
algorithms

Concept Paper

FASTSET: A Fast Data Structure for the Representation
of Sets of Integers

Giuseppe Lancia 1,* and Marcello Dalpasso 2

1 Dipartimento di Scienze Matematiche, Informatiche e Fisiche, University of Udine, Via delle Scienze 206,
33100 Udine, Italy

2 Dipartimento di Ingegneria dell’Informazione, University of Padova, Via Gradenigo 6/A, 35131 Padova,
Italy; marcello.dalpasso@unipd.it

* Correspondence: giuseppe.lancia@uniud.it; Tel.: +39-0432558454

Received: 9 April 2019; Accepted: 24 April 2019; Published: 1 May 2019

Abstract: We describe a simple data structure for storing subsets of {0, . . . , N − 1}, with N a given
integer, which has optimal time performance for all the main set operations, whereas previous data
structures are non-optimal for at least one such operation. We report on the comparison of a Java
implementation of our structure with other structures of the standard Java Collections.

Keywords: data structures; Bitmask; set representation

1. Introduction

We describe a data structure for storing and updating a set S of integers whose elements are
values taken in the range E = {0, . . . , N − 1} with N a given integer. Typically, the “superset”, or
“universe”, E corresponds to the indices of the N elements of a problem instance, and we are interested
in storing, using and updating subsets of the universe.

A set of integers is a very basic mathematical object and it finds use in uncountably many
applications of computer programs. Performing the basic set operations (i.e., insertion, deletion,
membership test and elements enumeration) in the most effective possible way would benefit all
algorithms in which sets of integers play a relevant role (just to mention one example, consider the
algorithms operating on graphs, for which the universe is the set of nodes/edges of a graph and the
procedure needs to store and update a subset of nodes/edges). The goal of the paper is to provide
optimal set primitives such as those mentioned above.

The literature on algorithms and data structures is very rich, and various possible representations
and implementations of such sets are discussed in many textbooks, among which there are some
classics, such as [1–3]. The implementations of the sets fall mainly in two categories: (i) those for
which operations such as insertion, deletion and membership test are fast but other operations, such
as listing all the elements of the set, performing union and intersection are slow; (ii) those for which
operations such as insertion, deletion and membership test are slow but other operations, such as
listing all the elements of the set, performing union and intersection are fast. In the first category, we
recall the bitmap representation of the set (which uses an array v of N booleans, where v[i] = true iff
i ∈ S) and some forms of hash tables using either optimal hashing or buckets [4]. In the second category,
we can represent a set by an array of size N in which only the first |S| entries are filled and contain
the elements of the set, a structure called a partially filled array (PFA). Usually the PFA is unsorted
(maintaining the elements sorted can speed-up operations such as the membership test, but it slows
down insertion and deletion) Another option is to store the elements in a linked list, again unsorted.
Finally, one can resort to some tree-like structures, such as the AVL trees, a self-balancing type of binary
search trees [5]. For these structures, insertion, deletion and membership tests are reasonably fast (but

Algorithms 2019, 12, 91; doi:10.3390/a12050091 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0001-5323-8483
https://orcid.org/0000-0002-9242-3435
http://dx.doi.org/10.3390/a12050091
http://www.mdpi.com/journal/algorithms


Algorithms 2019, 12, 91 2 of 10

not optimal), but the trade-off is that some other operations are slowed down by the overhead paid in
order to maintain the structure sorted.

Main Results and Paper Organization

In this paper, we propose a new data structure, called FASTSET, that has optimal time performance
for all the main set operations. In particular, operations such as insertion and deletion of an element,
membership test, and access to an element via an index in {1, . . . , |S|} are all O(1). From these
primitive operations, we derive more complex operations, such as listing all elements at cost O(|S|),
computing the intersection of two sets (i.e., S3 := S1 ∩ S2) at cost O(min{|S1|, |S2|}) and the union of
two sets (i.e., S3 := S1 ∪ S2) at cost O(|S1|+ |S2|).

