
algorithms

Article

Surrogate-Based Robust Design for a Non-Smooth
Radiation Source Detection Problem
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Abstract: In this paper, we develop and numerically illustrate a robust sensor network design to
optimally detect a radiation source in an urban environment. This problem exhibits several challenges:
penalty functionals are non-smooth due to the presence of buildings, radiation transport models
are often computationally expensive, sensor locations are not limited to a discrete number of points,
and source intensity and location responses, based on a fixed number of sensors, are not unique.
We consider a radiation source located in a prototypical 250 m × 180 m urban setting. To address the
non-smooth properties of the model and computationally expensive simulation codes, we employ a
verified surrogate model based on radial basis functions. Using this surrogate, we formulate and
solve a robust design problem that is optimal in an average sense for detecting source location and
intensity with minimized uncertainty.

Keywords: robust design in the average sense; Particle Swarm; radial basis functions; radiation
source detection

1. Introduction

The problem of determining the location and intensity of a radiation source arises in several
settings including emergency response to mitigate nuclear threats, structural and nuclear health
monitoring in nuclear reactors, and environmental cleanup of biomedical and industrial nuclear waste.
In this paper, we consider the development of a robust sensor network design for determining the
location and intensity of a radiation source in a simulated urban environment. Specifically, we consider
source localization in a simulated 250 m × 180 m block in downtown Washington, DC.

There are several difficulties that are intrinsic to this source localization problem. The first is
that inverse problems of this nature are inherently ill-posed and require some form of regularization
to obtain reasonable approximate solutions [1]. This difficulty is exacerbated by the fact that sensor
observations are often coarsely spaced, which dictates that one cannot estimate source attributes that
are more oscillatory than the grid spacing. As detailed in [2], this can yield erroneous results if ignored.

The computational complexity of deterministic [3] and stochastic, Monte Carlo [4] radiation
transport models poses a second challenge since it limits the number of model realizations that can
be obtained for optimization, or Bayesian or frequentist inference. This has led to the development
of alternative parameterizations or surrogate models. For example, in [5] the authors modeled
the radiation source as a point gamma source and employed a physics-based parameterization of
gamma particle transport. A fast radiation transport model is also available as a component of
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Synth, a gamma-ray simulation code written by Pacific Northwest National Laboratory [6,7]. In [8],
the authors employ a Gaussian mixture to model the radiation field.

In [9], we addressed challenges associated with optimization and Bayesian inference as a prelude
to the robust sensor design problem considered in this paper. Specifically, we implemented a fast
piecewise-continuously differentiable radiation transport model and solved the associated inverse
problem using combined global [10,11] and local [12] optimization algorithms, and Bayesian inference
techniques [13,14]. As in [9], we assume here that the threat is a point source and that the model
accounts only for photons that travel directly from source to detector, with no intervening collisions.
The radiation source is parameterized with three components: its 2-D location coordinates and intensity.

To improve computational efficiency and permit gradient-based optimization and the
implementation of a robust design algorithm [15], we implement and verify a continuously differentiable
surrogate model based on radial basis functions to approximate the response for all possible detector
locations. We employ this surrogate for subsequent optimization and robust design.

There are three different main strategies for taking measurements for general applications.
The first searches for a given number of stationary sensors, the second one relies on moving sensors,
whereas the third method, entitled scanning, activates only a subset of a given number of stationary
sensors at a given moment in time. The existing methods for identification of sensor locations
usually employ random fields analysis [16], information theory [17] and optimum experimental
design theory [15]. Moreover, sensor placement algorithms can be classified into discrete and
continuous depending on the nature of the search space. In the context of nuclear source identification,
Michaud [18] used the Gaussian process optimization [19] to solve a continuous detector placement
problem and Schmidt [20] applied Shannon entropy [21–23] to guide mobile sensors over a discrete
grid of possible measurement sites.

To form a basis for comparing different networks, a quantitative measure of efficiency is required.
In this study, we explore criteria applied in optimum experimental design [15] to solve a discrete
stationary detector placement problem. These criteria are defined in terms of the Fisher information
matrix associated with the unknown characteristics of the source. One of the main difficulties
associated with optimization of sensor locations is the dependence of the optimal solutions on
unknown true values of the source characteristics or prior approximations. To remove this dependency,
we employ a robust design strategy based on maximizing the expectation of the corresponding local
optimality criterion over the source characteristics domain. We then transform the resulting stochastic
optimization problem into a combinatorial optimization problem by generating a finite set of possible
detectors locations. We solve the combinatorial optimization problem and test the obtained optimal
network of sensors against randomly selected networks. The surrogate model implementation allows
solving the combinatorial optimization problem otherwise being computationally infeasible.

The remainder of the paper is organized as follows. In Section 2, we discuss the radiation transport
model and radial basis function surrogate along with associated statistical models. We also describe
the domain geometry. The inverse problem based on the surrogate models is formulated in Section 3.
In Section 4, we present the theoretical framework of the robust design in the average sense employed
in this paper. In Section 5, we present the numerical solution of the robust design problem and compare
the optimal network performance to randomly selected networks. We draw conclusions in Section 6.
We summarize in the Appendix A the Particle Swarm algorithm used to solve the inverse problem.

