
algorithms

Article

Free Surface Flow Simulation by a Viscous Numerical
Cylindrical Tank

Xingyue Ren 1, Fangjie Xiong 1, Ke Qu 2,* and Norimi Mizutani 3

1 College of Civil Engineering and Architecture, Hainan University, Haikou 570228, China;
renxny@126.com (X.R.); xiongfjie@126.com (F.X.)

2 School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410114, China
3 Department of Civil Engineering, Nagoya University, Nagoya 464-8602, Japan;

mizutani@civil.nagoya-u.ac.jp
* Correspondence: kqu@ccny.cuny.edu; Tel.: +86-0898-6627-9232

Received: 24 March 2019; Accepted: 6 May 2019; Published: 9 May 2019
����������
�������

Abstract: In order to numerically investigate the free surface flow evolution in a cylindrical tank,
a regular structured grid system in the cylindrical coordinates is usually applied to solve control
equations based on the incompressible two-phase flow model. Since the grid spacing in the azimuthal
direction is proportionate to the radial distance in a regular structured grid system, very small grid
spacing would be obtained in the azimuthal direction and it would require a very small computational
time step to satisfy the stability restriction. Moreover, serious mass disequilibrium problems may
happen through the convection of the free surface with the Volume of Fluid (VOF) method. Therefore
in the present paper, the zonal embedded grid technique was implemented to overcome those
problems by gradually adjusting the mesh resolution in different grid blocks. Over the embedded
grid system, a finite volume algorithm was developed to solve the Navier–Stokes equations in the
three-dimensional cylindrical coordinates. A high-resolution scheme was applied to resolve the
free surface between the air and water phases based on the VOF method. Computation of liquid
convection under a given velocity field shows that the VOF method implemented with a zonal
embedded grid is more advanced in keeping mass continuity than that with regular structured
grid system. Furthermore, the proposed model was also applied to simulate the sharp transient
evolution of circular dam breaking flow. The simulation results were validated against the commercial
software Fluent, which shows a good agreement, and the proposed model does not yield any free
surface oscillation.

Keywords: two-phase flow; cylindrical tank; cylindrical coordinates; zonal embedded grid; VOF
method; Navier–Stokes equations

1. Introduction

The phenomenon of interfacial fluid motions in a cylindrical enclosure, driven by density difference
and/or external force, often occurs in technical applications and industrial processes, which will cause a
great impact on the working characteristic of the device. That problem arises in applications like liquid
sloshing caused by the motion of the cylindrical container. A number of studies have been addressed on
those problems. For example, the sloshing behavior in the cylindrical liquid tank has been numerically
studied by Hernández-Barrios et al. in [1] and based on the potential theory. In order to simulate
the fully nonlinear free surface motions accurately, some recent examples of the computational fluid
dynamics (CFD) sloshing simulations have been carried out based on the incompressible two-phase
flow model by solving the Navier–Stokes equations and applying appropriate free surface tracking
methods, including the studies in [2–5].
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To simulate the flow movement in a cylindrical geometry, the use of the cylindrical coordinate
system, if possible, is the most relevant and desirable in the formulation and discretization of the
Navier–Stokes equations. For instance, in [6], Fernandez-Feria and Sanmiguel-Rojas developed an
incompressible flow simulation model in cylindrical coordinates by an explicit projection method,
and He et al. [7] studied the natural convection heat transfer and fluid flow in a vertical cylindrical
envelope by a numerical model built in a cylindrical coordinate. However, the resolution of the
Navier–Stokes equations in cylindrical coordinates involves some specific difficulties, especially
when the computational domain contains the axis r = 0. When the cylindrical center is within the
computational domain, terms like 1/r or ∂φ/∂r become undefined, which causes a singularity at
the cylindrical center. To overcome this problem, many attempts have been made. Ma et al., with a
Cartesian mesh in the axis of the cylindrical coordinates, built a numerical model to simulate pipe flow
in [8]. In [9], Verzicco and Orlandi avoided this problem by rewriting the Navier–Stokes equations
with special variables, which are always zero on the axial, and de Vahl Davis suggested a discretization
without nodes on the axis in [10]. Moreover, another problem arises since the mesh size varies with the
radial coordinate when the regular orthogonal grid system is applied. Therefore, investigating the
flow phenomena within a large-diameter container, the control cells that are far from the origin are
much coarser than those that are near the origin, so an extremely small time step should be applied to
satisfy the numerical stability. In order to obtain a grid independent solution in cylindrical coordinates,
the zonal embedded grid technique, as shown in Figure 1, was implemented in the present paper by
locally refining the grid size by blocks, which was originally proposed by Kravchenko et al. in [11] for
the accurate computation of a boundary layer above a flat plate, and then developed to a grid system
in the two-dimensional polar coordinates in [12] by Suh and Yeo.
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Figure 1. Grid system for cylindrical computational domain for the regular orthogonal grid system
and zonal embedded grid system.

