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Abstract: The dense optical flow estimation under occlusion is a challenging task. Occlusion may
result in ambiguity in optical flow estimation, while accurate occlusion detection can reduce the
error. In this paper, we propose a robust optical flow estimation algorithm with reliable occlusion
detection. Firstly, the occlusion areas in successive video frames are detected by integrating various
information from multiple sources including feature matching, motion edges, warped images and
occlusion consistency. Then optimization function with occlusion coefficient and selective region
smoothing are used to obtain the optical flow estimation of the non-occlusion areas and occlusion
areas respectively. Experimental results show that the algorithm proposed in this paper is an effective
algorithm for dense optical flow estimation.
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1. Introduction

The concept of optical flow, describing the apparent motion between images or video frames,
arises from the studies of biological visual systems. In certain applications, it is desirable to identify
optical flow everywhere in the whole image, such as video segmentation [1], three-dimensional
reconstruction [2], and video compression [3]. Occlusion destroys the consistency constraint in optical
flow estimation, for example, the assumption that the pixel characteristics are unchanged before and
after motion. In addition, the consistency constraint may cause unavoidable errors in the occlusion
areas. Therefore, correctly distinguishing the two areas and using different optimization strategies can
improve the accuracy of optical flow estimation.

The methods of optical flow estimation can be roughly divided into three categories: the variational
methods [4], the matching methods [5] and the approximate nearest neighbor fields (ANNF) methods [6].
In addition to the above three methods and the mutual integration [7], the Convolutional Neural
Network (CNN)-based methods are obtaining considerable attention in recent years. Flownet [8],
Flownet2.0 [9] and SPyNet [10] are all the end-to-end convolutional architectures. DM-CNN [11],
MC-CNN [12], PatchBatch [13] and many others CNN-based methods are of matching-based
architectures. Besides Sevilla-Lara et al. [14], Bai et al. [15] and Shen et al. [16] apply segmentation
results to assist optical flow estimation. However, most of the above methods do not deal with occlusion
directly, instead they treat them as the outliers and suppress the influence of occlusion by introducing
complex penalty terms, such as the Lorentzian potentials [17] and the Charbonnier potentials [18]. This is
the compromise using the consistency constraints in the whole image. For the occlusion area, this is the
wrong optimization function, so it will lead to the undesirable results. Because it is a global optimization
function, ambiguity may even affect the optical flow in the non-occluded areas. Owing to the lack
of feature information in the occluded areas, the smoothing term is often used to deduce the optical
flow in the occluded area, but it results in over-smoothing optical flow. The image-adaptive, isotropic
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diffusion [19], anisotropic diffusion [20], and isotropic diffusion with non-quadratic regularizes [17]
are proposed to deal with over-smoothing, but they do not account for occlusions. Hur et al. [21]
proposed the jointly estimate disparity and occlusions method, but its huge computation cost is
intolerable in most applications. Therefore, in practice, a three-step-approach [22] is proposed, with the
occlusion-unaware optical flow firstly estimated, then the occlusion areas identified and finally the
optical flow corrected.

Complex penalty terms cannot fundamentally eliminate the influence of occlusion. Bidirectional
optical flows in joint optimization would result in huge computational redundancy. In addition,
the three-step-approach relies heavily on the quality of occlusion detection. Therefore, in this paper,
we propose a more robust optical flow algorithm with occlusion detection, and the overall flow of the
proposed method is shown in Figure 1. The contributions of this proposed research include two aspects.input framesfusion framesover-segmentation matching edge detectionwarped imagewarped_image based matching based edge basedmutli-source fusionnon-occlusion flow occlusion flowfinal flow

Figure 1. Algorithm overview. Given adjacent frames, we first compute matching results and edge
detection results. Then three kinds of information are used to obtain occlusion detection respectively.
Next, our fusion strategy is adopted to obtain robust occlusion detection results. Finally, the whole
image is divided into occlusion and non-occlusion and estimated optical flow separately.