2. Radiation Transport Model and Surrogate Formulations

Gamma transport phenomena, as derived from Boltzmann transport theory, can be modeled by
the partial differential equation (PDE)

Ω̂ · ∇I(r, E, Ω̂) + Σt(r, E)I(r, E, Ω̂)

= S(r, E) +
∫ ∞

0
dE′

∫
4π

dΩ̂′Σs(r, E′ → E, Ω̂′ → Ω̂)I(r, E′, Ω̂′).
(1)
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Here I and S respectively denote the gamma intensity per unit area and external gamma source
in the medium characterized by the position vector r, energy E, and unit vector in the direction of
the gamma Ω̂. The parameters include the total macroscopic cross-section for gamma interactions Σt,
and the double-differential macroscopic scattering cross-section Σs, which depends on the change in
gamma energy from incident energy E′ to emergent energy E (i.e., E′ → E) and the change in gamma
direction from incident direction Ω′ to Ω (i.e., Ω′ → Ω). We refer readers to Shultis and Faw [3] for a
more detailed treatment of transport theory.

The problem of inferring the radiation source location and intensity from sensor measurements
requires the evaluation of the Boltzmann radiation transport model (1) at various points in the
admissible parameter space. Numerically solving the PDE (1) is computationally expensive even
on HPC systems. Solving an inverse problem constrained by Equation (1) or forward propagating
uncertainties using Monte Carlo simulations are not computationally feasible since require solving
Equation (1) for many times.

Instead, we employ a model that only considers gamma rays that travel directly from source
to detectors, without taking into account photons that incur collisions. This approach relies on the
assumption that photons undergoing interactions in the medium have a very small probability of
ever arriving at a detector. We also assume that the physical scale of our problem is sufficiently large
so that both the source and detectors can be localized to points inside the domain. We will denote
the location of the source as rs and associated intensity by S0. S0 can be treated as time-independent.
Most radionuclides of interest for source search have half-lives on the order of several years to
tens-of-thousands of years. Consequently, radioactive decay of the source is insignificant during the
measurement. Under these assumptions, Equation (1) can be simplified to

Ω̂ · ∇I(r, E, Ω) + Σt(r, E, Ω̂)I(r, E, Ω̂) =
S0

4π
δ(E− E0)δ(‖r− rs‖2), (2)

where Ω̂ is a unit vector pointing in the traveling direction of the gamma rays and E0 is the source
emission energy and delta denotes the Dirac delta function; see [3] for more details. Equation (2) can
be solved to determine the intensity of photons arriving at any point r inside domain. This enables
the computation of the count rate measured by the i-th detector Di assuming that detectors are point
detectors with face area Ai and dwell time ∆ti. The detector intrinsic efficiency εi ∈ [0, 1] is usually
known in practice.

If the ith detector is located at point ri
d, the solution

F̂i : X → R, F̂i(θθθ) = S0∆ti · εi ·
Ai

4π‖ri
d − rs‖2

2
· exp

(∫
ri

d−rs
ΣT ds

)
(3)

of Equation (2) predicts the number of counts observed by the sensor given the location and intensity
θθθ = (rs, S0) of the source. Here we denoted by X the space of all possible sources and R is the
one-dimensional real coordinate space. The derivation of model response (3) follows in a manner
similar to that shown in Shultis and Faw [3], (Chapter 10.1.3), where the resulting solution is evaluated
at the detector location ri

d.

2.1. Model Geometry

To provide an example of an urban area, we selected a 250 m × 180 m block in downtown
Washington, D.C., located at approximately 38◦54’48” N by 77◦1’60” W (Johnson Avenue NW) to
serve as our domain. Buildings in this area are primarily brick and concrete residential housing and
are generally 1–5 stories in height. Using data from the OpenStreetMaps database (https://www.
openstreetmap.org/), we constructed a 2-D representation of the area to serve as the test geometry.
Our implementation treats the buildings as a set of disjoint polygons Pj, j = 1, 2, ..., Ng, each of which

https://www.openstreetmap.org/
https://www.openstreetmap.org/
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is assigned a corresponding macroscopic cross-section Σt. A satellite photo of the area with an overlay
of the constructed representation is provided in Figure 1.

Approximate calculations indicate that wood and concrete buildings correspond to an optical
thickness of around 3 mean free paths (MFPs), where the mean free path denotes the mean distance
traveled by the photons between collisions with atoms of the building. Consequently, we randomly
selected cross-sections for each building so that their optical thickness is between 1 and 5 MFPs.
The random sampling was also weighted according to the volume of each building, so that smaller
buildings were biased towards smaller optical thicknesses and vice versa. The regions between
buildings were treated as dry air at standard temperature and pressure, with cross-sections taken from
the NIST XCOM database (http://www.nist.gov/pml/data/xcom/).

For this geometry, the admissible parameter space is

X = [0, 250]× [0, 180]× [5 · 108, 5 · 1010]. (4)

The first two dimensions define the spatial location representing the simulated 250 × 180 m urban
block. The third dimension restricts the source intensity to vary between 5 × 108 and 5 × 1010 Bq.

2.2. Numerical Model for Detector Response

To determine the intensity of photons arriving at a given detector location ri
d, the algorithm

employs a simple ray-tracing scheme. Starting at the location of the source rs, we draw a ray from
rs to ri

d. We then compute the intersection of this ray with the disjoint polygons Pj, j = 1, 2, ..., Ng,
representing the set of buildings in our domain. This yields a series of line segments expressing the
path traversed in each region. We assume that a given ray intersects N` polygons, N` < Ng, and let

L = {(`j, Σ(j)
T )}N`

j=1 be the set of all intersecting segments, where `j is the Euclidean length of the

j-th segment and Σ(j)
T is the corresponding value for the macroscopic total cross-section. With this

assumption, Equation (3) takes the form

F̂i(θθθ) = S0∆ti · εi ·
Ai

4π‖ri
d − rs‖2

2
exp

(
−

N`

∑
j=1

`j · Σ
(j)
T

)
. (5)

