
algorithms

Article

Multi-Metaheuristic Competitive Model for
Optimization of Fuzzy Controllers

Marylu L. Lagunes, Oscar Castillo * , Fevrier Valdez and Jose Soria

Tijuana Institute of Technology, c.p 22379 Tijuana, Mexico; marylu.lara@tectijuana.edu.mx (M.L.L.);
fevrier@tectijuana.mx (F.V.); jsoria57@gmail.com (J.S.)
* Correspondence: ocastillo@tectijuana.mx; Tel.: +52-664-623-6318

Received: 26 March 2019; Accepted: 23 April 2019; Published: 28 April 2019
����������
�������

Abstract: This article describes an optimization methodology based on a model of competitiveness
between different metaheuristic methods. The main contribution is a strategy to dynamically find the
algorithm that obtains the best result based on the competitiveness of methods to solve a specific
problem using different performance metrics depending on the problem. The algorithms used in the
preliminary tests are: the firefly algorithm (FA), which is inspired by blinking fireflies; wind-driven
optimization (WDO), which is inspired by the movement of the wind in the atmosphere, and in
which the positions and velocities of the wind packages are updated; and finally, drone squadron
optimization (DSO)—the inspiration for this method is new and interesting—based on artifacts,
where drones have a command center that sends information to individual drones and updates their
software to optimize the objective function. The proposed model helps discover the best method to
solve a specific problem, and also reduces the time that it takes to search for methods before finding
the one that obtains the most satisfactory results. The main idea is that with this competitiveness
approach, methods are tested at the same time until the best one to solve the problem in question is
found. As preliminary tests of the model, the optimization of the benchmark mathematical functions
and membership functions of a fuzzy controller of an autonomous mobile robot was used.

Keywords: firefly algorithm; drone squadron optimization; wind-driven optimization; optimization;
fuzzy controller

1. Introduction

Metaheuristics, fuzzy logic, and artificial neural networks are models that are related to artificial
intelligence and are currently used to carry out optimization processes, solve control problems with
uncertainty, and perform predictions, among other problems found in industry, medicine, scientific
areas, etc. For example, in [1], a model for the development of a human resources portfolio that uses
a neuro-fuzzy approach is presented. Meanwhile, systems that are created using type-2 adaptive
neural networks for processing parameters are developed in [2]. Some other applications describe the
development of models based on fuzzy logic and artificial neural networks for prediction as in [3]. Also,
in [4], neuro-fuzzy adaptive inference systems are used for modeling complex systems. In addition, [5]
developed an adaptive neuro-fuzzy inference guidance system that provides instructions to drivers
based on optimal route solutions. These neuro-fuzzy applications are being applied more and more
as is the case of [6], where a neuro-fuzzy inference system is constructed for the evaluation of costs
and risks in the selection of multiple objectives of transport routes of hazardous materials in a road
network. Finally, Pamučar et al. [7] mentioned the use of fuzzy logic for modeling approaches for
railroad administration support. Most metaheuristics are inspired by nature, where they take the
main characteristics of survival of some individuals and become a new method, which is developed to
solve real problems that a simple heuristic sometimes cannot solve. As an example, the ant colony

Algorithms 2019, 12, 90; doi:10.3390/a12050090 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0002-7385-5689
https://orcid.org/0000-0002-0159-0407
http://www.mdpi.com/1999-4893/12/5/90?type=check_update&version=1
http://dx.doi.org/10.3390/a12050090
http://www.mdpi.com/journal/algorithms

Algorithms 2019, 12, 90 2 of 21

algorithm in [8,9], and Dorigo et al. [10] also describes applications of this method, giving good
results to solve optimization problems, finding routes or paths that lead to find the best solution in a
specific search space, which is based on how the ants find the shortest path from their anthill to their
food. Another example is the genetic algorithm, which is also a widely used metaheuristic and is
inspired by the biological evolution developed by John Henry Holland in [11,12], where the algorithm
is based on the idea of the survival of the fittest, going from generation in generation. In this case,
each generation has a best individual, which is considered the one that has a better performance to
find a good solution to a problem. Some examples of the use of the aforementioned algorithms are
the following. In [13], a new hybrid Gravitational Search Algorithm-Genetic Algorithm (GSA-GA)
algorithm is presented for the restriction of nonlinear optimization problems with mixed variables.
A hydrothermal system is also developed for storage by pumping that incorporates solar units using
particle swarm optimization as described in [14]. Another example of the use of metaheuristics
is the hybrid technique called Particle Swarm Optimization-Genetic Algorithm PSO-GA to solve
restricted optimization problems [15]; for multi-objective problems, particle swarm optimization has
been used as explained in [16]. In addition, Garg [17] illustrates a problem of structural engineering
design optimization with limitations of nonlinear resources using the artificial bee colony algorithm.
In addition, in the control area, metaheuristics are combined with fuzzy logic to solve optimization
problems, such as the optimization of membership functions to improve the behavior of a fuzzy
controller. For example, in [18], the firefly algorithm is used for the optimization of a fuzzy controller
of a standalone mobile robot, which performs dynamic adjustment of the randomness parameter of
the method. Also in [19], fuzzy dynamic adjustment is performed for optimization using galactic
swarm optimization, among others, and [20–22] also describe applications of the method. This article
proposes the development of a multi-metaheuristic competitive model using the firefly algorithm (FA),
the wind-driven particle optimization algorithm (WDO), and the drone squad optimization (DSO)
algorithm, where each of them competes with each other to demonstrate which of them is the best at
solving optimization problems. The question to answer in this work is: could a multi-metaheuristic
competitive method improve the performance of a fuzzy control? The algorithms chosen for this model
were selected because they proved to give good results in optimization problems according to the state
of the art and experimentation. The main contribution in this work is the development of a competitive
model that will serve as a methodology to solve optimization problems. The motivation in this work
arises with the concern to solve the need that exists regarding having an optimization methodology that
helps us evaluate different optimization algorithms by means of competitiveness between methods,
and thus solve the problems of optimization that arise in an application area. The objective is to find
the method that provides the best results in a particular optimization problem. Preliminary tests
were performed with unimodal, multimodal, multimodal benchmark functions of fixed dimension,
in addition to the optimization of a fuzzy controller of a robot that follows the line. This paper is
organized as follows: Section 2 describes the background of the methods used, Section 3 presents the
proposed methodology and shows the problems to be solved, Section 4 describes the results, Section 5
describes the discussion, and finally Section 6 show the conclusions.

2. Background on FA, WDO, DSO, and Fuzzy Logic

This section describes the characteristics and behavior of the selected methods for the development
of the proposed model. These methods were chosen from among many existing optimization algorithms,
because these have been shown to provide good results in solving optimization problems, in addition
to being relatively new and innovative. For this reason, this paper also intends to give them the
opportunity to test their potential in optimization performance.

Algorithms 2019, 12, 90 3 of 21

2.1. Firefly Algorithm (FA)

The firefly algorithm (FA) is inspired on the flickering fireflies, and was developed by Yang in 2008
in [23], and in [24], and applications of the method are presented in [25]. This method is a metaheuristic
that is developed based on three important rules.

1. All fireflies are the same.
2. Less bright fireflies will move toward the more bright fireflies.
3. The search space is given by the objective function.
In Equation (1), the attractiveness of a firefly is proportional to other fireflies, and the variation of

β and the distance r are given as follows.

β = β0e−γr2
, (1)

where β0 is the initial attractiveness at r = 0, e represents the basis of the natural logarithms, γ determines
the variation of attractiveness as the distance between the fireflies increases, and r is the distance
between each two fireflies.

The movement of a firefly i that is attracted by another more attractive firefly is determined by
Equation (2):

xt+1
i = xt

i + β0e−γr2
i j
(
xt

j − xt
i

)
+ αtε

t
i (2)

The current position is represented by the term xt
i , the second term determines the initial attraction

of the firefly β0, γ is the absorption coefficient, and r is the Euclidean distance between the positions
of the firefly i and the firefly j. The last term handles the exploration, where α is the parameter
that controls how much randomness the firefly is allowed to have in its movement, and is a vector
containing random numbers drawn from a Gaussian distribution or uniform distribution at time t.