In Table 1 we report a list of operations and their cost both for the various aforementioned types of
data structures for set representation and for FASTSET. As far as the memory requirement is concerned,
for some of them it is O(N) (namely Bitmap, PFAs, and FASTSET), for some it is O(|S|) (namely Linked
List and AVL Tree), while it is O(b + |S|) for the Bucket Hashtable with b buckets.

The remainder of the paper is organized as follows. In Section 2 we describe the implementation of
the various set operations for a FASTSET. In Section 3 we give two simple examples of algorithms using
set data structures. In particular, we describe two popular greedy algorithms, one for Vertex Cover
and the other for Max-Cut. Section 4 is devoted to computational experiments, in which FASTSETs are
compared to various set implementations from the standard library of the Java distribution [6]. We
have chosen Java since it is one of the popular languages and offers state-of-the-art implementations
of class data structures for all the structures we want to compare to. Anyway, we remark that the main
contribution of this paper is of theoretical nature and thus the results are valid for all implementations
(i.e., in whichever language) of the data structures discussed. Some conclusions are drawn in Section 6.

2. Implementation

A FASTSET is implemented by two integer arrays, of size N + 1 and N, which we call elem[ ] and
pos[ ], respectively. The array elem[ ] contains the elements of S, in no particular order, consecutively
between the positions 1 and |S|, while elem[0] stores the value of |S|. The array pos[ ] has the function
of specifying, for each i ∈ {0, . . . , N − 1}, if i /∈ S or i ∈ S, and, in the latter case, it tells the position
occupied by i within elem[ ]. More specifically, ∀i ∈ {0, . . . , N − 1}

pos[i] =

{
0 if i /∈ S
j (> 0) if i ∈ S and elem[j] = i

The main idea in order to achieve optimal time performance is remarkably simple. Our goal is
to achieve both the benefits of a PFA, in which listing all elements is optimal (i.e., it is O(|S|)) but
accessing the individual elements, for removal and membership tests is slow (i.e., it is O(|S|), and of a
bitmap implementation where accessing the individual elements is optimal (i.e., it has cost O(1)) but
listing all elements is slow (i.e., it is O(N)). To this end, in our implementation we use the array elem[ ]
as a PFA, and the array pos[ ] as a bitmap. Moreover, not only pos[ ] is a bitmap, but it provides a
way to update the partially filled array elem[ ] after each deletion in time O(1) rather than O(|S|).

We will now describe how the set operations can be implemented with the complexity stated
in Table 1. The implementation is quite straightforward. We will use a pseudocode, similar to C. In
particular, our functions will have as parameters pointers to FASTSETs, in order to avoid passing the
entire data structures.



Algorithms 2019, 12, 91 3 of 10

Table 1. Comparison of asymptotic worst-case time performance for the main set operations of the
most used data structures. We let s = |S1|+ |S2|, m = min{|S1|, |S2|} and M = max{|S1|, |S2|}. In the
Bucket Hashtable row, b is the number of buckets.

Membership Insertion Deletion List All S3:=S1 ∩ S2 S3:=S1 ∪ S2

Bitmap / Opt. Hashtable O(1) O(1) O(1) O(N) O(N) O(N)

Bucket Hashtable O(|S|) O(|S|) O(|S|) O(b + |S|) O(b + Mm) O(b + Mm)

Linked List / Unsorted PFA O(|S|) O(|S|) O(|S|) O(|S|) O(Mm) O(Mm)

Sorted PFA O(log |S|) O(|S|) O(|S|) O(|S|) O(s) O(s)
AVL Tree O(log |S|) O(log |S|) O(log |S|) O(|S|) O(m log M) O(s log s)

FASTSET O(1) O(1) O(1) O(|S|) O(m) O(s)

2.1. Membership

To check for membership of an element v, we just need to look at pos[v] and see if it is non-zero,
at cost O(1).