Flow simulation performed in the cylindrical coordinates is not new. However, the two-phase
incompressible flow model implemented in the cylindrical coordinate system has attracted less
attention, and implementing free surface tracking method in the cylindrical coordinates, like the
volume of fluid (VOF) method presented in [13], is novel since the surface construction in the VOF
method was extremely cumbersome in cylindrical coordinates due to its geometric properties. The VOF
method in cylindrical coordinates has been adopted in [14] to analyze the bubble rising problems
inside a cylindrical container. In their work, to avoid the complex surface reconstruction process of
the VOF method, the interpolated volume fraction at the faces of control volumes was calculated by
the first order upwind or downwind scheme according to the free surface orientation. Following this
idea, a more accuracy VOF method was proposed in [15] by Ubbink and Issa using the high-resolution
based CICSAM scheme (Compressive Interface Capturing Scheme for Arbitrary Mesh) to compute the
volume fraction, which could be applied in the cylindrical coordinates.
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In the regular mesh system used by Chen et al. in [14], an extremely small time step must be
needed to keep the numerical stability, when a bigger computational domain was needed. Thus,
the computational results based on that kind of mesh system may lose or acquire volumes when
the VOF method is applied, for the unphysical volume that can be ignored in the large control cells
may be large enough for that in the smaller control cells. Therefore in this paper, the embedded grid
system was adopted to the two-phase flow model in the cylindrical coordinates to acquire a solution
independent mesh.

In this paper, the two-phase free surface model was implemented in the cylindrical coordinates
within the complex embedded grid system. A finite volume method was used to discretize the
Navier–Stokes equations and volume advection equations for the volume fraction over that grid
system. To adopt the embedded grid system for the two-phase flow model, special treatment was
needed in solving the discretized equations for the Navier–Stokes and fraction advection equations.
To validate the advantages of the present model, the VOF method with the embedded grid system was
first verified to produce a better mass conservation than that with the regular grid system. Moreover,
the sharp transient evolution of 3D circular dam break flow within a cylindrical tank was also presented
in this paper, and the simulation results have been validated against the commercial software Fluent.

2. Mathematical Formulation

In this study, the water and air flow movements were considered based on the two-phase
incompressible fluid model in a cylindrical computational domain based on the one-fluid assumption.
With that assumption, the discontinuous properties through the free surface, such as density and
viscosity, are smoothed over a transition region of the finite thickness near the free surface, so the fluid
motion of two fluids could be described as the flowing equations:
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In the above equations, U = (u, v, w) is the velocity vector; SU is the source term; P is the pressure;
ρ and υ are the density and kinematic viscosity; Fb = ( fbr, fbθ, fbz) is the vector of the body force due to
the surface tension; t is time; and g denotes the gravity acceleration.

The free surface was contracted by the VOF method through marking both fluids with a scalar
indictor F defined as the fraction of a control volume occupied by the liquid (0� F� 1). Using the
definition of the volume fraction, this work represents the density and viscosity in the momentum
equations as

ρ = Fρw + (1− F)ρa (3a)

ν = Fνw + (1− F)νa (3b)

where the subscripts w and a denote the water and air fluid. The free surface transport equation in
terms of the volume fraction could be written as
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With the surface normal represented by the gradient of the volume fraction, the unit normal vector
for the free surface was given by

n =
∇F
|∇F|

(5)

According to the Continuum Surface Force method proposed by Brackbill et al. [16], the smoothed
body force used in the momentum equations was given by

Fb = σκn∇F, (6)

where σ and κ are the coefficient of surface tension and the curvature of the interface respectively.

