008.

2. Gnedenko, B. Theory of Probability, 6th ed.; CRC Press: Boca Raton, FL, USA, 1998; p. 520.
3. Zhang, H.; Li, B. Characterizations of discrete compound poisson distribution. Commun. Stat.-Theory Method.

2016, 45, 6789–6802. [CrossRef]
4. Guerriero, V. Power low distribution: method of multi-scale inferential statistics. J. Mod. Math. Front. 2012,

1, 21–28.
5. Arkani, M.; Khalafi, H.; Vosoughi, N. A flexible multichannel digital random pulse generator based on FPGA.

J. Nucl. Sci. Tech. 2013, 3, 109–116. [CrossRef]
6. Rasoanaivo, A.N.; Horowitz, W.A. Medium-induced radiation beyond the Poisson approximation.

J. Phys. Conf. 2017, 878. [CrossRef]
7. Veiga, A.; Spinelli, E. A pulse generator with Poisson-exponential distribution for emulation of radioactive

decay events. In Proceedings of the IEEE 7th Latin American Symposium on Circuits & Systems (LASCAS),
Florianopolis, Brazil, 28 February–2 March 2016; pp. 31–34. [CrossRef]

8. Kirkpatrick, J.M.; Young, B.M. Poisson statistical methods for the analysis of low-count gamma spectra.
IEEE Trans. Nucl. Sci. 2009, 56, 1278–1282. [CrossRef]

9. Marsaglia, G.; Tsang, W.W.; Wang, J. Fast generation of discrete random variables. J. Stat. Software 2004, 11,
1–11. [CrossRef]

10. Kumari, S.; Valarmathi, M.; Prince, S. Generation of pseudorandom binary sequence using shot noise for
optical encryption. In Proceedings of the International Conference on Communication and Signal Processing
(ICCSP), Melmaruvathur, India, 6–8 April 2016; pp. 0119–0122. [CrossRef]

11. Hosamo, M. A Study of the Source Traffic Generator Using Poisson Distribution for ABR Service.
Model. Simul. Eng. 2012, 2012, 1–6. [CrossRef]

12. Zhang, H.; Liu, Y.; Li, B. Notes on discrete compound poisson model with applications to risk theory.
Insur. Math. Econ. 2014, 59, 325–336. [CrossRef]

13. Shanmugam, R. Informatics about fear to report rapes using bumped-up poisson model. Am. J. Biostat. 2013,
3, 17–29. [CrossRef]

14. Menyaev, Y.A.; Nedosekin, D.A.; Sarimollaoglu, M.; Juratli, M.A.; Galanzha, E.I.; Tuchin, V.V.; Zharov, V.P.
Optical clearing in photoacoustic flow cytometry. Biomed. Optic. Express 2013, 4, 3030–3041. [CrossRef]
[PubMed]

http://dx.doi.org/10.1080/03610926.2014.901375
http://dx.doi.org/10.4236/wjnst.2013.34019
http://dx.doi.org/10.1088/1742-6596/878/1/012029
http://dx.doi.org/10.1109/LASCAS.2016
http://dx.doi.org/10.1109/TNS.2009.2020516
http://dx.doi.org/10.18637/jss.v011.i03
http://dx.doi.org/10.1109/ICCSP.2016
http://dx.doi.org/10.1155/2012/408395
http://dx.doi.org/10.1016/j.insmatheco.2014.09.012
http://dx.doi.org/10.3844/amjbsp.2013.17.29
http://dx.doi.org/10.1364/BOE.4.003030
http://www.ncbi.nlm.nih.gov/pubmed/24409398

Algorithms 2019, 12, 114 18 of 18

15. Menyaev, Y.A.; Carey, K.A.; Nedosekin, D.A.; Sarimollaoglu, M.; Galanzha, E.I.; Stumhofer, J.S.; Zharov, V.P.
Preclinical photoacoustic models: application for ultrasensitive single cell malaria diagnosis in large vein
and artery. Biomed. Optic. Express 2016, 7, 3643–3658. [CrossRef] [PubMed]

16. Juratli, M.A.; Menyaev, Y.A.; Sarimollaoglu, M.; Melerzanov, A.V.; Nedosekin, D.A.; Culp, W.C.; Suen, J.Y.;
Galanzha, E.I.; Zharov, V.P. Noninvasive label-free detection of circulating white and red blood clots in deep
vessels with a focused photoacoustic prob. Biomed. Opt. Express 2018, 9, 5667–5677. [CrossRef] [PubMed]