For occlusion detection, we mine occlusion information from multiple directions, and propose
a regional-based fusion strategy. Matching can provide the most basic occlusion detection results,
which do not depend on optical flow. However, because it often only uses the simple features, it may
appear false positive phenomenon, which may be invalid in edge areas or illumination changes.
Warped image is the intermediate result of the coarse to fine warping algorithm, from which we found
the trace of occlusion creatively. Through motion analysis, we find that the ghosting artifacts are the
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occlusion areas, but this method depends on the quality of optical flow estimation. The occlusion
only appears on the moving edges, and the moving edges of the two images surround the candidate
area of occlusion. We fuse the above three kinds of information into an initial occlusion detection
result. Because occlusion has regional consistency, we propose a regional-based optimization strategy.
Since the occluded edge is composed of the moving edges of two images, we first fuse the two images,
and then optimize the occlusion detection results by using the regional consistency.

For optical flow estimation, we use two optimization strategies for different areas. Using the
occlusion detection results obtained from the above work, the whole image is divided into occlusion
areas and non-occlusion areas. We use a modified energy function for non-occlusion area. Due to the
lack of effective information, neighborhood smoothing are often used for optical flow in the occlusion
areas. Based on the discrimination of occlusion and non-occlusion areas, we not only improve the
efficiency and accuracy of the optimization function, but also reduce the influence of smoothing
operation on the results, thus obtaining better optical flow estimation results.

The remainder of this paper is organized as follows. We discuss the related work in Section 2.
Our occlusion detection strategy are given in Section 3. Our occlusion-aware optical flow estimation
are given in Section 4. Experimental results and analyses are presented in Section 5. Our conclusion
and future work are summarized in Section 6.

2. Related Work

Most optical flow approaches are based on a variational formulation since it can obtain sub-pixel
level results naturally. Occlusion phenomena are ubiquitous in optical flow estimation, and there is
abundant literature on this topic. In this section, we briefly review the variational methods and the
occlusion-aware optical flow estimation.

Following the variational model of Horn and Schunck [23], modern optical flow estimation is
usually posed as an energy minimization problem, which includes an energy function containing
a brightness constancy assumption and a smoothness assumption. Hierarchical (pyramid-based)
algorithms have a long history [24], and it is widely used in optical flow estimation presently, such as
S2F [25] and MirrowFlow [21]. Hierarchical algorithms first estimate the optical flow on smaller,
lower-resolution images and then use them to initialize higher-resolution estimates. The advantages
of which include increased computation efficiency and with the ability to find better solutions
(escape from local minima). Weickert et al. [26] systematically summarized the previous work on
the data term and the smoothing term. Monzon et al. [27] did further work on the selection of the
smoothing terms, and they found that the automatic setup of decreasing scalar functions(DF-Auto)
for regularization can achieve a good balance between robustness and accuracy. LDOF [7] creatively
integrated the histograms of oriented gradients (HOG) descriptors into the coarse-to-fine warping
methods, and achieved the remarkable results. A quantitative analysis of optical flow estimation was
proposed by Sun et al. [28], and they verified that the importance of the median filtering.

Occluded pixels have undefined flow, so that good estimation of flow depends on occlusion
and vice versa. Based on the methodology, we divide them into three major categories. The first
category treats occlusion as outliers and suppresses the influence of occlusion by complex penalty
terms, the L1-norm potentials were introduced by Brox [29] and have been widely used by many other
researchers due to its robustness. Motivated by the statistics of optical flow, the Lorentzian potentials
and the Charbonnier potentials are proposed successively. The second category deals with occlusion
by exploiting the symmetric property of optical flow and analyzing the bidirectional optical flow.
Alvarez et al. [30] proposed one such solution, computing symmetrically dense optical flow which
is consistent from frame 1 to frame 2 and frame 2 to frame 1. This is achieved by minimizing an
energy function which respects occlusion. The last category builds more sophisticated frameworks to
reasoning occlusion. Kennedy et al. [31] proposed a triangulation-based framework using a geometric
model that can directly account for occlusion effects. FullFlow [32] optimized a classical optical flow
objective over the full space of mappings between discrete grids, which can deal with occlusion
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simultaneously. MR-Flow [33] proposed a deep learning framework for rigid region reasoning,
which makes use of its integrity to circumvent the occlusion detection process.