In Equation (3), the r variable represents the distance between two fireflies, i and j.

ri j =

√√√ d∑
k=1

(
xi,k − x j,k

)2
(3)

where xi,k is the kth component of the spatial coordinate, xi is the position of a firefly, and ri j is the
Euclidean distance between two fireflies i and j.

2.2. Wind-Driven Optimization (WDO)

WDO is relatively new a metaheuristic inspired by the movement of the wind in the atmosphere,
and has been used to solve multidimensional problems. It was developed by [26,27]. In this case,
air packages represent the population in which the position and speed of their movement are updated
in each iteration.

ui
t+1 = (1−)u i

t − gxi
t

(
RT

∣∣∣∣∣1r − 1
∣∣∣∣∣(xopt − xi

t

))
+

cuother dim
t

r

 (4)

Equation (4) represents the new velocity that consists of a first term where one is the maximum
pressure, α is the coefficient of friction, and ui

t is the current velocity. The second term is composed by
g, which corresponds to the gravity, while xi

t is the current position, RT represents the universal gas
constant and temperature respectively, r represents the range of the air pack where all the air particles
are classified in descending order with respect to their pressure, and xopt is the best global position,
where the Coriolis constant is c.

xi
t+1 = xi

t + ui
t+1 (5)

and Equation (5) represents the next position in the WDO.

Algorithms 2019, 12, 90 4 of 21

2.3. Drone Squadron Optimization (DSO)

In the DSO algorithm, the drones can navigate autonomously, and this method was originally
developed in [28] and [29], and Yalcin et al. [30] describes some applications of the method. The sensors
in DSO can communicate over long distances and use solar energy, and one of the most important
features is that they can be updated not only regarding hardware, but also when changing their software.

The DSO algorithm consists of the simulation of a drone squadron with different equipment and
a command center. The command center uses information collected by the drones to perform two
operations:

1.- Maintain partial control of the search.
2.- Develop new control software for drones.

In general, the DSO consists of:

• Coordinates: representing a numerical solution.
• Scan the landscape: calculate the objective function and obtain the fitness value.
• Firmware: distinct rules/configurations to evolve the population.
• Team: group of agents that share a firmware, but operate on possibly different data.
• Squadron: group of teams with different firmware.

The following Figure 1 shows the DSO search cycle.

Algorithms 2019, 12 FOR PEER REVIEW 4

The DSO algorithm consists of the simulation of a drone squadron with different equipment
and a command center. The command center uses information collected by the drones to perform
two operations:
1.- Maintain partial control of the search.
2.- Develop new control software for drones.

In general, the DSO consists of:

• Coordinates: representing a numerical solution.

• Scan the landscape: calculate the objective function and obtain the fitness value.

• Firmware: distinct rules/configurations to evolve the population.

• Team: group of agents that share a firmware, but operate on possibly different data.

• Squadron: group of teams with different firmware.
The following Figure 1 shows the DSO search cycle.

Figure 1. Drone Squadron Optimization (DSO) search cycle.

DSO has two main equations that establish the rules of drone movement as shown below in
Equations (6) and (7): 𝑃 = 𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 𝑂𝑓𝑓𝑠𝑒𝑡() (6) 𝑇𝐶 = 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒(𝑃) (7)

Where 𝑃 is the complete perturbation formula that should be calculated to return the trial
coordinates, the variable 𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 is a particular coordinate, 𝑂𝑓𝑓𝑠𝑒𝑡 is a function that returns
the actual perturbation movement, and 𝑇𝐶 generates new trial coordinates through perturbation.

𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 = 𝑇𝑚𝐶 − 𝑈𝐵 𝐿𝐵 − 𝑇𝑚𝐶 (8)

Equation (8) is applied when a drone commits a violation when leaving the limits of the search
space, where 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 is equal to the infraction, 𝑇𝑚𝐶 represents the equipment coordinates, 𝑈𝐵 and 𝐿𝐵 correspond to the upper and lower limits, respectively, 𝐷 is equal to the number of
dimensions of the problem, and finally 𝑁 represents the number of drones per team.

To better explain the difference between the used methods, a comparison is made among them,
as illustrated in Table 1, with respect to one of the most used metaheuristics: particle swarm
optimization (PSO) as developed by Kennedy and Eberhart in [31] and [32]; applications of the
method are also described in [33]. PSO is a bio-inspired method in nature, to be more specific in the
behavior of the birds, where each one represents a particle. Considering that the WDO algorithm is
inspired by PSO, the following comparison table is made, and it should be noted that PSO is not
currently used in this methodology, but rather only used in this table for comparison purposes.

Figure 1. Drone Squadron Optimization (DSO) search cycle.

DSO has two main equations that establish the rules of drone movement as shown below in
Equations (6) and (7):

P = Departure + O f f set() (6)

TC = calculate(P) (7)

where P is the complete perturbation formula that should be calculated to return the trial coordinates,
the variable Departure is a particular coordinate, O f f set is a function that returns the actual perturbation
movement, and TC generates new trial coordinates through perturbation.

violationteam =
∑N

drone=1

∑D

j=1

∣∣∣TmC−UBJ

∣∣∣
+∣∣∣LB j − TmC

∣∣∣ (8)

Equation (8) is applied when a drone commits a violation when leaving the limits of the search
space, where violationteam is equal to the infraction, TmC represents the equipment coordinates, UBJ

and LB j correspond to the upper and lower limits, respectively, D is equal to the number of dimensions
of the problem, and finally N represents the number of drones per team.

To better explain the difference between the used methods, a comparison is made among them,
as illustrated in Table 1, with respect to one of the most used metaheuristics: particle swarm optimization

Algorithms 2019, 12, 90 5 of 21

(PSO) as developed by Kennedy and Eberhart in [31,32]; applications of the method are also described
in [33]. PSO is a bio-inspired method in nature, to be more specific in the behavior of the birds, where
each one represents a particle. Considering that the WDO algorithm is inspired by PSO, the following
comparison table is made, and it should be noted that PSO is not currently used in this methodology,
but rather only used in this table for comparison purposes.

Table 1. Comparison of the methods. DSO: drone squadron optimization; FA: firefly algorithm; PSO:
particle swarm optimization; WDO: wind-driven optimization.

Characteristics PSO FA WDO DSO

Population Particle Firefly Air package Drone
New speed vi

k+1 - ui
t+1 -

Current speed vi
k - ui

t -
Actual position xi τ xi

t
Next position xi

k+1 xt+1
i

xi
t+1

Better experience pi
k -

Best group experience pg
k -

Increase k t
Uniform random numbers between 0 and 1 r1 , r2 -

Cognitive parameter c1
Social parameter c2

2.4. Fuzzy Logic

Fuzzy logic was originally proposed by Zadeh in [34,35], and Zadeh [36] also describes recent
applications of the method. It is a tool that makes life more comfortable today, because it solves
problems that previously seemed to have no satisfactory solution. This is thanks to the use of linguistic
variables that can model human ways of thinking, and it is much easier to program artifacts that can
be manipulated using the logic of human reasoning. Fuzzy logic is combined with other artificial
intelligence techniques, and this combination is able to achieve something that once seemed very
distant: autonomous mobile robots. These include those robots that currently help with home duties,
and even open heart operations in hospitals, but that’s not all: in the world of industry, robots also play
a very important role in the manufacturing processes. In order for these robots to have that efficiency
in their work environment, it is very important that their software and hardware are constantly being
updated and optimized, as argued in [37].

We propose a fuzzy logic controller that is applied to create a soft response instead of a traditional
hard logical response. Other combinations and metaheuristics have been also used in conjunction with
fuzzy logic in robotics as in [38,39], and El Ferik et al. [40] also describes applications of the method.

3. Proposed Methodology

The methodology consists of creating a competitive model based on a set of metaheuristics,
and the motivation for this proposal was born with the aim of streamlining the search processes for
optimization methods, because many times in research when it comes to optimizing a specific problem,
time is lost experimenting with one metaheuristic after another, until finding the one that adapts better
to the problem to have an optimization with a satisfactory result. The general idea of this proposal is to
have a series of optimization methods, which receive an input (specific problem) to be processed, and
thus optimized. The method that produces a better result than the others in the competition will show
that it is the best to optimize that problem, and a metric is used to evaluate the particular results of the
problem. The motivation is to develop an optimization methodology where several metaheuristics are
used, thus evaluating their performance in optimizing and solving a particular problem.