Figure 1. Satellite image of problem domain with model geometry overlaid (Imagery c©2016
Commonwealth of Virginia, DigitalGlobe, District of Columbia (DC GIS), Sanborn, U.S. Geological
Survey, Map data c©2016 Google). The figure marks indicate possible detector and source locations.

http://www.nist.gov/pml/data/xcom/
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Equation (5) provides an analytic expression estimating the expected detector response, and its
computation primarily requires the intersection of lines with the model geometry. Equation (5)
represents a significant simplification to the solution of (1), a nonlinear PDE with seven independent
variables whose solution in complex geometries can require many hours even on a supercomputer.
We implemented the numerical model (5) in a short Python code. It employs the Shapely library
(https://pypi.python.org/pypi/Shapely) for performing the computational geometry calculations.
The model takes as input a specification of polygons representing the different regions of the domain,
cross-section data, detector locations, source intensity, and source location.

2.3. Statistical Model

To construct statistical models associated with N detectors, we consider a background with
constant expected intensity B. We denote by θθθ0, the true source location and intensity of a radiation
source. It is well known that radioactive decay and detection are Poisson random processes.
By including Poisson random effects and assuming that N detectors are available, we obtain the
statistical model

Υi ∼ P
(

F̂i(θθθ0) + B
)

, (6)

associated with the ith detector response, i = 1, . . . , N. The Poisson distribution with mean

Fi : X → R, Fi(θθθ0) = F̂(θθθ0) + B (7)

is denoted by P. For large numbers (>30) of observed photons, the Poisson distribution is adequately
approximated by a normal distribution, yielding the approximate statistical model

Υi ∼ N
(

Fi(θθθ0), (σo
i )

2), (8)

where (σo
i )

2 = Fi(θθθ0); i.e., with variance equal to the mean. This is equivalent to

Υi = Fi(θθθ0) + εo
i , ε0

i ∼ N (0, (σo
i )

2). (9)

In this manner, we model the observations associated with each detector as random variables
Υi, i = 1, . . . , N.

2.4. Radial Basis Function Surrogate Model

Due to the presence of the buildings, the model response (7) is non-differentiable with respect to
both position and intensity. To apply sensitivity analysis to determine an optimal sensor configuration,
smoothness of the model responses must be assured. To address these issues and reduce computational
times, we used radial basis functions to provide continuously differentiable approximations of the
model responses (7).

Radial basis function methods provide interpolants to sampled values associated with irregularly
positioned points inside the input domain. A radial basis function approximation of the model
response Fi(θθθ) has the formulation

F̃i : X → R, F̃i(θθθ) =
L
∑
k=1

λkψ(ε‖θθθ − θθθk‖2), (10)

where θθθ denotes a source in the domain X , ψ : R → R is a radial basis function and ε is a shape
parameter. Possible choices of radial basis functions ψ include multiquadrics and their inverse
formulations, Gaussian functions, and thin plate splines. A more comprehensive list can be found
in [14,24]. We employ Gaussian radial basis functions. The coefficients λk are computed by requiring
that F̃i(θθθk) = Fi(θθθk), k = 1, . . . ,L, where θθθk are selected to cover the entire domain X and L is the
number of interpolation points. We employed the MATLAB radial basis function toolbox based on

https://pypi.python.org/pypi/Shapely
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Cholesky factorization and Tikhonov regularization. We also tried other methods to approximate the
model response based on Legendre and Lagrange polynomials and Gaussian process. Our results
(not shown here) revealed that the radial basis functions approximation had the best accuracy for
our application.

2.5. Surrogate Statistical Model

The analysis of interpolation error relies on smoothness properties of the map being approximated.
In our case, such properties are not directly available nor are error bounds. Instead, we assume that the
response surrogate models errors associated with the true source can be modeled as normal random
variables εm

i ∼ N (0, (σm
i )2), yielding the statistical model

Fi(θθθ0) = F̃i(θθθ0) + εm
i , i = 1, . . . , N, (11)

with σm
i being the standard deviation of the response surrogate models errors.

A statistical model incorporating both model errors εm
i and observation errors εo

i introduced
in (9), is

Υi = F̃i(θθθ0) + εo
i + εm

i , i = 1, . . . , N. (12)

Assuming the independence of model errors and observation errors, and exploiting the fact
that the sum of independent normal random variables is also a normal random variable, (12) can be
expressed as

Υi = F̃i(θθθ0) + ε̃i, Υi ∼ N (F̃i(θθθ0), σ2
i ) i = 1, . . . , N, (13)

where ε̃i ∼ N (0, σ2
i ), and σ2

i = (σo
i )

2 + (σm
i )2.

3. Detection of Nuclear Radiation Sources Using Surrogate Model

The problem of estimating the location and intensity of a radiation source when several detectors
with associated measurements are available represents a classic inverse problem. The source θθθ0 is
unknown and has to be inferred from realizations υi of the random variables Υi, i = 1, . . . N whose
statistical model is described in (13).