3. Occlusion Detection Strategy

The three-step optical flow estimation depends heavily on the quality of occlusion detection,
so reliable occlusion detection results are very important for optical flow estimation. In this section,
we will propose our occlusion detection strategies based on various information, and our fusion
strategy will be proposed in the last subsection.

3.1. Matching-Based Strategy

Optical flow estimation can be considered as a matching problem. Comparing two frames of
images, occlusion can be determined if a pixel does not appear in the second frame. We can use
either color features or more complex features for matching. In order to balance computation cost
and computational accuracy, we do not match point-by-point, but use grid point sampling algorithm.
To be specific, we first generate grids with a fixed size of 5 in both frames. For each sampling point,
we build two descriptors H and C and use these descriptors for matching. H consists of 9 orientation
histograms with 12 bins and C comprises the mean RGB color of 9 subparts. Correspondences
between points are obtained by approximate K-nearest neighbor matching, which K is 2 in our strategy.
We compute the Euclidean distances of both descriptors separately and normalize them by the sum
over all distances.

d2(Hm, Hn) =
‖Hm − Hn‖2

2
1
S ∑i,j

∥∥Hi − Hj
∥∥2

2

(1)

d2(Cm, Cn) =
‖Cm − Cn‖2

2
1
S ∑i,j

∥∥Ci − Cj
∥∥2

2

(2)

d2(m, n) =
1
2
(d2(Hm, Hn) + d2(Cm, Cn)) (3)

where m is the grid points in the first frame and n is the matched point in the second frame, S is the
total number of combinations m, n. Due to the normalization, H and C share the same weight in the
final distance. The next step is consistency check, which is helpful for removing outliers. Since the
matching results are sparse, we need sparse-to-dense interpolation to obtain the initial occlusion
detection Mm, and the overall flow of our matching-based strategy is shown in Figure 2.

Figure 2. Flow diagram of our matching-based strategy.

We also experimented with the KD-tree-based matching algorithm proposed by He et al. [34]
and the Siamese neural network based matching methods [35]. The former algorithm achieves similar
results of the above one, but its computational complexity is greater. Perhaps due to the lack of
sufficient training data, the CNN-based algorithm has not achieved satisfactory results.

3.2. Warped Image-Based Strategy

Using the initial matching mentioned above and EpicFlow [36], the initial optical flow estimation
can be estimated, which contains abundant occlusion information. We get the occlusion reasoning
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from two aspects, one is the motion analysis, and the other is warped image. The overall flow of our
matching-based strategy is shown in Figure 3.

Figure 3. Flow diagram of our warped image-based strategy.

Based on the statistics [9] of Flying Chairs and the MPI-Sintel datasets, it is verified that the
displacements of the foreground are larger than that in the background. Meanwhile, the occluded
areas belong to the background in most cases. According to the transformation matrix from optical
flow, if more than one pixels move to the same position, the positions with small optical flow values
are marked as occlusion. Based on the above motion analysis, we can obtain occlusion detection results
to some extent. Meanwhile, the warped image also contains abundant occlusion information. Under
the guidance of optical flow, the warped image can be obtained by backward mapping of frame 2.
Occlusion might result in undesirable ghosting artifacts in the warped image which is helpful for
reasoning occlusion.