Boolean Belongs( FASTSET* s, int v ) {
return ( s->pos[v] > 0 )

}

2.2. Cardinality

The cardinality is readily available in elem[0] at cost O(1).

int Cardinality( FASTSET* s ) {
return s->elem[0]

}

2.3. Insertion

Each insertion happens at the end of the region of consecutive elements stored in elem[ ]. Since
we have direct access to the last element through elem[0], the cost is O(1).

void Insert( FASTSET* s, int newel ) {
if ( Belongs ( s, newel ) ) return // newel is already present in s
s->elem[0] := s->elem[0] + 1
s->elem[s->elem[0]] := newel
s->pos[newel] := s->elem[0]

}

Please note that there is no need for a test of full-set condition, since there is enough space for the
largest subset possible (namely the whole E), and no element can be repeated in this data structure. See
Figure 1a–e for examples of insertions in a FASTSET and corresponding updates of the data structure.



Algorithms 2019, 12, 91 4 of 10

elem 

pos 

0       1       2       3      4       5              ……..            N-2   N-1    

0    0    0    0    0    0                        0    0 

0     

(a) Insert(3) 

pos 

0       1       2       3      4       5              ……..            N-2   N-1    

0    0    0    1    0    0                        0    0 

1    3     

(b) Insert(5) 

pos 

0       1       2       3      4       5              ……..            N-2   N-1    

0    0    0    1    0    2                        0    0 

2    3    5     

(c) Insert(1) 

0       1       2       3      4       5              ……..            N-2   N-1    

0    3    0    1    0    2                        0    0 

3    3    5    1     

(d) Remove(3) 

0       1       2       3      4       5              ……..            N-2   N-1    

0    1    0    0    0    2                        0    0 

2    1    5     

(e) Insert(4) 

0       1       2       3      4       5              ……..            N-2   N-1    

0    1    0    0    3    2                        0    0 

3    1    5    4    

elem 

elem 

pos 

elem 

pos 

elem 

pos 

elem 

Figure 1. A sequence of operations on a FASTSET: (a) Insert(3), (b) Insert(5), (c) Insert(1), (d)
Remove(3), (e) Insert(4).

2.4. Deletion

Assume we want to delete an element v (which may or may not be in S), so that S := S− {v}.
When v ∈ S, this is obtained by copying the last element of elem, let it be w, onto v (by using pos, we
know where v is) and decreasing |S| (i.e., elem[0]). In doing so, we update pos[w], assigning pos[v] to
it, then let pos[v] := 0. The final cost is O(1). See Figure 1d for an example of deletion in a FASTSET and
the corresponding update of the data structure.

void Delete( FASTSET* s, int v ) {
if ( NOT Belongs ( s, v ) ) return // v was not in S
int w := s->elem[s->elem[0]]
s->elem[s->pos[v]] := w
s->pos[w] := s->pos[v]
s->pos[v] := 0
s->elem[0] := s->elem[0] - 1

}

2.5. Access to an Element and List All Elements

We can have direct access to each element of S, via an index in 1, . . . , |S|, at cost O(1). From this it
follows that we can list all elements of S at cost O(|S|). The corresponding procedures are the following:

int GetElement( FASTSET* s, int k ) {
return s->elem[k]

}

int* GetAll( FASTSET* s ) {
int* list = malloc( s->elem[0] * sizeof(int) )
for ( int k := 1; k <= s->elem[0]; k++ )



Algorithms 2019, 12, 91 5 of 10

list[k-1] = s->elem[k]
return list

}

2.6. Intersection

Assume A and B are sets. We want to compute their intersection and store it in C, initially empty.
We go through all the elements of the smaller set, and, if they are also in the other set, we put them in
C. The final cost is O(min{|S1|, |S2|}).

void Intersection( FASTSET* A, FASTSET* B, FASTSET* C ) {
if ( Cardinality(A) < Cardinality(B) )

FASTSET* smaller := A
FASTSET* other := B

else
FASTSET* smaller := B
FASTSET* other := A

for ( int k := 1; k <= Cardinality(smaller); k++ )
if ( Belongs( other, GetElement( smaller, k ) ) )

Insert( C, GetElement( smaller, k ) )
}

2.7. Union

Assume A and B are sets. We want to compute their union and store it in C, initially empty.
We go through all the elements of each of the two sets and put them in C. The final cost is O(|S1|+ |S2|).