3. Numerical Method

3.1. Zonal Embedded Grid

To construct a zonal embedded grid system shown in Figure 1, the method developed by Suh and
Yeo in [12] was adopted in the current study. With this method, the entire computational domain was
divided into several blocks, and the regular orthogonal grids were generated in each of the blocks,
respectively, by refining the grid spacing in the azimuthal direction block by block through the entire
computational domain.

3.2. Discretization of the Continuity and Momentum Equations

To solve the control equations, the staggered grid arrangement was applied to store velocities at
the cell faces and the scalar variables (pressure, density, viscosity, etc.) at the cell center (Figure 2),
and the velocity and pressure field was coupled with the projection method, where an intermediate
velocity field U∗ was computed and projected into a divergence-free field with Equations (7a) and
(7b), as
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where n and n + 1 donate the previous and new time layers. The intermediate velocity could be
computed by discretizing the convection, diffusion and source terms in Equation (3a) over the control
volumes by using the finite volume method. For the orthogonal grids, by integrating the convection
term over the control volumes, it yielded∫
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in which n f is the unit surface vector of cell faces and U f is the velocity at the cell faces of the
control volume, which could be determined by a high-resolution scheme as the Sharp and Monotonic
Algorithm for Realistic Transport (SMART) scheme by Gaskell and Lau in [17].

Integrating the diffusion term in Equation (7a) over the control volume, it was given as∫
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where the gradient of the velocity at the faces of control volume was computed by the central difference
scheme. The source term in Equation (7a) was assumed to be piecewise uniform over each volume,
discretized as ∫

SUdV =SU∆V (10)



Algorithms 2019, 12, 98 5 of 11
Algorithms 2019, 12, x FOR PEER REVIEW 5 of 11 

 
 

(a) (b) 

Figure 2. Staggered grid arrangement in control cells: (a) grid arrangement at normal control cell and 
(b) grid arrangement at the control cells at the interface of the coarse and fine blocks. (The subscripts 
of 𝑃 and 𝑢 represent the indexes of the control cells). 

Integrating the diffusion term in Equation (7a) over the control volume, it was given as 

1 1( ( ) ( ) ( ))d df f
U U Ur V U n A

r r r r r z z
υυ υ υ

θ θ
∂ ∂ ∂ ∂ ∂ ∂+ + = ∇ ⋅
∂ ∂ ∂ ∂ ∂ ∂  , (9) 

where the gradient of the velocity at the faces of control volume was computed by the central 
difference scheme. The source term in Equation (7a) was assumed to be piecewise uniform over each 
volume, discretized as 

dU US V S V= Δ  (10) 

By invoking the Green’s theorem, Equation (7b) could be written as 

* 'd df fn
tU n A P n A

ρ
Δ⋅ = ∇ ⋅   (11) 

where ∇𝑃  or ∇𝑃 at the normal faces is evaluated with a central difference scheme, and special 
concerns should be paid in the treatment of ∇𝑃  or ∇𝑃 at the interface between two blocks. Losasso 
et al. simulated a two-phase flow motion over an adaptive octree grids system in the 
three-dimensional Cartesian Coordinates by treating the gradient at the interface to be interpolated 
over cells that shared the same faces in [18], and the interpolation scheme used in that study was 
introduced to the present algorithm. Therefore, the pressure gradient at the west faces of the control 
cells 𝐸𝑁 and 𝐸𝑆 shown in Figure 2b should be kept the same, which could be formulated as 

( ) 2
2

ES ES P

ES EN

P P PP P
r r r

+ −∂ ∂= =
∂ ∂ Δ

 (12) 

This interpolation yields a symmetric coefficient matrix for the pressure, which enables the use 
of the iterative solver, such as the preconditioned conjugate gradient (PCG) method. In this paper, 
the pressure Poisson equation was solved by using an algebraic multi-grid method (AMG). 