Figure 2 shows the data flow of the proposed methodology. Step 1 is the input of the problem that
will be optimized, which is processed by the methods in steps 2–5. Then, in step 6, the simulation to
obtain the results is performed; in step 7, we show the ranking of errors. Step 8 illustrates the best
obtained error, in this case of minimization using the mean square error (MSE), where important data

Algorithms 2019, 12, 90 6 of 21

is obtained by the method, such as time, iteration, and error. In step 9, the best error is compared
with the stopping criterion. If the results meet the stopping criterion, the methodology ends as shown
in steps 10 and 11. If this is not the case, an improvement is made to the method that produced the
worst result, in order to continue generating competitiveness with the methods, and depending on the
method, the adjustment or improvement is made as shown in step 12, and step 13 begins a new cycle
until finding the method that meets the stopping criterion.

Algorithms 2019, 12 FOR PEER REVIEW 6

error is compared with the stopping criterion. If the results meet the stopping criterion, the
methodology ends as shown in steps 10 and 11. If this is not the case, an improvement is made to the
method that produced the worst result, in order to continue generating competitiveness with the
methods, and depending on the method, the adjustment or improvement is made as shown in step
12, and step 13 begins a new cycle until finding the method that meets the stopping criterion.

Figure 2. Data flow of the methodology.

3.1. Case 1: Benchmark Functions

In case 1, unimodal, multimodal, and fixed-dimension multimodal benchmark functions [41]
were optimized, and their definitions are summarized in Tables 2, 3, and 4, respectively. The
functions are optimized using the aforementioned methods, and the competitiveness among them is
compared, in this way finding out more detail about their operation and discovering the advantages
and disadvantages of each method.

Table 2. Unimodal benchmark functions.

Benchmark functions f1 – f7 𝒇𝟏(𝑥) = 𝑥 𝑆𝑒𝑎𝑟𝑐ℎ 𝑠𝑝𝑎𝑐𝑒 𝑥 ∈ −100, 100 𝑎𝑛𝑑 𝑓(𝑥∗) = 0
 𝒇𝟐(𝑥) = |𝑥 | |𝑥 | 𝑆𝑒𝑎𝑟𝑐ℎ 𝑠𝑝𝑎𝑐𝑒 𝑥 ∈ −10, 10 𝑎𝑛𝑑 𝑓(𝑥∗) = 0
 𝒇𝟑(𝑥) = 𝑥 𝑆𝑒𝑎𝑟𝑐ℎ 𝑠𝑝𝑎𝑐𝑒 𝑥 ∈ −100, 100 𝑎𝑛𝑑𝑓(𝑥∗) = 0
 𝒇𝟒(𝑥) = 𝑚𝑎𝑥 |𝑥 |, , 1 𝑖 𝑛 𝑆𝑒𝑎𝑟𝑐ℎ 𝑠𝑝𝑎𝑐𝑒 𝑥 ∈ −100, 100 𝑎𝑛𝑑 𝑓(𝑥∗) = 0

Figure 2. Data flow of the methodology.

3.1. Case 1: Benchmark Functions

In case 1, unimodal, multimodal, and fixed-dimension multimodal benchmark functions [41]
were optimized, and their definitions are summarized in Table 2, Table 3, and Table 4, respectively.
The functions are optimized using the aforementioned methods, and the competitiveness among them
is compared, in this way finding out more detail about their operation and discovering the advantages
and disadvantages of each method.

Table 2. Unimodal benchmark functions.

Benchmark functions f1–f7

f1(x) =
n∑

1=1
x2

i

Search space x j ∈ [−100, 100] and f (x∗) = 0

f2(x) =
n∑

i=1
|xi|+

∏n
i=1|xi|

Search space x j ∈ [−10, 10] and f (x∗) = 0

f3(x) =
n∑

i=1

 i∑
j−1

x j

2

Search space x j ∈ [−100, 100]and f (x∗) = 0

f4(x) = maxi{|xi|, , 1 ≤ i ≤ n}
Search space x j ∈ [−100, 100] and f (x∗) = 0

f5(x) =
∑n−1

i=1 [100
(
xi+1 − x2

i

)2
+ (xi − 1)2]

Search space x j ∈ [−30, 30] and f (x∗) = 0

f6(x) =
∑n

i=1([xi + 0.5])2

Search space x j ∈ [−100, 100] and f (x∗) = 0

f7(x) =
∑n

i=1 ix4
i + random[0, 1]

Search space x j ∈ [−1.28, 1.28] and f (x∗) = 0

Algorithms 2019, 12, 90 7 of 21

Table 3. Multimodal benchmark functions.

Benchmark functions f9–f11

f9(x) =
∑n

i=1 [x
2
i − 10cos(2πxi) + 10]

Search space x j ∈ [−5.12, 5.12] and f (x∗) = 0

f10(x) = −20exp
(
−0.2

√
1
n
∑n

i=1 x2
i

)
− exp

(
1
n
∑n

i=1 cos(2πxi)
)
+ 20 + e

Search space x j ∈ [−32, 32] and f (x∗) = 0

f11(x) =
1

400
∑n

i=1 x2
i −

n∏
i=1

cos
(

xi√
i

)
+ 1

Search space x j ∈ [−600, 600] and f (x∗) = 0

Table 4. Fixed-dimension multimodal benchmark functions.

Benchmark functions f15–f18

f15(x) =
∑11

i=1 [ai
x1(b2

i +bix2)
b2

i +bix3+x4
]
2

Search spacex j ∈ [−5, 5] and f (x∗) = 0.00030

f16(x) = 4x2
1 − 2.1x4

1 +
1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2
Search spacex j ∈ [−5, 5]and f (x∗) = −1.0316

f17(x) =
(
x2 −

5.1
4π2 x2

1 +
5
πx1 − 6

)2
+ 10

(
1− 1

8π

)
cosx1 + 10

Search spacex j ∈ [−5, 5] and f (x∗) = 0.398

f18(x) = [1 + (x1 + x2 + 1)2
(
19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2

)
] ∗ [30 + (2x1 − 3x2)

2] ∗(
18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2

)
]

Search spacex j ∈ [−2, 2] and f (x∗) = 3

3.2. Case 2 Fuzzy Controller

In this case, we propose the optimization for a fuzzy controller of an autonomous mobile robot,
using the multi-metaheuristic competitiveness model to find out which is the satisfactory optimization
algorithm for this specific problem; below, the fuzzy controller is explained in more detail.

This autonomous robot mobile controller is presented in [42,43]; in [44], some applications of the
method are described. The controller aims at accurately tracking a given desired trajectory, and it has
nine rules that allow it to create a relationship between the linguistic variables of the fuzzy system.
The linguistic variables are as follows: in the first input, it is the linear velocity (ev); in the second and
last input, it is the angular velocity (ew). The two inputs have the same linguistic values: positive (P),
zero (Z), and negative (N), with the same membership functions in each one. The outputs are two:
torque 1 (t1) and torque 2 (t2) represent the movement of the wheels when the robot rotates, and each
of these outputs has three triangular functions.

Figure 3 shows the desired trajectory that the robot has to follow; this figure has the Y axis of the
desired displacement line, and the X axis shows the displacement time.

Algorithms 2019, 12 FOR PEER REVIEW 8

This autonomous robot mobile controller is presented in [42] and [43]; in [44], some applications
of the method are described. The controller aims at accurately tracking a given desired trajectory,
and it has nine rules that allow it to create a relationship between the linguistic variables of the fuzzy
system. The linguistic variables are as follows: in the first input, it is the linear velocity (ev); in the
second and last input, it is the angular velocity (ew). The two inputs have the same linguistic values:
positive (P), zero (Z), and negative (N), with the same membership functions in each one. The
outputs are two: torque 1 (t1) and torque 2 (t2) represent the movement of the wheels when the robot
rotates, and each of these outputs has three triangular functions.