void Union( FASTSET* A, FASTSET* B, FASTSET* C ) {
for ( int k := 1; k <= Cardinality(A); k++ )

Insert( C, GetElement( A, k ))
for ( int k := 1; k <= Cardinality(B); k++ )

Insert( C, GetElement( B, k ))
}

2.8. Initialization

A FASTSET is initialized by specifying the range for the elements value, and then simply allocating
memory for two arrays:

FASTSET* Create( int N ) {
FASTSET* p := calloc( FASTSET, 1 )
p->pos := calloc( int, N )
p->elem := malloc( (N+1) * sizeof(int) )
p->elem[0] := 0 // empty set
return p

}

We assume that calloc allocates a block of memory initialized to 0s, in which case there is nothing
else to be done. If, on the other hand, calloc returns a block of memory not initialized to 0, we must
perform a for cycle to initialize pos[ ] to 0s (note that there is no need to initialize the other entries of
elem[ ], since they will be written before read).

Finally, sometimes the following operation is useful for re-initializing a FASTSET, since, for large
N, it can be faster (namely O(|S|)) than creating an empty FASTSET from scratch (that is O(N) because



Algorithms 2019, 12, 91 6 of 10

of calloc zeroing):

void Clean( FASTSET* s ) {
for ( int i:=1; i <= s->elem[0]; i++ )

s->pos[s->elem[i]] := 0
s->elem[0] := 0

}

It is clear that both creating and cleaning algorithms for FASTSET, as they are outlined, require
O(N) time, because of zeroing the pos[ ] array (by calloc or a loop, respectively). It is possible,
however, to use a trick originally outlined in [7] (exercise 2.12) to avoid the initialization while leaving
“garbage” in pos[ ]:

FASTSET* Create( int N ) { // now O(1)
FASTSET* p := malloc( sizeof(FASTSET) )
p->pos := malloc( N * sizeof(int) ) // unknown data in pos
p->elem := malloc( (N+1) * sizeof(int) )
p->elem[0] := 0 // empty set
return p

}

void Clean( FASTSET* s ) { // now O(1)
s->elem[0] := 0; // no loop needed: garbage left in pos

}

We only need to make a slightly more complex belonging check, that must now handle the
garbage possibly present in pos:

Boolean Belongs( FASTSET* s, int v ) { // STILL O(1)
k := s->pos[v]
return ( k > 0 AND k <= s->elem[0] AND s->elem[k] == v )

}

3. Example Algorithms Using Sets

A graph G = (V, E) can be represented in memory by an array of sets. Namely, for each v ∈ V,
we store the set N(v) of its neighbors in V. In this section, we give two simple examples of algorithms
for graph problems in which we assume the graph is represented by the array of neighbor sets. The
algorithms are two greedy procedures, one for the Vertex Cover problem and the other for Max-Cut.
Please note that we are not saying that these are the best possible versions for these algorithms. All
we want to do is to give some specific, simple examples in which the implementation of the set data
structure can affect the overall time performance of a procedure. The results will be described in detail
in Section 4.

3.1. Vertex Cover

Let us consider the greedy algorithm for the Vertex Cover problem. The procedure works by
repeatedly selecting the highest-degree vertex, say v̂, among the vertices still in the graph. The edges
incident in v̂ are then removed from the graph, together with isolated nodes, and the process is
repeated until the graph is empty. Besides the sets of neighbors for each vertex, the algorithm uses a
set C to store the nodes in the cover, and L to store the vertices with degree > 0 still in the graph. The



Algorithms 2019, 12, 91 7 of 10

pseudocode for the greedy algorithm, with the main set operations clearly marked, is described in
Algorithm 1.