3.3. VOF Method 

As the volume fraction used in the VOF method is a step function, the problem arises of how to 
advect without numerical diffusing, dispersing or wrinkling accompanying with its convection 
across a mesh. To avoid those problems, various VOF methods that can be categorized as 
Lagrangian and algebraic methods have been proposed. With the Lagrangian methods, the free 
surface should be firstly rebuilt at each computational time step based on the volume fraction with 
the interface reconstruction methods, like the SLIC method (Simple Line Interface Calculation, 
presented by Noh and Woodward in [19]) and the PLIC method. Then, the reconstructed surface 
was advected explicitly. With the algebraic methods, such as the Thinc method reported in [20], the 

Figure 2. Staggered grid arrangement in control cells: (a) grid arrangement at normal control cell and
(b) grid arrangement at the control cells at the interface of the coarse and fine blocks. (The subscripts of
P and u represent the indexes of the control cells).

By invoking the Green’s theorem, Equation (7b) could be written as∫
U∗n f dA =

∆t
ρn

∫
∇P′n f dA (11)

where ∇P′ or ∇P at the normal faces is evaluated with a central difference scheme, and special concerns
should be paid in the treatment of ∇P′ or ∇P at the interface between two blocks. Losasso et al.
simulated a two-phase flow motion over an adaptive octree grids system in the three-dimensional
Cartesian Coordinates by treating the gradient at the interface to be interpolated over cells that shared
the same faces in [18], and the interpolation scheme used in that study was introduced to the present
algorithm. Therefore, the pressure gradient at the west faces of the control cells EN and ES shown in
Figure 2b should be kept the same, which could be formulated as

∂P
∂r ES

=
∂P
∂r EN

=
(PES + PES) − 2PP

2∆r
(12)

This interpolation yields a symmetric coefficient matrix for the pressure, which enables the use
of the iterative solver, such as the preconditioned conjugate gradient (PCG) method. In this paper,
the pressure Poisson equation was solved by using an algebraic multi-grid method (AMG).

3.3. VOF Method

As the volume fraction used in the VOF method is a step function, the problem arises of how to
advect without numerical diffusing, dispersing or wrinkling accompanying with its convection across
a mesh. To avoid those problems, various VOF methods that can be categorized as Lagrangian and
algebraic methods have been proposed. With the Lagrangian methods, the free surface should be firstly
rebuilt at each computational time step based on the volume fraction with the interface reconstruction
methods, like the SLIC method (Simple Line Interface Calculation, presented by Noh and Woodward
in [19]) and the PLIC method. Then, the reconstructed surface was advected explicitly. With the
algebraic methods, such as the Thinc method reported in [20], the Flux-Corrected Transport method
presented in [21] and the CICSAM method, the high order convection schemes and mathmatical limitor
was used to constrain the flux across the cell faces. To avoid that complexity, algebraic methods are
more suitable methods to track the free surface in the cylindrical coordinates.

In order to solve the VOF convection equation, the CICSAM method based on the donor and
acceptor method in the original VOF method by Hirt and Nichols in [13], and the high-resolution
scheme was applied in this work. In the CICSAM method, volume fraction was first approximated
with the implicit Crank–Nicholson method, and then an iterative correction procedure was applied
to correct the unphysical values. To simplify the computation, Heyns et al. implemented a Jacobi
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type dual-time stepping formulation approach in [22] by reformulating the original VOF convection
equation as
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by approaching the implicit solution with an explicit method as it converges in the pseudo time τ.
With the finite volume method, the discretized form of Equation (13) could be written as:
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Fτ − Fn

∆t
= −

1
2

1
∆V

∫
(Fτf + Fn

f )U
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where Fτf and Fn
f are volume fractions defined at the faces of the control cell, which can be calculated

by the CICSAM scheme, and ∆τ is the pseudo time step set to be 2∆t/3.
To avoid numerical oscillations at the interfaces between two blocks, the flux-constraint technique

used in the velocity computation was adopted to keep the flux of the volume fraction the same in
this study.

3.4. Treatment at Origin

In the present model, no velocity was defined at the origin, so the mathematical singularity could be
avoided by adopting the staggered grid arrangement on the discretization of the governing equations.

3.5. Solution Procedure

At each time step, the intermediate velocity was computed from Equation (7a) using the variables
at the previous step, and the correction pressure was then solved using the pressure Poisson equation
(Equation (7b)). Then, the velocity and pressure were iteratively updated using the correction pressure
computed by Equation (7b) until the conservation law was fulfilled. After the velocity was calculated,
VOF method was used with Equation (13) to advect the water and air interface.