Figure 3. Desired trajectory in normalized axis.

Figure 3 shows the desired trajectory that the robot has to follow; this figure has the Y axis of the
desired displacement line, and the X axis shows the displacement time.

Figure 4. Obtained mean square error (MSE).

Figure 4 shows the red line as the desired trajectory, and the actual trajectory of the robot in
blue, and as can be seen, the robot is very much lost, since it generates a large error of 𝟑. 𝟖𝟓𝟒𝟏 × 𝟏𝟎 𝟎𝟑.

Figure 3. Desired trajectory in normalized axis.

Algorithms 2019, 12, 90 8 of 21

Figure 4 shows the red line as the desired trajectory, and the actual trajectory of the robot in blue,
and as can be seen, the robot is very much lost, since it generates a large error of 3.8541× 10+03.

Algorithms 2019, 12 FOR PEER REVIEW 8

This autonomous robot mobile controller is presented in [42] and [43]; in [44], some applications
of the method are described. The controller aims at accurately tracking a given desired trajectory,
and it has nine rules that allow it to create a relationship between the linguistic variables of the fuzzy
system. The linguistic variables are as follows: in the first input, it is the linear velocity (ev); in the
second and last input, it is the angular velocity (ew). The two inputs have the same linguistic values:
positive (P), zero (Z), and negative (N), with the same membership functions in each one. The
outputs are two: torque 1 (t1) and torque 2 (t2) represent the movement of the wheels when the robot
rotates, and each of these outputs has three triangular functions.

Figure 3. Desired trajectory in normalized axis.

Figure 3 shows the desired trajectory that the robot has to follow; this figure has the Y axis of the
desired displacement line, and the X axis shows the displacement time.

Figure 4. Obtained mean square error (MSE).

Figure 4 shows the red line as the desired trajectory, and the actual trajectory of the robot in
blue, and as can be seen, the robot is very much lost, since it generates a large error of 𝟑. 𝟖𝟓𝟒𝟏 × 𝟏𝟎 𝟎𝟑.

Figure 4. Obtained mean square error (MSE).

Figure 5 illustrates the membership functions of input 1, which is called the linear speed, where
its linguistic variables represent negative, zero, and positive values.Algorithms 2019, 12 FOR PEER REVIEW 9

Figure 5. Input linear velocity (ev), not optimized.

Figure 5 illustrates the membership functions of input 1, which is called the linear speed, where
its linguistic variables represent negative, zero, and positive values.

Figure 6. Input angular velocity (ew), not optimized.

Figure 6, we can find the membership functions; the blue color corresponds to a trapezoidal,
the orange represents the zero linguistic variable and is a triangular membership function, and the
yellow line is a trapezoidal membership function of input 2 of the fuzzy controller.

Figure 5. Input linear velocity (ev), not optimized.

Figure 6, we can find the membership functions; the blue color corresponds to a trapezoidal,
the orange represents the zero linguistic variable and is a triangular membership function, and the
yellow line is a trapezoidal membership function of input 2 of the fuzzy controller.

Figure 7 shows the three triangular membership functions of output 1, which represents the
movement of wheel 1 of the fuzzy control, as illustrated by the functions that do not look well defined,
because the controller is not optimized in this figure.

Algorithms 2019, 12, 90 9 of 21

Algorithms 2019, 12 FOR PEER REVIEW 9

Figure 5. Input linear velocity (ev), not optimized.

Figure 5 illustrates the membership functions of input 1, which is called the linear speed, where
its linguistic variables represent negative, zero, and positive values.

Figure 6. Input angular velocity (ew), not optimized.

Figure 6, we can find the membership functions; the blue color corresponds to a trapezoidal,
the orange represents the zero linguistic variable and is a triangular membership function, and the
yellow line is a trapezoidal membership function of input 2 of the fuzzy controller.

Figure 6. Input angular velocity (ew), not optimized.
Algorithms 2019, 12 FOR PEER REVIEW 10

Figure 1. Output T1, not optimized.

Figure 7 shows the three triangular membership functions of output 1, which represents the
movement of wheel 1 of the fuzzy control, as illustrated by the functions that do not look well
defined, because the controller is not optimized in this figure.

Figure 8. Output T2, not optimized.

Figure 8 represents that output 2 of the fuzzy controller (T2) represents the movement of wheel
2, and has negative, zero, and positive as linguistic variables. In this case, the three membership
functions are triangular.

Table 5. If-then fuzzy rules.N: negative, P: positive, Z: zero.

If then Rules
1. If (ev is N) and (ew is N) then (T1 is N)(T2 is N) (1)
2. If (ev is N) and (ew is Z) then (T1 is N)(T2 is Z) (1)
3. If (ev is N) and (ew is P) then (T1 is N)(T2 is P) (1)
4. If (ev is Z) and (ew is N) then (T1 is Z)(T2 is N) (1)
5. If (ev is Z) and (ew is Z) then (T1 is Z)(T2 is Z) (1)
6. If (ev is Z) and (ew is P) then (T1 is Z)(T2 is P) (1)
7. If (ev is P) and (ew is N) then (T1 is P)(T2 is N) (1)
8. If (ev is P) and (ew is Z) then (T1 is P)(T2 is Z) (1)
9. If (ev is P) and (ew is P) then (T1 is P)(T2 is P) (1)

Figure 7. Output T1, not optimized.

Figure 8 represents that output 2 of the fuzzy controller (T2) represents the movement of wheel 2,
and has negative, zero, and positive as linguistic variables. In this case, the three membership functions
are triangular.

Algorithms 2019, 12 FOR PEER REVIEW 10

Figure 1. Output T1, not optimized.

Figure 7 shows the three triangular membership functions of output 1, which represents the
movement of wheel 1 of the fuzzy control, as illustrated by the functions that do not look well
defined, because the controller is not optimized in this figure.

Figure 8. Output T2, not optimized.

Figure 8 represents that output 2 of the fuzzy controller (T2) represents the movement of wheel
2, and has negative, zero, and positive as linguistic variables. In this case, the three membership
functions are triangular.

Table 5. If-then fuzzy rules.N: negative, P: positive, Z: zero.

If then Rules
1. If (ev is N) and (ew is N) then (T1 is N)(T2 is N) (1)
2. If (ev is N) and (ew is Z) then (T1 is N)(T2 is Z) (1)
3. If (ev is N) and (ew is P) then (T1 is N)(T2 is P) (1)
4. If (ev is Z) and (ew is N) then (T1 is Z)(T2 is N) (1)
5. If (ev is Z) and (ew is Z) then (T1 is Z)(T2 is Z) (1)
6. If (ev is Z) and (ew is P) then (T1 is Z)(T2 is P) (1)
7. If (ev is P) and (ew is N) then (T1 is P)(T2 is N) (1)
8. If (ev is P) and (ew is Z) then (T1 is P)(T2 is Z) (1)
9. If (ev is P) and (ew is P) then (T1 is P)(T2 is P) (1)

Figure 8. Output T2, not optimized.

Algorithms 2019, 12, 90 10 of 21

Table 5 shows the representation of the if-then rules of the fuzzy controller that describe the
relationship between the linguistic variables, where ev represents the linear velocity and ew is the
angular velocity.

Table 5. If-then fuzzy rules.N: negative, P: positive, Z: zero.

If then Rules

1. If (ev is N) and (ew is N) then (T1 is N)(T2 is N) (1)
2. If (ev is N) and (ew is Z) then (T1 is N)(T2 is Z) (1)
3. If (ev is N) and (ew is P) then (T1 is N)(T2 is P) (1)
4. If (ev is Z) and (ew is N) then (T1 is Z)(T2 is N) (1)
5. If (ev is Z) and (ew is Z) then (T1 is Z)(T2 is Z) (1)
6. If (ev is Z) and (ew is P) then (T1 is Z)(T2 is P) (1)
7. If (ev is P) and (ew is N) then (T1 is P)(T2 is N) (1)
8. If (ev is P) and (ew is Z) then (T1 is P)(T2 is Z) (1)
9. If (ev is P) and (ew is P) then (T1 is P)(T2 is P) (1)

4. Results

This section is presented in two parts. The first is for case 1, which describes the results obtained
by the optimization of benchmark functions using the three methods proposed for the methodology.
The second part, for case 2, shows the results of the fuzzy controller optimization for the autonomous
mobile robot. For this optimization, the method that optimizes generates a vector of data which goes
to the parameters of the membership functions being optimized.