Algorithm 1 GREEDY VERTEX COVER

C ← ∅
L← V
while Cardinality(L) > 0

v̂← GetElement(L, 1)
for i← 2 to Cardinality(L)

w← GetElement(L, i)
if Cardinality(N(w)) > Cardinality(N(v̂))

v̂← w
Insert(C, v̂)
for i← 1 to Cardinality(N(v̂))

w← GetElement(N(v̂), i)
Delete(N(w), v̂)
if Cardinality(N(w)) = 0

Delete(L, w)
Delete(L, v̂)

3.2. Max-Cut

Let us consider a greedy local-search procedure for Max-Cut. Assume being given a starting
solution, represented by a partition of the nodes into two sets, i.e., shore[0] (the left shore of the cut)
and shore[1] (the right shore). The procedure checks if it is profitable to flip the color of any node
(i.e., to move the node from one shore to the other). If there exists a node v for which more than half of
its neighbors are on the same shore of v, it is profitable to move the node from its shore to the opposite,
since the value of the cut will strictly increase. The solution is then updated and the search is repeated,
until there are no nodes that can be moved with profit. The pseudocode for this greedy local-search is
described in Algorithm 2.

Algorithm 2 GREEDY MAX-CUT

do
progress← FALSE
for v← 1 to n

if Belongs(shore[0], v)
side← 0

else
side← 1

cnt← 0
for i← 1 to Cardinality(N(v))

if Belongs(shore[side], GetElement(N(v), i))
cnt++

if cnt > Cardinality(N(v))/2
progress← TRUE
Delete(shore[side], v)
Insert(shore[1-side], v)
break

while progress

4. Computational Experiments

In this section, we report on some computational experiments (performed on Intel R© CoreTM

i3 CPU M 350 @ 2.27 GHz with 2.8 GB of RAM) in which we have compared the performance of



Algorithms 2019, 12, 91 8 of 10

FASTSETs to that of other set data structures included in the standard library of the Java distribution. In
particular, Java provides three classes implementing sets via different data structures, namely (i) BitSet
[8] implementing the Bitmap data structure; (ii) TreeSet [9] implementing a set as a self-balancing tree
with logarithmic cost for all main operations; (iii) HashSet [10] implementing a set by a hash table.
We have coded the class FASTSET in Java and have run a first set of experiments in which we have
performed a large number of random operations (such as insertions and removals of random elements)
for various values of N. The results are listed in Table 2. From the table it appears that FASTSET and
BitSet perform very similarly with respect to single-element operations, and they are both better
that the other two data structures. It should be remarked that in actual implementations such as this
one, Bitmaps are very effective at these type of operations, since they can exploit the speed of some
low-level instructions (such as logical operators) for accessing the individual bits of a word. When we
turn to listing all elements, however, FASTSETs outperform the other implementations. In particular, a
GetAll after 50,000 random insertion on a FASTSET is from 10 up to 30 times faster than for the other
data structures.

Table 2. Time comparison (in milliseconds) for some set implementations found in the java.util
package of the Java standard library vs. FASTSET. The row labels report different values of N. The
GetAll column refers to 1000 GetAll operations over a set after 50000 random insertions. Each Insert
column is labeled by the total number of random insertions; each Belongs column is labeled by the
total number of random searches in the set produced by the previous insertions; each Delete column
is labeled by the total number of random deletions from the same previous set.

GetAll Insert Belongs Delete

100K 500K 1M 100K 500K 1M 100K 500K 1M

N = 100K

FASTSET 158 4 19 38 4 17 36 4 18 39
BitSet 3062 5 26 53 5 25 51 5 20 46
TreeSet 1624 67 406 672 67 312 672 33 234 329
HashSet 2062 28 172 281 22 125 219 8 62 78

N = 300K

FASTSET 160 4 20 40 4 18 36 4 19 38
BitSet 3321 5 26 51 5 25 50 4 20 42
TreeSet 1984 122 578 1219 128 687 1281 100 641 1001
HashSet 3752 41 202 406 38 156 375 20 109 203

N = 500K

FASTSET 162 4 20 43 4 19 38 4 20 39
BitSet 3687 5 26 52 5 25 50 4 21 43
TreeSet 2031 150 755 1499 163 695 1625 141 312 1406
HashSet 4297 52 239 516 39 205 391 23 120 234