4. Results and Discussions

The numerical algorithms proposed in this study were implemented to the simulate the free
surface motions in a three-dimensional circular tank. In order to demonstrate the advantage of
the embedded grid technique in the cylindrical coordinates, movements of a volume of fluid were
simulated under a given velocity, and comparison of the volume loss with that using the regular
grids was also presented. Moreover, the present two-phase flow model was applied to compute sharp
transient evolution of the circular dam break flow, which was validated against the simulation results
predicted by Fluent.

4.1. Validation of the VOF Method with the Zonal-Embedded Method

To outline the effect of the embedded grid system on the VOF method, the simulation of an
axisymmetric O ring (the inside diameter of it is 0.4 m and the width is 0.6 m) moving with a velocity
field U = (0.01/r, 0, 0) was carried out. The whole computational domain was divided into four blocks,
and the mesh sizes in these blocks are 4× 25× 100, 4× 50× 100, 8× 100× 100. and 16× 200× 100 in the
r, θ and z coordinates. That case was also computed as a comparison using the regular orthogonal grid
with mesh sizes of 32× 200× 100.

Figure 3 shows the three-dimensional snapshots of the O ring with the embedded grid system.
Results from the VOF method with the zonal embedded grid system are superior to the results of that
with the regular grid due to the mass disequilibrium. A better continuity property can be obtained
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with the zonal embedded grid system as shown in Figure 4. In this figure, the ratio of the mass loss is
defined by

ζ =
VIn −Vt

VIn
(15)

where Vt and Vin are the instantaneous and initial volume of the O ring.
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4.2. Breaking of the Circular Dam

The numerical method was also validated in the performance of the VOF method against a circular
dam-break problem. This problem is essentially two-dimensional in the radial and vertical directions.
Hence, this provides a possibility to check the ability of the method to preserve symmetry in the
numerical solution since the special treatments for the zonal embedded grid system are applied along
the radial direction.

Circular dam-break problems are normally used to test the capability of models for the symmetric
free surface simulations. It was studied by Zoppou and Roberts in [23] with a shallow water equation
solver and Lin et al. in [24] also applied it to validate their component-wise TVD scheme for the
shallow water equations. In this paper, a cylindrical column of water of diameter 0.6 m and height
0.3 m initially at rest is allowed to collapse instantaneously under gravity at the center of the circular
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tank. The computational mesh size in every block was 5× 20× 60, 5× 40× 60, 10× 80× 60, 20× 160× 60
and 20 × 320 × 60, and uniform grid spacing of ∆r = ∆z = 0.02 m was used in both the radial and
vertical direction. The snapshots of water depth distributions are represented in Figures 5 and 6 for t
= 0.15 s and 0.3 s. They show that the results obtained with the zonal embedded grid system could
maintain the cylindrical symmetry of the exact solution and reserve the bore wave without oscillations.
Comparisons of the numerical results with that computed by the commercial software Fluent have
been demonstrated successively in Figures 5–8, and it can be seen that the nearly same distribution of
the free surface is obtained using the current model and the Fluent software.
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In order to illustrate the results more clearly, the temporal evolutions of water depth and the
front position of the dam break flow have been plotted in Figures 9 and 10, respectively, which show
the predictions by current model are in good agreement with that computed by Fluent, indicating
that the current model could simulate the free surface movements in a cylindrical water tank with an
acceptable accuracy.
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5. Conclusions

A numerical method was constructed to study the flow motion inside a cylindrical tank with the
VOF method to resolve the free surface in cylindrical coordinates. In order to obtain a grid independent
solution within a large-diameter computer domain, the zonal-embedded grid method was also adopted
to adjust the grid resolution gradually in the radial direction. Special treatments for the embedded
grids in discretizing the Navier–Stokes and VOF convection equations were presented in detail.

The VOF method was checked with the case of liquid convection under a given velocity field,
and better results were obtained with the zonal embedded method in the mass conservation property.
Then, the algorithms were validated against the circular dam breaking problem. Reasonable agreement
has been demonstrated by comparing the numerical results with simulation data computed by Fluent.
Through those results, it is demonstrated that the presented numerical model can reliably simulate the
interfacial flow motions in a circular tank. Moreover, the study on water sloshing in a cylindrical water
tank will be our future work in order to develop this model in engineering applications.
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