4.1. Case 1 Results: Benchmark Functions

Table 6 shows the parameters used for the benchmark functions. Column 1 of Table 7 shows
the number that represents the particular function; column 2 shows the minimum of the function;
columns 3 and 4 show the averages and standard deviations respectively obtained with the WDO;
finally, columns 5 and 6 shows the results of DSO. Each of these functions was evaluated 30 times
with the same parameters to obtain the averages and standard deviations. The parameters used in the
WDO, DSO, and FA methods are presented in Table 8.

Table 6. Parameters used in the experiments.

Population Iterations Dimensions

30 500 30

Table 7. Results for 30 dimensions.

WDO DSO

Function fmin Average Standard
Deviation Average Standard

Deviation

f 1 0 3.66× 10−27 3.87× 10−27 4.95× 10−09 1.39× 10−08

f 2 0 3.26× 10−14 2.70× 10−14 8.94× 10−09 2.68× 10−08

f 3 0 2.42× 10−20 2.02× 10−20 1.16× 10−03 3.77× 10−03

f 4 0 5.90× 10−13 6.18× 10−13 3.00× 10−03 6.76× 10−03

f 5 0 28.5696 7.65× 10−02 9.82× 10+00 1.15× 10+01

f 6 0 1.74× 10−02 4.52× 10−03 2.71× 10−03 2.14× 10−05

f 7 0 1.12× 10−02 3.09× 10−02 2.71× 10−03 1.64× 10−03

f 9 0 −118.27 0 5.58× 10+00 9.24× 10+00

f 10 0 9.53× 10−15 1.23× 10−14 3.47× 10−07 7.22× 10−07

f 11 0 0 0 3.66× 10−11 1.41× 10−10

f 15 0.00030 3.07× 10−04 2.18× 10−07 3.07× 10−04 1.39× 10−15

f 16 −1.0316 1.0316 6.78× 10−16 −1.03× 10+00 4.59× 10−16

f 17 0.398 0.3979 6.78× 10−05 0
f 18 3 7.7827 3.61× 10−15 3 3.26× 10−15

Algorithms 2019, 12, 90 11 of 21

The WDO average and standard deviation results with 64 dimensions can be compared with the
results obtained with 30 dimensions.

Table 8. Parameters used in the WDO, DSO, and FA methods.

Population Iterations Dimensions

30 500 64

Table 9. Simulations results for 64 dimensions.

WDO DSO

Function fmin Average Standard
Deviation Average Standard

Deviation

f 1 0 5.07× 10−27 8.47× 10−27 8.63× 10−06 2.16× 10−05

f 2 0 4.57× 10−14 5.89× 10−14 1.50× 10−03 3.99× 10−03

f 3 0 5.25× 10−18 5.66× 10−18 7.43× 10−02 2.04× 10−01

f 4 0 2.32× 10−12 1.68× 10−12 7.80× 10−03 1.35× 10−02

f 5 0 6.45× 10−13 5.42× 10−13 1.54× 10+01 2.34× 10+01

f 6 0 7.34× 10−02 1.36× 10−02 1.59× 10−05 2.41× 10−05

f 7 0 5.11× 10−02 9.11× 10−03 5.79× 10−03 3.78× 10−03

f 9 0 2.13× 10+02 4.66× 10+01 5.58× 10+01 5.22× 10+01

f 10 0 3.85× 10−15 6.05× 10−15 1.30× 10−03 2.41× 10−03

f 11 0 2.12× 10+01 2.70× 10−01 2.96× 10−07 1.05× 10−06

f 15 0.00030 3.08× 10−04 1.68× 10−07 3.07× 10−04 2.37× 10−16

f 16 −1.0316 −1.03× 10+00 6.78× 10−16 −1.03× 10+00 4.50× 10−16

f 17 0.398 3.98× 10−01 4.90× 10−06 3.98× 10−01 0
f 18 3 7.7827 3.61× 10−15 3 6.54× 10−16

Table 9 above shows the optimization results of benchmark functions where the minimum
of functions f15, f16, f17, and f18 is different from zero. With the evaluation of functions with
different minima, the performance of the optimization in the functions with the WDO and DSO can be
better observed.

Table 10 shows the parameters used in the above-mentioned methods. These parameters are the
same for each of these algorithms as a fair form of competition is aimed.

Table 10. Population, iterations, and dimensions.

Population Iterations Dimensions

30 500 128

Table 11 shows the results of 30 experiments, where the performance of the WDO and DSO
method is compared, using 128 dimensions for the search evaluation of the objective function, which is
in this case the minimum of each function; these are shown in column 1 of the table.

The following Tables 12 and 13 show the results obtained with the FA for the optimization of
the f1 and f2 function with 30, 64, and 128 dimensions, respectively, where it can be noted that the
results are very far from the global minima of the functions. Previously, we have been experimenting
with this FA method, where we can note that in order to obtain a good result with it, it is necessary to
increase the iterations and maintain a population of 30 to 50 fireflies. Therefore, as future work in this
methodology, an adjustment will be made to the method to improve its behavior in the optimization
of benchmark functions, remembering that this methodology is proposed just for that: to find which
method is good for a specific problem and in competitiveness with others. For the method with which
a worse result is obtained, we can make an improvement to help its behavior.

Algorithms 2019, 12, 90 12 of 21

Table 11. Results for 128 dimensions.

WDO DSO

Function fmin Average Standard
Deviation Average Standard

Deviation

f 1 0 4.35× 10−27 7.16× 10−27 1.49× 10−04 7.68× 10−04

f 2 0 3.88× 10−14 4.38× 10−14 2.66× 10−02 4.83× 10−02

f 3 0 1.09× 10−16 1.07× 10−16 1.21× 10+02 3.34× 10+02

f 4 0 1.52× 10−12 1.62× 10−12 2.56× 10−02 5.11× 10−02

f 5 0 7.68× 10−13 4.61× 10−13 4.60× 10+01 5.62× 10+01

f 6 0 1.85× 10−01 3.26× 10−02 7.43× 10−01 7.34× 10−01

f 7 0 1.66× 10−01 3.11× 10−02 6.83× 10−03 6.49× 10−03

f 9 0 4.58× 10+02 2.09× 10+02 8.38× 10+01 1.19× 10+02

f 10 0 8.88× 10−16 4.01× 10−16 2.12× 10−04 7.98× 10−04

f 11 0 2.07× 10+01 3.91× 10+00 1.48× 10−03 3.93× 10−03

f 15 0.00030 3.08× 10−04 1.93× 10−07 3.07× 10−04 1.39× 10−16

f 16 −1.0316 −1.03× 10+00 8.78× 10−16 −1.03× 10+00 4.70× 10−16

f 17 0.398 3.98× 10−01 3.46× 10−06 3.98× 10−01 0.00× 10+00

f 18 3 7.78× 10+00 3.61× 10−15 3.00× 10+00 4.79× 10−06

Table 12. Results for f1 with FA.

Figure f1 f1 f1

Iterations 500 500 500
Dimensions 30 64 128

Average 8.80× 10−03 8.40× 10−03 3.67× 10−01

Standard Deviation 1.90× 10−03 1.20× 10−02 2.93× 10−02

Table 13. Results for f2 with FA.

Function f2 f2 f2

Iterations 500 500 500
Dimensions 30 64 128

Average 3.20× 10−01 1.84× 1000 1.45× 1000

Standard Deviation 6.92× 10−02 2.58× 10−01 2.00× 10−01

4.2. Case 2 Results of the Fuzzy Controller Optimization

Table 14 shows the parameters used in the FA, WDO, and DSO methods, and Table 15 shows the
30 experiments performed to obtain the best optimized fuzzy system, using as metric the MSE, where
it can be observed that the best error found is of 0.00169, and in general, the values only varied from
10−02 to 10−03.