The Gaussian likelihood function π : X → [0, ∞) is given by

π(VVV|θθθθθθθθθ) = 1√
(2π)N ∏N

i=1 σi

exp
(
−

N

∑
i=1

1
σ2

i
[υi − F̃i(θθθ)]

2
)

, (14)

where VVV = [υ1, . . . , υN ] is the vector of all the available observations.
A standard technique to estimate the location and intensity of a radiation source, based on

measured data, is to apply maximum likelihood estimators. Due to the monotonicity of the logarithm
function, maximizing (14) is equivalent to minimizing the negative logarithm of the likelihood

min
θθθ∈X

J(θθθ), J(θθθ) =
1
2

N

∑
i=1

1
σ2

i
[υi − F̃i(θθθ)]

2. (15)

We omit the constant in front of the exponential term in Equation (14) since it does not affect the
solution. The objective of this investigation is to solve the optimization problem (15) with minimal
uncertainty. The solution to this problem (15) is a maximum likelihood estimator which is a random
variable. In this context, uncertainty represents the covariance of this estimator which is shown to be
the inverse of the Fisher information matrix (23). To achieve this, we apply the robust design strategy
described in next section.
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4. Robust Design in the Average Sense

Here we present a robust design strategy in the average sense. The solution of the robust
design problem is a network of sensors that minimizes the uncertainty in the solution of the inverse
problem (15).

4.1. Solution of the Inverse Problem

The solution of a nonlinear inverse problem is typically more difficult than in the linear case since
one regularly does not have analytic solutions. Under the assumption that the model (10) behaves
linearly with respect to variables θθθ, one can derive an analytic solution for the weighted least-square
estimate as described in [15,25]. For nonlinear model responses, it is customary to linearize the
system response

F̃i(θθθ) = F̃i(θθθ
0) +

∂F̃i
∂θθθ

(θθθ0)T(θθθ − θθθ0) +O(‖θθθ − θθθ0‖2
2), i = 1, . . . , N (16)

about a prior estimate θθθ0, where ‖ · ‖2 is the Euclidean norm.
By neglecting the higher order terms, the statistical model (13) can be rewritten as

Υ̃i =
∂F̃i
∂θθθ

(θθθ0)Tθθθ0 + ε̃i, i = 1, . . . , N. (17)

Here a realization υ̃i of Υ̃i can be expressed as υ̃i = υi − F̃i(θθθ
0) + ∂F̃i

∂θθθ (θθθ
0)Tθθθ0, where υi is sampled from

the distribution defined in (13). Consequently, the problem (15) can be reformulated as

θ̂θθ = arg min
θθθ
J (θθθ), J (θθθ) =

1
2

N

∑
i=1

1
σ2

i

[
υ̃i −

∂F̃i
∂θθθ

(θθθ0)Tθθθ

]2

. (18)

By differentiating J with respect to θθθ, we obtain

∇J(θ̂θθ) = −
N

∑
i=1

1
σ2

i

∂F̃i
∂θθθ

(θθθ0)

[
υ̃i −

∂F̃i
∂θθθ

(θ̂θθ
0
)Tθθθ

]
. (19)

By imposing ∇J(θ̂θθ) = 0, the estimate

θ̂θθ = MMM−1
N

∑
i=1

1
σ2

i

∂F̃i
∂θθθ

(θθθ0)υ̃i, (20)

is unique only if the Fisher information matrix

MMM =
N

∑
i=1

1
σ2

i

∂F̃i
∂θθθ

(θθθ0)

[
∂F̃i
∂θθθ

(θθθ0)

]T

(21)

is nonsingular.
A formula for the estimator θθθ of the problem (15) is obtained based on the linearization of the

surrogate model response (10) and by assuming that the high-order terms in the expansion (16) are
negligible. In the next subsection, we highlight the role of Fisher information matrix in defining the
D-optimality criterion widely used in the optimum experimental design problems as a quantitative
measure of the ‘goodness’ of different networks of sensors.

4.2. Optimal Sensor Locations

We focus on the statistical properties of the maximum likelihood estimator whose estimate was
derived in Equation (20). Based on these properties, optimal design theory provides solutions for the
optimal placement of sensors problem.
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We first note that the estimator

θ̃θθ = MMM−1
N

∑
i=1

1
σ2

i

∂F̃i
∂θθθ

(θθθ0)Υ̃i, (22)

is unbiased since

E[θ̃θθ] = MMM−1
N

∑
i=1

1
σ2

i

∂F̃i
∂θθθ

(θθθ0)E[Υ̃i] = MMM−1
N

∑
i=1

1
σ2

i

∂F̃i
∂θθθ

(θθθ0)E
[

∂F̃i
∂θθθ

(θθθ0)Tθθθ0 + ε̃i

]
,

= MMM−1
N

∑
i=1

1
σ2

i

∂F̃i
∂θθθ

(θθθ0)
∂F̃i
∂θθθ

(θθθ0)θθθ0 = θθθ0,

and θθθ0 is the true source location and intensity of the radiation source. Please note that we employed
the relation E[ε̃i] = 0, i = 1, . . . N, and Formula (21).

The covariance of the estimator is given by

cov[θ̃θθ] = E[(θ̃θθ − θθθ0)(θ̃θθ − θθθ0)
T ]

= E
[
(MMM−1

N

∑
i=1

1
σ2

i

∂F̃i
∂θθθ

(θθθ0)Υ̃i − θθθ0)(MMM−1
N

∑
j=1

1
σ2

i

∂F̃j

∂θθθ
(θθθ0)Υ̃j − θθθ0)

T
]

= MMM−1
N

∑
i=1

N

∑
j=1

1
σ2

i

∂F̃i
∂θθθ

(θθθ0)E
[

ε̃i ε̃ j

]
1
σ2

j

∂FFFj

∂θθθ
(θθθ0)TMMM−T

= MMM−1
N

∑
i=1

1
σ2

i

∂F̃i
∂θθθ

(θθθ0)E
[

ε̃2
i

]
1
σ2

i

∂F̃i
∂θθθ

(θθθ0)TMMM−T = MMM−1.