In a second run of experiments, we have considered the two simple combinatorial algorithms
described in Section 3, which make heavy use of sets during their execution. The pseudocode listed
in Algorithms 1 and 2 refers to an implementation using FASTSETs. The algorithms were translated
in equivalent algorithms using BitSet, TreeSet and HashSet in place of FASTSET. The translation
was made so as to be as fair and accurate as possible. This was easy for most operations, since they
translate directly into equivalent operations on the other data structures. Other operations, such as
using GetElem() in a loop to access all the elements of a FASTSET, were realized by calling the iterator
methods that the Java classes provide, and which are optimized to make sequential access to all the
elements of each structure.

For both Vertex Cover and Max-Cut the tests were run on random graphs of n vertices and
an average of p(n

2) edges, where each edge has probability p of being in the graph. We have used
n ∈ {1000, 3000, 5000} and p ∈ {0.001, 0.005, 0.01}, so that the largest graphs have 5000 nodes and
about 125, 000 edges. For each pair (n, p) we have generated 5 instances and computed the algorithms
average running time. The results are reported in Table 3 for Vertex Cover and Table 4 for Max-Cut.
For both problems, the implementation using FASTSETs was the fastest. In particular, on the Vertex



Algorithms 2019, 12, 91 9 of 10

Cover problem, the use of FASTSETs yields running times between one half and one quarter with
respect to the other data structures. The results for Max-Cut are even better, with the other data
structures being, on average, from 3 times to 30 times slower than FASTSETs for this procedure.

Table 3. Time comparison (in milliseconds) for some set implementation found in the java.util
package of the Java standard library vs. FASTSET in solving the vertex cover problem using a greedy
algorithm (average time over 5 random graph instances, the same for any set type). The shown
percentages are relative to the FASTSET time.

Nodes Edges FASTSET BitSet TreeSet HashSet

500 31 68 (219%) 81 (261%) 90 (290%)
1000 2500 40 93 (232%) 109 (272%) 115 (287%)

5000 49 109 (222%) 131 (267%) 125 (255%)

4500 253 646 (255%) 790 (312%) 1031 (408%)
3000 22500 431 1050 (244%) 1322 (307%) 1606 (373%)

45000 487 1137 (233%) 1574 (323%) 1765 (362%)

12500 1025 2237 (218%) 2950 (288%) 3937 (384%)
5000 62500 1547 3109 (201%) 4575 (296%) 5974 (386%)

125000 1759 3253 (185%) 4896 (278%) 6581 (374%)

avg. % vs. FASTSET 223% 289% 347%

Table 4. Time comparison (in milliseconds) for some set implementation found in the java.util
package of the Java standard library vs. FASTSET in solving the max cut problem using a greedy
algorithm (average time over 5 random graph instances, the same for any set type). The shown
percentages are relative to the FASTSET time.

Nodes Edges FASTSET BitSet TreeSet HashSet

500 40 53 (132%) 109 (272%) 556 (1390%)
1000 2500 112 278 (248%) 543 (485%) 1612 (1439%)

5000 150 515 (343%) 1256 (837%) 2387 (1591%)

4500 619 1565 (253%) 3497 (565%) 41556 (6713%)
3000 22500 2603 8024 (308%) 22219 (854%) 76372 (2934%)

45000 5410 22131 (409%) 54704 (1011%) 105664 (1953%)

12500 2412 9344 (387%) 17719 (735%) 265533 (11008%)
5000 62500 14993 53829 (359%) 141739 (945%) 510208 (3403%)

125000 37494 126521 (337%) 379501 (1012%) 754031 (2011%)

avg. % vs. FASTSET 308% 746% 3605%

5. Space Complexity and Limitations

The data structure we have described may not be appropriate when the universe of all possible
values is very large, especially if the amount of available memory is an issue. Indeed, the memory
requirement is Θ(N) and this can be prohibitive (e.g., when N is a large power of 2 such as N ≥ 232).
In this case, even if the memory is available, it is hard to assume that the allocation of such a chunk of
memory is an O(1) operation.