Table 14. Parameters used in FA, WDO, and DSO for fuzzy controller optimization.

Population Iterations

20 1500

In Figures 9 and 10, the variation that was made in the parameters of the membership functions
of the two inputs of the fuzzy controller is observed, where the uncertainty that exists between each of
them can be observed, and with this, the error that generates the fuzzy controller in the simulation
is considerably improved. Figures 11 and 12 show the outputs of the controller optimized by the
FA, respectively.

Algorithms 2019, 12, 90 13 of 21

Table 15. Results of the experiments with the fuzzy controller.

Experiment MSE Experiment MSE

1 1.96× 10−03 16 2.99× 10−02

2 4.80× 10−03 17 3.33× 10−02

3 6.31× 10−03 18 4.09× 10−02

4 6.33× 10−03 19 4.32× 10−02

5 8.25× 10−03 20 5.33× 10−02

6 9.09× 10−03 21 7.11× 10−02

7 9.58× 10−03 22 7.06× 10−02

8 1.71× 10−02 23 7.72× 10−02

9 1.82× 10−02 24 8.03× 10−02

10 1.85× 10−02 25 8.47× 10−02

11 1.98× 10−02 26 8.75× 10−02

12 2.11× 10−02 27 8.97× 10−02

13 2.27× 10−02 28 9.16× 10−01

14 2.45× 10−02 29 9.42× 10−02

15 2.52× 10−02 30 9.63× 10−02Algorithms 2019, 12 FOR PEER REVIEW 14

Figure 9. Input 1 (ev).

Figure 10. Input 2 (ew).

Figure 11. Output 1 (T1).

Figure 9. Input 1 (ev).

Algorithms 2019, 12 FOR PEER REVIEW 14

Figure 9. Input 1 (ev).

Figure 10. Input 2 (ew).

Figure 11. Output 1 (T1).

Figure 10. Input 2 (ew).

Algorithms 2019, 12, 90 14 of 21

Algorithms 2019, 12 FOR PEER REVIEW 14

Figure 9. Input 1 (ev).

Figure 10. Input 2 (ew).

Figure 11. Output 1 (T1). Figure 11. Output 1 (T1).

Algorithms 2019, 12 FOR PEER REVIEW 15

Figure 12. Output 2 (T2).

As can be noted in Table 16, the results obtained with the WDO method were very far from each
other, since it has the best MSE of 0.000019, but as the worst is 0.057094. For this reason, on average,
this method cannot be the best at optimizing this specific problem.

Table 16. Results obtained with WDO.

Experiment MSE Experiment MSE
1 1.90 × 10 16 1.64 × 10
2 1.90 × 10 17 1.64 × 10
3 5.40 × 10 18 2.60 × 10
4 5.40 × 10 19 2.93 × 10
5 6.20 × 10 20 4.33 × 10
6 6.20 × 10 21 1.62 × 10
7 6.90 × 10 22 1.65 × 10
8 8.70 × 10 23 6.21 × 10
9 8.70 × 10 24 6.35 × 10

10 9.10 × 10 25 7.73 × 10
11 9.80 × 10 26 1.67 × 10
12 1.05 × 10 27 1.67 × 10
13 1.15 × 10 28 2.65 × 10
14 1.38 × 10 29 2.92 × 10
15 1.60 × 10 30 5.70 × 10

Figures 13, 14, 15, and 16 show the optimized movement of the parameters of the membership
functions of the inputs ev, ew and the outputs t1 and t2, respectively.

Figure 12. Output 2 (T2).

As can be noted in Table 16, the results obtained with the WDO method were very far from each
other, since it has the best MSE of 0.000019, but as the worst is 0.057094. For this reason, on average,
this method cannot be the best at optimizing this specific problem.

Table 16. Results obtained with WDO.

Experiment MSE Experiment MSE

1 1.90× 10−05 16 1.64× 10−04

2 1.90× 10−05 17 1.64× 10−04

3 5.40× 10−05 18 2.60× 10−04

4 5.40× 10−05 19 2.93× 10−04

5 6.20× 10−05 20 4.33× 10−04

6 6.20× 10−05 21 1.62× 10−03

7 6.90× 10−05 22 1.65× 10−03

8 8.70× 10−05 23 6.21× 10−03

9 8.70× 10−05 24 6.35× 10−03

10 9.10× 10−05 25 7.73× 10−03

11 9.80× 10−05 26 1.67× 10−02

12 1.05× 10−04 27 1.67× 10−02

13 1.15× 10−04 28 2.65× 10−02

14 1.38× 10−04 29 2.92× 10−02

15 1.60× 10−04 30 5.70× 10−02

Algorithms 2019, 12, 90 15 of 21

Figures 13–16 show the optimized movement of the parameters of the membership functions of
the inputs ev, ew and the outputs t1 and t2, respectively.Algorithms 2019, 12 FOR PEER REVIEW 16

Figure 13. Membership functions for Input 1.

Figure 14. Membership functions for Input 2.

Figure 15. Membership functions for Output 1.

Figure 13. Membership functions for Input 1.

Algorithms 2019, 12 FOR PEER REVIEW 16

Figure 13. Membership functions for Input 1.

Figure 14. Membership functions for Input 2.

Figure 15. Membership functions for Output 1.

Figure 14. Membership functions for Input 2.

Algorithms 2019, 12 FOR PEER REVIEW 16

Figure 13. Membership functions for Input 1.

Figure 14. Membership functions for Input 2.

Figure 15. Membership functions for Output 1. Figure 15. Membership functions for Output 1.

Algorithms 2019, 12, 90 16 of 21
Algorithms 2019, 12 FOR PEER REVIEW 17

Figure 16. Membership functions for Output 2.

DSO on average gives a better result than the FA and WDO. As can be noted in column 2 in
Table 17, it appears that this is not the case, since the WDO method gives much lower values, but
they are very separated from each other, and the DSO remains consistent with the delivered results
of the MSE.

Table 17. Results obtained with DSO.

Experiment MSE Experiment MSE
1 1.69 × 10 16 2.99 × 10
2 4.80 × 10 17 3.33 × 10
3 6.31 × 10 18 4.09 × 10
4 6.33 × 10 19 4.32 × 10
5 8.25 × 10 20 5.33 × 10
6 9.09 × 10 21 7.11 × 10
7 9.58 × 10 22 7.60 × 10
8 1.71 × 10 23 7.72 × 10
9 1.82 × 10 24 8.03 × 10

10 1.85 × 10 25 8.04 × 12
11 1.98 × 10 26 8.75 × 10
12 2.11 × 10 27 8.97 × 10
13 2.27 × 10 28 9.16 × 10
14 2.45 × 10 29 9.42 × 10
15 2.52 × 10 30 9.63 × 10

As can be noted from figures 17, 18, 19, and 20, the overlap between existing functions helps the
robot to have a better tracking of the desired trajectory, in comparison with the other methods used
in this methodology.

Figure 16. Membership functions for Output 2.

DSO on average gives a better result than the FA and WDO. As can be noted in column 2 in
Table 17, it appears that this is not the case, since the WDO method gives much lower values, but
they are very separated from each other, and the DSO remains consistent with the delivered results of
the MSE.

Table 17. Results obtained with DSO.

Experiment MSE Experiment MSE

1 1.69× 10−03 16 2.99× 10−02

2 4.80× 10−03 17 3.33× 10−02

3 6.31× 10−03 18 4.09× 10−02

4 6.33× 10−03 19 4.32× 10−02

5 8.25× 10−03 20 5.33× 10−02

6 9.09× 10−03 21 7.11× 10−02

7 9.58× 10−03 22 7.60× 10−02

8 1.71× 10−02 23 7.72× 10−02

9 1.82× 10−02 24 8.03× 10−02

10 1.85× 10−02 25 8.04× 12−02

11 1.98× 10−02 26 8.75× 10−02

12 2.11× 10−02 27 8.97× 10−02

13 2.27× 10−02 28 9.16× 10−02

14 2.45× 10−02 29 9.42× 10−02

15 2.52× 10−02 30 9.63× 10−02

As can be noted from Figures 17–20, the overlap between existing functions helps the robot
to have a better tracking of the desired trajectory, in comparison with the other methods used in
this methodology.