17. Sitek, A.; Celler, A.M. Limitations of Poisson statistics in describing radioactive decay. Phys. Med. 2015, 31,
1105–1107. [CrossRef] [PubMed]

18. Menyaev, Y.A.; Zharov, V.P. Experience in development of therapeutic photomatrix equipment. Biomed. Eng.
2006, 40, 57–63. [CrossRef]

19. Menyaev, Y.A.; Zharov, V.P. Experience in the use of therapeutic photomatrix equipment. Biomed. Eng. 2006,
40, 144–147. [CrossRef]

20. Knuth, D.E. Art of Computer Programming, Volume 2: Seminumerical Algorithms, 3rd ed.; Addison-Wesle:
Boston, MA, USA, 2014; p. 784.

21. Knuth, D.E. Art of Computer Programming, Volume 4A: Combinatorial Algorithms, Part 1, 1st ed.; Addison-Wesley:
Boston, MA, USA, 2011; p. 912.

22. Wikipedia. Poisson Distribution. Available online: https://en.wikipedia.org/wiki/Poisson_distribution
(accessed on 26 May 2019).

23. Kolmogorov, A.N.; Fomin, S.V. Elements of the Theory of Functions and Functional Analysis; Dover Publication:
Mineola, NY, USA, 1974; p. 128.

24. Deon, A.F.; Menyaev, Y.A. The Complete Set Simulation of Stochastic Sequences without Repeated and
Skipped Elements. J. Univers. Comput. Sci. 2016, 22, 1023–1047. [CrossRef]

25. Deon, A.F.; Menyaev, Y.A. Parametrical tuning of twisting generators. J. Comput. Sci. 2016, 12, 363–378.
[CrossRef]

26. Deon, A.F.; Menyaev, Y.A. Twister generator of arbitrary uniform sequences. J. Univers. Comput. Sci. 2017,
23, 353–384. [CrossRef]

27. Deon, A.F.; Menyaev, Y.A. Uniform twister plane generator. J. Comput. Sci. 2018, 14, 260–272. [CrossRef]
28. Wikipedia. Diehard Tests. Available online: https://en.wikipedia.org/wiki/Diehard_tests (accessed on

26 May 2019).
29. The Marsaglia Random Number CDROM Including the Diehard Battery of Tests of Randomness. Available

online: https://stat.fsu.edu/pub/diehard/ (accessed on 26 May 2019).
30. Runs Test for Detecting Non-randomness. Available online: https://www.itl.nist.gov/div898/handbook/eda/

section3/eda35d.htm (accessed on 26 May 2019).
31. Sample 33092: Wald-Wolfowitz (or Runs) Test for Randomness. Available online: https://support.sas.com/

kb/33/092.html (accessed on 26 May 2019).
32. Alhakim, A.; Hooper, W. A non-parametric test for several independent samples. J. Nonparametric Stat. 2008,

20, 253–261. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1364/BOE.7.003643
http://www.ncbi.nlm.nih.gov/pubmed/27699126
http://dx.doi.org/10.1364/BOE.9.005667
http://www.ncbi.nlm.nih.gov/pubmed/30460154
http://dx.doi.org/10.1016/j.ejmp.2015.08.015
http://www.ncbi.nlm.nih.gov/pubmed/26508015
http://dx.doi.org/10.1007/s10527-006-0042-6
http://dx.doi.org/10.1007/s10527-006-0064-0
https://en.wikipedia.org/wiki/Poisson_distribution
http://dx.doi.org/10.3217/jucs-022-08-1023
http://dx.doi.org/10.3844/jcssp.2016.363.378
http://dx.doi.org/10.3217/jucs-023-04-0353
http://dx.doi.org/10.3844/jcssp.2018.260.272
https://en.wikipedia.org/wiki/Diehard_tests
https://stat.fsu.edu/pub/diehard/
https://www.itl.nist.gov/div898/handbook/eda/section3/eda35d.htm
https://www.itl.nist.gov/div898/handbook/eda/section3/eda35d.htm
https://support.sas.com/kb/33/092.html
https://support.sas.com/kb/33/092.html
http://dx.doi.org/10.1080/10485250801976741
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Theory
	Construction and Results
	Discussion
	Conclusions
	References