(23)

The result is based on the independence of the errors and symmetry of MMM.
The Fisher information matrix does not depend on the pseudo-measurements ῡυυi but instead

on the sensor locations DDDi, i = 1, . . . , N, and the prior estimate θθθ0. As such, one can adjusts the
sensor locations DDDi to minimize uncertainty in the estimator; i.e., minimize cov[θ̃θθ]. As detailed in [26],
an optimal configuration exists only for specific cases. This is the reason for the introduction of scalar
metrics depending on all possible Fisher information matrices [26]. The most popular metrics are the
D-optimality, E-optimality, A-optimality, and sensitivity criteria based on the determinant, smallest
eigenvalue, and trace of the Fisher information matrix and its inverse. D-optimality is invariant under
scale changes in the parameters and linear transformations of the output in contrast to A-optimality
and E-optimality criteria.

In this investigation, we employ the D-optimality criterion, where the optimal network ξξξ∗N =

{DDD∗i , i = 1, . . . , N} is searched as the solution of the optimization problem

max
ξξξN

Ψ
(

MMM(ξξξN , θθθ0)

)
, Ψ
(

MMM(ξξξN , θθθ0)

)
= det

(
MMM(ξξξN , θθθ0)

)
. (24)

Here ξξξN ranging in the space of all possible combinations of sensor locations.

4.3. Robust Design in the Average Sense

The optimal design ξξξ∗N obtained as the solution of (24) is dependent on the prior estimate θθθ0 of the
true parameters θθθ0 . When the prior estimate θθθ0 is not a reasonable approximation of θθθ0, the network ξξξ∗N
may be inaccurate since prior uncertainty on θθθ0 is not taken into account. For the admissible parameter
space X in (4), the set of all possible characteristics θθθ, is compact. By incorporating the probabilistic
description of the prior uncertainty, we obtain the optimal design in the average sense. The quantity of
interest to be maximized is the expectation of the corresponding local optimality criterion,
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Γ(ξξξN) = Eθθθ

[
Ψ[MMM(ξξξN , θθθ)]

]
=
∫
X

Ψ[MMM(ξξξN , θθθ)]p(θθθ)dθθθ, (25)

where p(θθθ) is the uniform distribution on X . We employ the criterion introduced in (24) leading to the
ED-optimal design problem

max
ξξξN

ΓED, ΓED(ξξξN) =
∫
X

det
(
MMM(ξξξN , θθθ)

)
p(θθθ)dθθθ. (26)

5. Numerical Examples

As detailed in Section 3, the problem under investigation consists of identifying the location
and intensity of a radiation source in a simulated downtown Washington, DC block with minimum
error with respect to the true source location and intensity. The solution to this problem can be
obtained by applying optimal sensor location strategies [15]. Instead of applying a local optimal design
method, whose solution depends on some a priori estimate of the true source, we propose a robust
design strategy to remove this dependency. Specifically, we propose a ‘compromise’ design where
the obtained network is good enough (in a least-error sense) to identify any possible source from the
admissible domain X .

As detailed in (4), we take the admissible parameter space to be X = [0, 250] m× [0, 180] m×
[5 · 108, 5 · 1010] Bq. Next we specify the set of all possible detector locations to be a discrete set of
30 spatial positions. By sampling from a uniform distribution, we generate the possible locations of
detectors in the domain denoted by diamond marks in Figure 2. In this way, we avoid the problem
of overlapping sensors encountered for a continuous formulation. The specific dispersal pattern was
selected to spread the detectors evenly throughout the area. We assume that detectors have facial areas
Ai, with 3-inch diameters and 3-inch lengths, for incident gamma energy of 662 KeV. This is standard
packaging for sodium iodide (NaI) scintillators that possess intrinsic efficiency of εi = 62% for 662 keV
gammas. The dwell time ∆ti for all detectors was chosen to be 1 s.
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Figure 2. Network formed by 10 sensors with 30 possible locations.

Finally, we set the size of the network to 10 detectors and formulate the robust design problem in
the average sense:

Find the network ξξξ∗10 = {DDDi, i = 1, . . . , 10} consisting of 10 detectors out of the 30 possible detectors
locations depicted in Figure 2 that solves

ξξξ∗10 = argmaxξξξ10
ΓED, ΓED(ξξξ10) =

∫
X

det
(
MMM(ξξξ10, θθθ)

)
p(θθθ)dθθθ. (27)
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By using a sufficiently large number of sources, the integral in (27) can be accurately approximated.
To evaluate the efficiency of the robust design network, we employ the metric√

∑M`=1 ‖
ˆ̃θθθ`ξξξ10
− θθθ`0‖2

2

M , (28)

where θθθ`0, ` = 1, · · ·M, areM distinct true radiation sources. For each true source θθθ`0, we can compute
the associated estimate ˆ̃θθθξξξ10

as the solution of the problem (15) using the network ξξξ10. The score (28)
corresponding to the robust design ξξξ∗10 will be tested against scores obtained by randomly selected
networks ξξξ10 of 10 detectors. The smallest score should be obtained by the robust design ξξξ∗10 thus
validating the approach.

The discrete nature of the space of all possible detectors locations transforms (27) into a
combinatorial optimization problem. The number of possible networks is 30,045,015 as given by
(30 choose 10) which is equivalent to combination of 30 possible sensor locations taken 10. By imposing
that each possible network ξξξ10 contains only one detector out of the three possible choices from each of
the ten rectangular areas shown in Figure 2, we decrease the number of possible networks to 59,049.
This makes the combinatorial problem computationally feasible.