The above two strategies can get occlusion detection separately. Since the statistical results are not
applicable to each frame, the former strategy method may lead to many errors. In addition, the latter
is sensitive to the threshold of the difference. Therefore, we propose a robust and reliable combined
detection strategy, which is shown in Figure 4 and the initial occlusion detection is named as Mw.
According to the motion analysis, the positions in the first frame are divided into three categories.
The first category is that there is no corresponding point in frame 2. A unique corresponding point
in frame 2 is the second category. In addition, the last category is sharing the corresponding point
in frame 2 with other positions. For “many to one” relationship in the third category, we only retain
the smallest difference correspondence. No corresponding relationship can be directly reasoned
as occlusion. In the “one to one” relationship, occlusion threshold is used to determine whether
there is occlusion. Since the pixels in the warped image are obtained by neighborhood interpolation,
the occlusion threshold can be designed to correlate with the maximum difference of the pixels in the
four neighborhoods. point in thewarped imagehave corresponding pointshare corresponding point YES NOYES NO

non-occlusion point occlusion pointdiff < othersocclusion point diff > thresholdYES YESNO NOocclusion point
Figure 4. The flowchart of our warped image-based strategy.
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3.3. Edge-Based Strategy

Since occlusion is caused by movement, so it would appear on the moving edges. The moving
edge is the complex semantic information, so usually using image edge to approximate. By connecting
the matching edges of two frames, we can obtain the occlusion candidate Me. The overall flow of our
edge-based strategy is shown in Figure 5.

Figure 5. Flow diagram of our edge-based strategy.

Firstly, we calculate the edges of two frames using a recent state-of-the-art edge detector,
namely the “structured edge detector” (SED) [37]. Then we use the descriptor matching algorithm
mentioned above to calculate the matching relationships in the edge areas. By interpolating the
retained matching points, we can get the occlusion candidate areas at image edge areas.

3.4. Regional-Based Fusion Algorithm

Integrating the above occlusion detection results based on edges at first since the Me is meaningless
in non-edge areas and the Mw is applied to a more relaxed threshold in edge areas.

Minit = αMm + βMw + γMe (4)

α,β,γ > 0 α + β + γ = 1

where α, β and γ are tuning parameters which can be determined manually according to qualitative
evidence on datasets, or be estimated automatically from ground truth data. Through the subsequent
experiments, we fixed all parameters at [0.3, 0.3, 0.4] in the edge areas, and [0.4, 0.5, 0.1] in the
non-edge areas.

Since the motion has regional consistency, neighborhood information is helpful for occlusion
reasoning. The consistent regions in a single frame is not enough for occlusion reasoning because
occlusion appears on the moving edges. Firstly we overlay two frames, and then we obtain the
consistent regions by over-segmentation algorithm, such as SLIC [38]. Finally, we use Minit and WTA
(Winner Takes All) algorithm to get the final occlusion detection result. The final occlusion detection
strategy, which is show in Figure 6, takes full advantage of neighborhood information and further
improves the accuracy and robustness of the algorithm.input frames MmMwMefusion image over-segmentationMinit WTA M

Figure 6. Flow diagram of our multi-source information fusion strategy.
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4. Occlusion-Aware Optical Flow Estimation

In the classical variational model, consistency constraints are used to construct energy functions.
Occlusion will destroy the assumption of color consistency, and causes the existing optical flow
estimation algorithm to fail. Therefore, the whole image should be divided into occlusion areas and
non-occlusion areas and estimated optical flow separately.

For non-occlusion areas, we estimate the optical flow by constructing the energy function with
the occlusion coefficient θ, which is vectorization of the occlusion detection result M. We optimize the
following model for optical flow.