The same problem, however, would be true of other data structures which require Θ(N) memory,
such as the bitmaps and the optimal hashtables. Clearly, when the size of the set S ⊂ {0, . . . , N − 1}
tends to become as large as N, all the possible data structures would incur in the same memory
problem (indeed, in this case our structure would be optimal as far as memory consumption, since it
would be linear in the size of the set). When, on the other hand |S| � N then data structures based
on dynamic allocation of memory (such as linked lists and AVL trees) are better as far as memory
consumption than FASTSETs. We remark, however, that the case of an exponentially large N is a rare



Algorithms 2019, 12, 91 10 of 10

situation, since most of the times the integers that we deal with in our sets are indices, identifying the
elements of a size-N array representing a problem instance.

6. Conclusions

We have described FASTSET, a new data structure for storing sets of integers in a range. Previous
implementations of set data structures were either good at “direct access” to the individual set elements
or at “sequential access” to all the set elements, but not at both. Our structure has two main advantages
over these implementations, namely (i) it possesses the good qualities of both a “direct access” and a
“sequential” structure, and (ii) it is very easy to implement. Some computational experiments have
shown that FASTSETs can be profitably added, e.g., to the library of Java implementation of set data
structures, to which they compare favorably.

Author Contributions: Conceptualization, G.L.; methodology, G.L. and M.D.; software, G.L. and M.D.; validation,
G.L. and M.D. and Z.Z.; formal analysis, G.L.; investigation, G.L. and M.D.; resources, G.L. and M.D.; data
curation, M.D.; writing–original draft preparation, G.L. and M.D.; writing–review and editing, G.L. and M.D.;
visualization, M.D.; supervision, G.L. and M.D.

Funding: This research received no external funding.

Acknowledgments: We thank John Hopcroft, Ronald Rivest and Thomas Cormen for some useful remarks on an
earlier draft, and two anonymous referees for their comments.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Aho, A.V.; Hopcroft, J.E.; Ullman, J.D. Data Structures and Algorithms; Addison-Wesley: Boston, MA, USA,
1983.

2. Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. Introduction to Algorithms; The MIT Press: Cambridge,
MA, USA, 2009.

3. Tarjan, R.E. Data Structures and Network Algorithms (CBMS-NSF Regional Conference Series in Applied
Mathematics); SIAM press: Philadelphia, PA, USA, 1987.

4. Knuth, D.E. The Art of Computer Programming. Volume 3: Sorting and Searching; Addison-Wesley: Boston, MA,
USA, 1998.

5. Adel’son-Vel’skh G.M.; Landis E.M. An algorithm for the organization of information. Soviet Math. Dokl.
1962, 10, 1259–1262.

6. Oracle. Available online: http://www.oracle.com/technetwork/java (accessed on 8 April 2019).
7. Aho, A.V.; Hopcroft, J.E.; Ullman, J.D. The Design and Analysis of Computer Algorithms; Addison-Wesley:

Boston, MA, USA, 1974.
8. Class BitSet. Available online: http://docs.oracle.com/javase/10/docs/api/java/util/BitSet.html (accessed

on 15 April 2019).
9. Class TreeSet. Available online: http://docs.oracle.com/javase/10/docs/api/java/util/TreeSet.html

(accessed on 10 April 2019).
10. Class HashSet. Available online: http://docs.oracle.com/javase/10/docs/api/java/util/HashSet.html

(accessed on 18 April 2019).

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.oracle.com/technetwork/java
http://docs.oracle.com/javase/10/docs/api/java/util/BitSet.html
http://docs.oracle.com/javase/10/docs/api/java/util/TreeSet.html
http://docs.oracle.com/javase/10/docs/api/java/util/HashSet.html
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Implementation
	Membership
	Cardinality
	Insertion
	Deletion
	Access to an Element and List All Elements
	Intersection
	Union
	Initialization

	Example Algorithms Using Sets
	Vertex Cover
	Max-Cut

	Computational Experiments
	Space Complexity and Limitations
	Conclusions
	References