In Figure 3, we plot the model response F8 (7) corresponding to the sensor location DDD8 in Figure 2
and a source intensity of 3.5 × 109 Bq. The source location is varied inside the domain and the
non-smooth nature of the model response is observed. The Fisher information matrix requires that
the model response be differentiable with respect to the source location and intensity. This motivates
replacing the model responses for all 30 possible locations with the differentiable radial basis function
surrogate model described in Section 2.4.
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Figure 3. Model response associated with sensor location number 8 with the source intensity fixed at
3.5× 109 Bq. Intensity is plotted with a logarithmic scale.

We employ radial basis interpolation (10) to generate 30 surrogate model responses for all the
possible detectors locations. The number of interpolation points is selected at 29,791 distributed inside
the domain X . Specifically, for each dimension, we selected 31 points evenly distributed inside the
interval. For each possible detector location and source θθθk, the response model Fi (7) was used to
calculate the corresponding interpolation points (θθθk, Fi(θθθk)), k = 1, . . .,29,791, i = 1, . . . , 30. We tested
several values of the shape parameter ε and the most accurate surrogate models were obtained for
εp = 8.06.

In Figure 4a, we compare the surrogate model predictions against the outputs of model response
F8 for DDD8 and 100 different sources uniformly randomly sampled from X . These sources were not
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included in the training set. The red curve corresponds to the model response outputs whereas the
blue curve denotes the surrogate model predictions. Figure 4b illustrates the relative errors of the
predicted intensities.
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Figure 4. (a) Predictions of the surrogate and model responses associated with sensor location number 8.
(b) Relative errors of the predicted intensity. The test set consists of 100 different sources not included
in the training set.

To compute accurate variances for each of the 30 surrogate model responses, we generated a
data set of 105 different sources uniform randomly spread inside domain X . The root mean square
errors (RMSE) are shown in Figure 5 for all 30 surrogate models. The largest error is observed for
the surrogate model response associated with DDD3. We note that whereas the source intensity ranges
between 5× 108 and 5× 1010 Bq, the largest RMSE is on the order of 4.2× 106 counts per second (cps).
The discrepancies between the outputs of the models F̃i and Fi are then used to compute variances
(σm

i )2, i = 1, . . . , 30.

0 10 20 30
Models index

0

1

2

3

4

5

R
M

S
E

 (
cp

s)

#106

Figure 5. Root mean square error of all 30 surrogate models. The test set consists of 105 different
sources not included in the training set.

Next we generated observations for all possible networks ξξξ`10, ` = 1, . . ., 59,049, using
statistical model (9) based on the model response discussed in Section 2.2. The observation errors
associated with each detector and source θθθ are normally distributed with mean 0 and variance
(σo

i )
2 = Fi(θθθ), i = 1, . . . , 30.
The robust design problem solution is given by the network ξξξ10 associated with the largest score

ΓED (27). To determine its maximum value, we calculate the associated Fisher information matrix
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for all possible networks ξξξ`10, ` = 1, . . ., 59,049 and a collection of possible sources θθθ`, ` = 1, . . . , 9880
spread throughout the domain X . This allows us to estimate the integral in (27). The dependencies
associated with the Fisher information matrix are the derivatives of the surrogate models with respect
to the source characteristics and variances (σi)

2 = (σo
i )

2 + (σm
i )2, i = 1, . . . , 30. The gradients ∂F̃i

∂θθθl
are

computed from (10) knowing that ψ is the Gaussian radial basis function and ‖ · ‖2 is the Euclidean
norm. These sources θθθ`, ` = 1, . . . , 9880, differ from those used for constructing the surrogate models
and are uniformly distributed over the entire domain. This spatial distribution was employed since
we selected p(θ) to be the uniform distribution over X in score ΓED (27).

The values ΓED(ξξξ
`
10) are computed for all possible networks and the results are shown in Figure 6a.

Allowing each network to include only one detector out of the three possible choices over each of the
ten rectangular areas—see Figure 2—likely explains the periodic behavior. The optimization problem
does not have a unique solution as seen from the expected values. Three different networks produce
the largest score. Figure 6b shows the detectors locations of one of these three networks corresponding
to the index 35,714.
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Figure 6. (a) Scores ΓED for all possible networks. The solution of the robust design problem is
not unique; (b) The optimal network obtained as the solution of the robust design in the average
sense strategy.

To test the obtained robust design network, we use the Formula (28) with the 11 randomly
selected networks of sensors plotted in Figure 7. Next we setM = 50, and uniform randomly select
50 true sources θθθ`0 from X . Observations were then generated using the statistical model (9) for each
source θθθ`0, ` = 1, . . . , 50 and network of sensors including the optimal one. We then solve the inverse
problem (15) using the Particle Swarm algorithm [10] detailed in the Appendix A.
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Figure 7. Random networks of sensors to be compared against the optimal network shown in
the Figure 6.

The Particle Swarm approach is a global, meta-heuristic optimization algorithm motivated by
social-psychological principles [27]. It was originally introduced in [10] and it was designed to imitate
a social behavior such as the movements of birds in a flock or fishes in a shoal. Later the algorithm
was simplified and its performance for solving optimization problems were reported in [28].

For our example, we set the inertia parameter to be 1.1 and the neighborhood of each particle is
set to 4. The self and social adjustment coefficients y1 and y2 are set to 1.49. We select the swarm size to
70, and for each given source θθθ`0, ` = 1, . . . , 50, and network out of the 11 randomly selected networks
plus the optimal one, we compute the inverse problem solution.