E(ω) = θ(Ecolor(ω) + aEgradient(ω) + bEsmooth(ω) + cE f low(ω, ω1))

Ecolor(ω) =
∫

Ω ρ(|I2(x + ω(x))− I1(x)|2)dx

Egradient(ω) =
∫

Ω ρ(| 5 I2(x + ω(x))−5I1(x)|2)dx (5)

Esmooth(ω) =
∫

Ω ρ(| 5 u(x)) +5v(x)|2)dx

E f low(ω, ω1) =
∫

Ω ρ(|ω(x)−ω1(x)|2)dx

where a, b and c are tuning parameters, x indexes a particular image pixel location, ω is
two-dimensional optical flow and ω(x) the optical flow in x position, ρ is the Charbonnier penalty
function [18], Ω is the whole image domain. The data term penalizes deviations from the assumption
which is the corresponding points should have the same gray value or color. Due to the illumination
effects, it is not reliable to use the color and gray value. We supply the gradient constraint, which is
invariant to additive brightness changes. The smoothing term, also called the regularity term, is used
to reduce the ambiguous solutions. In the flow term, ω1(x) denotes the initial optical flow obtained
from matching.

We estimate optical flow Fnoc in the non-occlusion areas using coarse-to-fine warping scheme,
where the down sampling factor is 0.8, and the minimum sampling size is 16. There are many
ways to deal with the model mentioned above. Sun et al. [28] solved the problem with GNC [39],
and they found that GNC is useful even for a convex robust function. Same as LDOF, EpicFlow uses
successive over-relaxation (SOR) to iteratively solve their linear system of equations and stops the
iteration before convergence. TRW-S [40,41] and the Newton method are also used by FullFlow and
Kennedy et al. [31]. We choose the SOR for our model and we refer to publication like [42] for some
details of the Eular-Lagrange equations, the derivative calculation and the nested fixed-point iterations.

For occlusion areas, we can reason that the optical flow is based on motion continuity because of
the lack of necessary feature information to construct the energy function. Based on Fnoc mentioned
above and the edges of frame 1, the optical flow Focc is interpolated by EpicFlow finally. The final
result is shown in Equation (6).

F = θ̃Fnoc + θFocc (6)

5. Experiments

We performed experiments on the MPI-Sintel dataset [43]. The MPI-Sintel dataset is a challenging
evaluation benchmark, which is obtained from an animated movie. It contains multiple sequences
with large motions and specular reflections. Two versions are provided: the Final version contains
motion blur and atmospheric effects, while the Clean version does not include these effects. MPI-Sintel
contains 1041 training image pairs for each version and provides dense ground truth. F-measure is
usually considered as the measures of occlusion detection. In addition, the average of endpoint errors
(AEE) are the mean EPE (endpoint errors) over all pixels in the dataset, which are normally as the
measures of optical flow estimation. LDOF [7] and FlowFields [6] are classic and effective optical flow
estimation algorithms, which will be used as baseline in this paper.
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5.1. Experiments on Occlusion Detection

In our first experiment we demonstrate the difference between our various occlusion detection
strategies. Therefore, we depicted the results for some frames of the MPI-Sintel dataset (final version)
in Figure 7. Through experiments, we find that Mm can generally detect occlusion areas well, but there
are also a large number of false positive areas. Mw has high dependency on occlusion thresholds,
but this strategy is the most reliable of the three methods in terms of F-measure. Me is only the
candidate areas for occlusion, but it cannot be used as occlusion detection strategy alone. Because of
the good performance of Mw, we also tried the strategy of “Mw+regional consistency”, named as Mw+.
Due to the instability of Mw, errors after consistency operation may be magnified. By integrating all the
above strategies, we get a more robust occlusion detection algorithm M. This finding is also reflected
in the F-measure and AEE indicators of the entire MPI-Sintel dataset (final version). We also compared
with the occlusion reasoning algorithm proposed by Wang et al. [44] and mark it as Mwang in Table 1.
The main constraint for occlusion reasoning in [44] is motion information and color information,
which is essentially similar to our warped image-based strategy proposed in Section 3.2. Compared
with [44], our method has achieved similar results, and our method does not depend on CNN, so it
does not need a lot of training data and network parameters. From this point of view, our algorithm
is competitive.
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Figure 7. Occlusion detection on the MPI-Sintel dataset (final version). From top to bottom: overlaid
input frames, ground truth, the results of matching-based strategy, the results of warped image-based
strategy, the results of edge-based strategy, the results of initial fusion, the results of partial fusion and
the results of final fusion. The F-measure is printed in the image.