The errors of the inverse problem solutions (i.e., the estimated sources characteristics) are shown
in Figure 8 for all possible networks and sources. We note that the solution obtained using the optimal
network does not have the smallest error for all the sources. For example, for source number 28,
the source characteristics errors obtained using the optimal network are larger than all the estimates
errors associated with the random networks except Network 4. This is not unexpected, since the
optimal design was obtained following an average sense formulation.

Next, the errors of the inverse problem solutions are averaged over the entire set of sources and the
results of Formula (28) are illustrated in Figure 9 for all 12 considered networks. The index associated
with the optimal network is 12 and corresponds to the smallest RMSE. This result suggests that we
were able to identify the robust design in the average sense for the nuclear transport inverse problem.
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Figure 8. Root mean square errors for all the tested networks. The results are obtained for 50 sources
whose components were selected from uniform distributions.
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Figure 9. Root mean square errors averaged for all sources. The network corresponding to index 12 is
the optimal one and has the smallest errors.

6. Conclusions and Future Work

In this investigation, we constructed a network of sensors to reduce uncertainty in the solution of
a radiation detection inverse problem. We employed a robust design in the average sense method that
eliminated the dependence on the true solution or a priori estimates. We focused on the ED-optimal
design [15], whose solution maximizes the expected value of the determinant of the Fisher information
matrix over the entire domain.

Since we generated a discrete number of possible sensors locations, the stochastic optimization
problem is transformed into a combinatorial one. The number of possible networks decreased by
imposing certain combination restrictions for the possible detectors’ locations. We employed a radial
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basis function surrogate model to alleviate the non-smoothness attributes of the radiation transport
model due to the domain geometry.

By solving the combinatorial problem, we found that the solution of the optimization problem is
not unique. However, we did identify multiple sensor networks that were optimal in a least- error
sense. An optimal network associated with the largest ED-scores was compared against 11 randomly
selected networks using a data set of 50 different sources. The overall RMSE revealed that the optimal
network has more precision than any other network in the average sense.

In future work, we will reformulate the problem in a continuous framework; i.e., the number
of detectors is unlimited inside the city environment. This formulation enables the use of very
effective numerical algorithms. We will apply methods such as the stochastic Robbins—Monro
algorithm [29,30].
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Appendix A. Particle Swarm

The initialization stage of Particle Swarm is described in Algorithm A1. The algorithm starts
by selecting the population size of the swarm denoted by P. Initially, the state positions [θθθold]j and
velocities [vvvold]j, j = 1, 2, ..., P are randomly selected from uniform distributions; i.e., [θold

i ]j, [vold
i ]j ∼

U[li, ui], i = 1, 2, 3. Each state point has an associated neighborhood of size N = Ns influencing its
future trajectory. Other parameters of the algorithm must be selected too, such as the inertia parameters
W j ∈ R and stall counter cj for j = 1, 2, ..., P. These parameters influence the space search.

Algorithm A1 Particle Swarm—Initialization

1: Select swarm size P ∈ N and generate initial state points [θθθold]j and velocities [vvvold]j, j = 1, 2, ..., P
such that [θold

i ]j, [vold
i ]j ∈ [li, ui], i = 1, 2, 3.

2: Select the minimum neighborhood size minNs and the inertia parameters W j ∈ R, j =
1, 2, ..., P, W j ∈ [0.1, 1.1].

3: Set the stall counter cj = 0 for all state points j = 1, 2, ..., P.
4: Set the self and social adjustment real variables y1 and y2.
5: Set N = Ns.

The evolution of the space point jth from the current state to the next one is described in
Algorithm A2. The index notation is dropped. The proposal function depends on a two steps formula.
First, the velocity vnew is adjusted via Equation (A1) while in the second phase, the new state is
obtained by adding the newly generated velocity to its previous position (A2). The weights y1 and y2

denote the self and social adjustment coefficients steering the search towards either the state point p or
its neighbors g best position. We denote the Hadamard product by .∗.

A successful replacement of the best state point position b among the entire population ensures
a change in the inertia parameter W while a failure leads to a larger neighborhood selection and
maintains W constant. Finally, the new proposals are set to replace the current ones for the next
iteration. The algorithm stops when the relative change in the lowest objective function value J∗b over a
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range of predefined number of iterations is smaller than a specified tolerance, the maximum number
of iterations is reached, or a preset objective function percentage decrease has been achieved.

Algorithm A2 Particle Swarm—jth trajectory

1: Select N state points other than j to generate the associated neighborhood.
2: Set f lag = f alse. Define set S containing all the N state points. Find the lowest objective function

g = min
θθθold∈S

J(θθθold)andsetJn∗ = J(g).

3: Select random vectors u1 and u2 of size 3 from the uniform distribution U(0, 1). Update the
velocity:

vnew = W · vold + y1 · u1. ∗ (p− θθθold) + y2 · u2. ∗ (g− θθθold). (A1)

4: Update the position
θθθnew = θθθold + vnew. (A2)

5: Enforce the bounds. If any component of θθθnew is outside a bound, set it equal to that bound.
6: if J(θθθnew) < J∗ then p = θθθnew, J∗ = J(θθθnew)

7: end if.
8: if J(θθθnew) < J∗b then f lag = true, J∗b = J(θθθnew)andbbb = θθθnew, where J∗b corresponds to the smallest

objective function in the swarm.
9: else f lag = f alse

10: end if.
11: if flag = true then set c = max(0, c− 1) and N = Ns.
12: if c < 2 then W = 2 ·W
13: end if.
14: if c > 5 then W = W/2 and ensure that W is inside the bounds.
15: end if.
16: else set c = c + 1, N = min(N + Ns, P)
17: end if.
18: Set θθθold = θθθnew and vvvold = vvvnew and GO TO step 1.
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9. Ştefănescu, R.; Schmidt, K.; Hite, J.; Smith, R.; Mattingly, J. Hybrid optimization and Bayesian inference
techniques for a non-smooth radiation detection problem. Int. J. Numer. Methods Eng. 2017, 111, 955–982.
[CrossRef]

10. Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the IEEE International Conference
on Neural Networks, Perth, Australia, 27 November–1 December 1995; IEEE Service Center: Piscataway, NJ,
USA, 1995.

11. Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by Simulated Annealing. Science 1983, 220, 671–680.
[CrossRef] [PubMed]

12. Kelley, C.T. Implicit Filtering; SIAM: Philadelphia, PA, USA, 2011.
13. Haario, H.; Laine, M.; Mira, A.; Saksman, E. DRAM: Efficient adaptive MCMC. Stat. Comput. 2006,

16, 339–354. [CrossRef]
14. Vrugt, J.A.; Ter Braak, C.; Diks, C.; Robinson, B.A.; Hyman, J.M.; Higdon, D. Accelerating Markov Chain

Monte Carlo Simulation by Differential Evolution with Self-Adaptive Randomized Subspace Sampling.
Int. J. Nonlinear Sci. Numer. Simul. 2009, 10, 273–290. [CrossRef]

15. Ucinski, D. Optimal Measurement Methods for Distributed Parameter System Identification; CRC Press:
Boca Raton, FL, USA, 2004.

16. Sun, N.Z. Inverse Problems in Groundwater Modeling; Springer Science & Business Media: Berlin/Heidelberg,
Germany, 1999; Volume 6.

17. Krause, A.; Singh, A.; Guestrin, C. Near-optimal sensor placements in Gaussian processes: Theory, efficient
algorithms and empirical studies. J. Mach. Learn. Res. 2008, 9, 235–284.

18. Michaud, I. Simulation-Based Bayesian Experimental Design Using Mutual Information. Ph.D. Thesis,
North Carolina State University, Raleigh, NC, USA, 2019.

19. Weaver, B.P.; Williams, B.J.; Anderson-Cook, C.M.; Higdon, D.M. Computational enhancements to Bayesian
design of experiments using Gaussian processes. Bayesian Anal. 2016, 11, 191–213. [CrossRef]

20. Schmidt, K. Uncertainty Quantification for Mixed-Effects Models with Applications in Nuclear Engineering.
Ph.D. Thesis, North Carolina State University, Raleigh, NC, USA, 2016.

21. Kraskov, A.; Stogbauer, H.; Grassberger, P. Estimating mutual information. Phys. Rev. E 2004, 69, 066138.
[CrossRef] [PubMed]

22. Lewis, A.; Smith, R.; Williams, B.; Figueroa, V. An information theoretic approach to use high-fidelity codes
to calibrate low-fidelity codes. J. Comput. Phys. 2016, 324, 24–43. [CrossRef]

23. Terejanu, G.; Upadhyay, R.R.; Miki, K. Bayesian experimental design for the active nitridation of graphite by
atomic nitrogen. Exp. Therm. Fluid Sci. 2012, 36, 178–193. [CrossRef]

24. Buhmann, M.D. Radial Basis Functions: Theory and Implementations; Cambridge University Press: Cambridge,
UK, 2003; Volume 12.

25. Fedorov, V.V.; Leonov, S.L. Optimal Design for Nonlinear Response Models; CRC Press: Boca Raton, FL,
USA, 2013.

26. Spall, J.C. Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control; John Wiley &
Sons: Hoboken, NJ, USA, 2005; Volume 65.

27. Kennedy, J. Particle swarm optimization. In Encyclopedia of Machine Learning; Springer: Boston, MA, USA,
2010; pp. 760–766.

28. Eberhart, R.C.; Kennedy, J. A New Optimizer Using Particle Swarm Theory. In Proceedings of the Sixth
International Symposium on Micro Machine and Human Science, Nagoya, Japan, 4–6 October 1995; Volume 1,
pp. 39–43.

29. Marti, K. Stochastic Optimization Methods; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3.
30. Nemirovski, A.; Juditsky, A.; Lan, G.; Shapiro, A. Robust stochastic approximation approach to stochastic

programming. SIAM J. Optim. 2009, 19, 1574–1609. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1002/nme.5491
http://dx.doi.org/10.1126/science.220.4598.671
http://www.ncbi.nlm.nih.gov/pubmed/17813860
http://dx.doi.org/10.1007/s11222-006-9438-0
http://dx.doi.org/10.1515/IJNSNS.2009.10.3.273
http://dx.doi.org/10.1214/15-BA945
http://dx.doi.org/10.1103/PhysRevE.69.066138
http://www.ncbi.nlm.nih.gov/pubmed/15244698
http://dx.doi.org/10.1016/j.jcp.2016.08.001
http://dx.doi.org/10.1016/j.expthermflusci.2011.09.012
http://dx.doi.org/10.1137/070704277
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Radiation Transport Model and Surrogate Formulations
	Model Geometry
	Numerical Model for Detector Response
	Statistical Model
	Radial Basis Function Surrogate Model
	Surrogate Statistical Model

	Detection of Nuclear Radiation Sources Using Surrogate Model
	Robust Design in the Average Sense
	Solution of the Inverse Problem
	Optimal Sensor Locations
	Robust Design in the Average Sense

	Numerical Examples
	Conclusions and Future Work
	Particle Swarm
	References