Table 1. F-measure and AEE of different strategies.

Methods F-Measure AEE

Mm 0.2919 3.8244
Mw 0.4534 3.7604
Me 0.1167 4.1567

Minit 0.4483 3.7828
Mw+ 0.4472 3.7760

M 0.4715 3.7440

Mwang [44] 0.48 6.34
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5.2. Experiments on Optical Flow

In our final experiment we compare the performance of our novel optical flow approach to other
methods from literature. After detailed comparison with the current optical flow estimation methods
in Table 2, the results of our method that is applied to several training sequences are given in Figure 8.

Table 2. Quantitative evaluation of our method.

Methods AEE_Clean AEE_Final

FlownetS [8] 4.50 5.45
FlownetC [8] 4.31 5.87
SPyNet [10] 4.12 5.57

MR-Flow [33] 1.83 3.59
classic+NLP [28] 4.13 5.90

DeepFlow [5] 2.66 3.57
EpicFlow [36] 2.27 3.56
FlowFileds [6] 2.13 3.82

LDOF [7] 4.32 6.21
ours 2.09 3.74

Figure 8. Optical flow estimation on the MPI-Sintel dataset. The first four rows are the result of clean
version, and the last four rows are the result of final version. From left to right: overlaid input frames,
ground truth, the results of LDOF, the results of FlowFields and the results of our method. For all
methods, we use the red box to identify the contrast areas and the endpoint error(EPE) is printed in
the image.

In Figure 8, we visualized the results of the LDOF algorithm, the FlowFields algorithm and our
algorithm. LDOF is a classical optical flow field estimation algorithm. Because of its better robustness
and less computational cost, it is widely used in practice. FlowFields is more sophisticated in design
and performs well in the entire datasets, but it may have ‘strange errors’ in some cases due to its
excessive dependence on neighborhood propagation. We use the red box to identify the contrast areas
in Figure 8. We found that we can obtain better moving edges on either the clean data set (the first four
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rows) or the final data set (the last four rows). LDOF has a smooth phenomenon as a whole. Since the
lack of occlusion detection, the FlowFields cannot reason accurate motion consistency areas. It is for
this reason that the FlowFields algorithm in Figure 8 results in erroneous smoothing. For example,
the foreground and background in the sixth row are not clearly distinguished, and the head in the
seventh row is incorrectly divided into two areas.

Compared with the mainstream optical flow estimation algorithms, such as LODF and FlowFields,
our method can obtain more accurate results on the entire dataset. Our method also surpasses most
of the methods based on deep learning. Compared with MR-Flow [33], which ranks first in data set,
our method can achieve comparable results while greatly reducing the computational cost. Specifically,
it refers to the huge training data and hardware requirements generated in the training process of
convolutional neural networks.

6. Conclusions

We presented an effective optical flow estimation algorithm based on reliable occlusion detection.
First, we use various information for occlusion reasoning, and then propose a robust fusion strategy to
obtain reliable occlusion results. Considering the difference between areas, we estimate the optical
flow in the occlusion areas and the non-occlusion areas separately. Experiments on the MPI-Sintel
dataset demonstrate that our approach effectively improves the accuracy of optical flow on overall
images, and our approach are also competitive compared with those deep-learning-based algorithms.
Furthermore, our proposed method can be combined with various methods. In this paper, the effect
of occlusion detection on optical flow estimation is proved, and our method also provides reliable
occlusion detection results. Therefore, in our future work, we will try to introduce our method into
deep-learning, and it is hoped to improve the training efficiency and optical flow estimation accuracy
of the network by providing reliable occlusion priori to remove interference during model training.
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