Table 18 summarized the results of the optimization methods.

Table 18. Summary of results from the optimization methods.

FA WDO DSO

Average 4.21× 10−02 5.78× 10−03 5.02× 10−02

Standard deviation 3.31× 10−02 1.24× 10−02 3.3× 10−02

Algorithms 2019, 12, 90 17 of 21

The equation for the Z test is as follows:

Z =
(x1 − x2) − (µ1 − µ2)

σx1−x2

(9)

Table 19 shows the statistical data used in the z test, and Table 20 the results of the test.

Table 19. Statistical data.

Variable Number of Samples Mean Standard Deviation

WDO 30 0.006 0.012
DSO 30 0.042 0.033

Table 20. Parameters statistical test.

Parameters Value

Difference −0.036
z (Observed value) −5.628

z (Critica value) −1.645
valor-p (one-tailed) <0.0001

alpha 0.05Algorithms 2019, 12 FOR PEER REVIEW 18

Figure 17. Input 1 optimized by DSO.

Figure 18. Input 2 optimized by DSO.

Figure 19. Output 1 optimized by DSO.

Figure 17. Input 1 optimized by DSO.

Algorithms 2019, 12 FOR PEER REVIEW 18

Figure 17. Input 1 optimized by DSO.

Figure 18. Input 2 optimized by DSO.

Figure 19. Output 1 optimized by DSO.

Figure 18. Input 2 optimized by DSO.

Algorithms 2019, 12, 90 18 of 21

Algorithms 2019, 12 FOR PEER REVIEW 18

Figure 17. Input 1 optimized by DSO.

Figure 18. Input 2 optimized by DSO.

Figure 19. Output 1 optimized by DSO. Figure 19. Output 1 optimized by DSO.

Algorithms 2019, 12 FOR PEER REVIEW 19

Figure 20. Output 1 optimized by DSO.

Table 18 summarized the results of the optimization methods.

Table 18. Summary of results from the optimization methods.

 FA WDO DSO
Average 4.21 × 10 5.78 × 10 5.02 × 10

Standard deviation 3.31 × 10 1.24 × 10 3.3 × 10
The equation for the Z test is as follows: 𝑍 = (�̅� − �̅�) − (𝜇 − 𝜇)𝜎 ̅ ̅ (9)

Table 19. Statistical data.

 Variable Number of samples Mean Standard deviation
 WDO 30 0.006 0.012
 DSO 30 0.042 0.033

Table 19 shows the statistical data used in the z test, and Table 20 the results of the test.

Table 20. Parameters statistical test.

Parameters Value
Difference −0.036

z (Observed value) −5.628
z (Critica value) −1.645

valor-p (one-tailed) < 0.0001
alpha 0.05

5. Discussion

The methodology proposes competitiveness among optimization metaheuristics to improve
overall performance, and this is aimed at reducing the search time from one method to another
when one of them does not give the expected results. In addition to the search time, the superior
method is also obtained with more certainty for each type of problem optimization, since the
competitiveness that exists between them delivers only the best result. With this methodology, the
method that generates the worst result is also helped, also assisting other scientists regarding the

Figure 20. Output 1 optimized by DSO.

5. Discussion

The methodology proposes competitiveness among optimization metaheuristics to improve
overall performance, and this is aimed at reducing the search time from one method to another when
one of them does not give the expected results. In addition to the search time, the superior method is
also obtained with more certainty for each type of problem optimization, since the competitiveness that
exists between them delivers only the best result. With this methodology, the method that generates
the worst result is also helped, also assisting other scientists regarding the cases for which the used
methods are good and for which they are not. Therefore, with the obtained results in the optimization
of unimodal, multimodal, and fixed-dimension multimodal benchmark functions, it can be said that
the WDO in general gives, on average, better results for this type of function, while the DSO algorithm
gives more results that are far from the minimum of the function. However, in terms of the parameter
optimization of the membership functions of a fuzzy controller in particular, as can noted in Table 18,
the method that on average produces better results is DSO. The method that can be said to be the worst
regarding these results of competitiveness is the FA, since this method did not show good results with
any of the two previous cases of minimization. For this reason, as future work, it is proposed to make
an improvement to this method, depending on the previous research that has its disadvantages in
these cases.

Algorithms 2019, 12, 90 19 of 21

6. Conclusions

The proposed methodology was created to optimize problems, and was tested with the unimodal
and multimodal benchmark functions with the WDO, DSO, and FA methods. Each of them was put
into competition with the same parameters for a fair competition, with 30 experiments as the limitation.
Under these parameters, it was obtained that WSO was better for benchmark functions. On the other
hand, for the optimization of the parameters of the membership functions, the DSO method was
better, and it was the metaheuristic that found the data vector that managed to optimize the functions
of the fuzzy controller in such a way that the robot in simulation approached the desired trajectory.
The proposed methodology showed which method in the competition was the best to solve a specific
case, and was expected to improve the method with which good results were not obtained. As future
work, we plan to perform more experimentation with other optimization problems. In addition, it is
worth mentioning that other methods for the required optimization can be added in this methodology.
The proposed methodology for optimization problems is the main contribution of this work, resulting
in the best method among the competition.

Author Contributions: F.V. and J.S. reviewed the state of the art; O.C. contributed to the discussion and analysis
of the results; M.L.L. analyzed of the original method and used fuzzy logic for parameter adaptation, contributed
to the simulations and wrote the paper. All authors have read and approved the final manuscript.

Funding: This research was funded by CONACYT under grant 122.

Acknowledgments: We would like to express our gratitude to CONACYT, Tijuana Institute of Technology for the
facilities and resources granted for the development of this research.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lukovac, V.; Pamučar, D.; Popović, M.; Đorović, B. Portfolio model for analyzing human resources:
An approach based on neuro-fuzzy modeling and the simulated annealing algorithm. Expert Syst. Appl.
2017, 90, 318–331. [CrossRef]

2. Pamučar, D.; Vasin, L.; Atanasković, P.; Miličić, M. Planning the City Logistics Terminal Location by Applying
the Green p-Median Model and Type-2 Neurofuzzy Network. Comput. Intell. Neurosci. 2016, 2016, 1–15.
[CrossRef]

3. Sremac, S.; Tanackov, I.; Kopić, M.; Radović, D. ANFIS model for determining the economic order quantity.
Decis. Mak. Appl. Manag. Eng. 2018, 2, 81–92. [CrossRef]

4. Stojčić, M.; Stjepanović, A.; Stjepanović, Đ. ANFIS model for the prediction of generated electricity of
photovoltaic modules. Decis. Mak. Appl. Manag. Eng. 2019, 1, 35–48. [CrossRef]

5. Pamucar, D.; Ćirović, G. Vehicle route selection with an adaptive neuro fuzzy inference system in uncertainty
conditions. Decis. Mak. Appl. Manag. Eng. 2018, 1, 13–37. [CrossRef]

6. Pamučar, D.; Ljubojević, S.; Kostadinović, D.; Đorović, B. Cost and risk aggregation in multi-objective route
planning for hazardous materials transportation—A neuro-fuzzy and artificial bee colony approach. Expert
Syst. Appl. 2016, 65, 1–15. [CrossRef]

7. Pamučar, D.; Atanasković, P.; Miličić, M. Modeling of fuzzy logic system for investment management in the
railway infrastructure. Teh. Vjesn. Tech. Gaz. 2015, 22. [CrossRef]

8. Dorigo, M.; Gambardella, L.M. Ant colony system: A cooperative learning approach to the traveling salesman
problem. IEEE Trans. Evol. Comput. 1997, 1, 53–66. [CrossRef]

9. Liu, J.; Yang, J.; Liu, H.; Tian, X.; Gao, M. An improved ant colony algorithm for robot path planning.
Soft Comput. 2017, 21, 5829–5839. [CrossRef]

10. Dorigo, M.; Birattari, M.; Blum, C.; Clerc, M.; Stutzle, T.; Winfield, A. Ant colony optimization and swarm
intelligence. In Proceedings of the ANTS 2008: The 6th International Conference on Ant Colony Optimization
and Swarm Intelligence, Brussels, Belgium, 22–24 September 2008; Springer: Berlin, Germany, 2008; Volume
5217.

11. Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology,
Control, and Artificial Intelligence; MIT Press: Cambridge, MA, USA, 1992.

http://dx.doi.org/10.1016/j.eswa.2017.08.034
http://dx.doi.org/10.1155/2016/6972818
http://dx.doi.org/10.31181/dmame1802079s
http://dx.doi.org/10.31181/dmame1901035s
http://dx.doi.org/10.31181/dmame180113p
http://dx.doi.org/10.1016/j.eswa.2016.08.024
http://dx.doi.org/10.17559/TV-20140626104653
http://dx.doi.org/10.1109/4235.585892
http://dx.doi.org/10.1007/s00500-016-2161-7

Algorithms 2019, 12, 90 20 of 21

12. Pal, S.K.; Wang, P.P. Genetic Algorithms for Pattern Recognition; CRC Press: Boca Raton, FL, USA, 2017.
13. Garg, H. A hybrid GSA-GA algorithm for constrained optimization problems. Inf. Sci. 2019, 478, 499–523.

[CrossRef]
14. Patwal, R.S.; Narang, N.; Garg, H. A novel TVAC-PSO based mutation strategies algorithm for generation

scheduling of pumped storage hydrothermal system incorporating solar units. Energy 2018, 142, 822–837.
[CrossRef]

15. Garg, H. A hybrid PSO-GA algorithm for constrained optimization problems. Appl. Math. Comput. 2016,
274, 292–305. [CrossRef]

16. Garg, H.; Sharma, S.P. Multi-objective reliability-redundancy allocation problem using particle swarm
optimization. Comput. Ind. Eng. 2013, 61, 247–255. [CrossRef]

17. Garg, H. Solving structural engineering design optimization problems using an artificial bee colony algorithm.
J. Ind. Manag. Optim. 2014, 3, 777–794. [CrossRef]

18. Lagunes, M.L.; Castillo, O.; Soria, J.; Garcia, M.; Valdez, F. Optimization of granulation for fuzzy controllers
of autonomous mobile robots using the Firefly Algorithm. Granul. Comput. 2019, 4, 185–195. [CrossRef]

19. Bernal, E.; Castillo, O.; Soria, J. Imperialist Competitive Algorithm with Dynamic Parameter Adaptation
Applied to the Optimization of Mathematical Functions. In Nature-Inspired Design of Hybrid Intelligent Systems;
Springer: Cham, Switzerland, 2017; Volume 667, pp. 329–341.

20. Caraveo, C.; Valdez, F.; Castillo, O. A New Meta-Heuristics of Optimization with Dynamic Adaptation of
Parameters Using Type-2 Fuzzy Logic for Trajectory Control of a Mobile Robot. Algorithms 2017, 10, 85.
[CrossRef]

21. Olivas, F.; Amador-Angulo, L.; Perez, J.; Careveo, C.; Valdez, F.; Castillo, O. Comparative Study of Type-2
Fuzzy Particle Swarm, Bee Colony and Bat Algorithms in Optimization of Fuzzy Controllers. Algorithms
2017, 10, 101. [CrossRef]

22. Lagunes, M.L.; Castillo, O.; Soria, J. Methodology for the Optimization of a Fuzzy Controller Using a
Bio-inspired Algorithm. In Proceedings of the North American Fuzzy Information Processing Society Annual
Conference, Cancun, Mexico, 16 October 2017; Springer: Cham, Switzerland, 2018; Volume 648, pp. 131–137.

23. Yang, X.-S. Firefly Algorithm, Lévy Flights and Global Optimization. In Research and Development in Intelligent
Systems XXVI; Springer: London, UK, 2010; pp. 209–218.

24. Yang, X.S.; He, X. Firefly algorithm: Recent advances and applications. Int. J. Swarm Intell. 2013, 1, 1308–3898.
[CrossRef]

25. Gandomi, A.H.; Yang, X.-S.; Alavi, A.H. Mixed variable structural optimization using Firefly Algorithm.
Comput. Struct. 2011, 89, 2325–2336. [CrossRef]

26. Bayraktar, Z.; Komurcu, M.; Bossard, J.A.; Werner, D.H. The Wind Driven Optimization Technique and its
Application in Electromagnetics. IEEE Trans. Antennas Propag. 2013, 61, 2745–2757. [CrossRef]

27. Bayraktar, Z.; Komurcu, M.; Werner, D.H. Wind Driven Optimization (WDO): A novel nature-inspired
optimization algorithm and its application to electromagnetics. In Proceedings of the 2010 IEEE Antennas
and Propagation Society International Symposium, Toronto, ON, Canada, 11–17 July 2010; IEEE: Piscataway,
NJ, USA, 2010; pp. 1–4.

28. De Melo, V.V.; Banzhaf, W. Drone Squadron Optimization: A novel self-adaptive algorithm for global
numerical optimization. Neural Comput. Appl. 2018, 30, 3117–3144. [CrossRef]

29. De Melo, V.V. A novel metaheuristic method for solving constrained engineering optimization problems:
Drone Squadron Optimization. arXiv 2017, arXiv:1708.01368.

30. Yalcin, Y.; Pekcan, O. Nuclear Fission-Nuclear Fusion algorithm for global optimization: A modified Big
Bang-Big Crunch algorithm. Neural Comput. Appl. 2018, 31, 1–33. [CrossRef]

31. Shi, Y. Particle swarm optimization: Developments, applications and resources. In Proceedings of the 2001
Congress on Evolutionary Computation (IEEE Cat. No.01TH8546), Seoul, Korea, 27–30 May 2001; IEEE:
Piscataway, NJ, USA, 2001; Volume 1, pp. 81–86.

32. Eberhart, R.; Kennedy, J. A new optimizer using particle swarm theory, in MHS’95. In Proceedings of the
Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 4–6 October 1995;
IEEE: Piscataway, NJ, USA, 1995; pp. 39–43.

33. Gong, M.; Cai, Q.; Chen, X.; Ma, L. Complex Network Clustering by Multiobjective Discrete Particle Swarm
Optimization Based on Decomposition. IEEE Trans. Evol. Comput. 2014, 18, 82–97. [CrossRef]

34. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [CrossRef]

http://dx.doi.org/10.1016/j.ins.2018.11.041
http://dx.doi.org/10.1016/j.energy.2017.10.052
http://dx.doi.org/10.1016/j.amc.2015.11.001
http://dx.doi.org/10.1016/j.cie.2012.09.015
http://dx.doi.org/10.3934/jimo.2014.10.777
http://dx.doi.org/10.1007/s41066-018-0121-6
http://dx.doi.org/10.3390/a10030085
http://dx.doi.org/10.3390/a10030101
http://dx.doi.org/10.1504/IJSI.2013.055801
http://dx.doi.org/10.1016/j.compstruc.2011.08.002
http://dx.doi.org/10.1109/TAP.2013.2238654
http://dx.doi.org/10.1007/s00521-017-2881-3
http://dx.doi.org/10.1007/s00521-018-3907-1
http://dx.doi.org/10.1109/TEVC.2013.2260862
http://dx.doi.org/10.1016/S0019-9958(65)90241-X

Algorithms 2019, 12, 90 21 of 21

35. Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning-III. Inf. Sci.
1975, 9, 43–80. [CrossRef]

36. Zadeh, L.A. Fuzzy logic. Computer 1988, 21, 83–93. [CrossRef]
37. Ibrahim, M.T.; Hanafi, D.; Ghoni, R. Autonomous Navigation for a Dynamical Hexapod Robot Using Fuzzy

Logic Controller. Procedia Eng. 2012, 38, 330–341. [CrossRef]
38. Garcia, M.P.; Montiel, O.; Castillo, O.; Sepúlveda, R.; Melin, P. Path planning for autonomous mobile robot

navigation with ant colony optimization and fuzzy cost function evaluation. Appl. Soft Comput. 2009, 9,
1102–1110. [CrossRef]

39. Al-Jarrah, R.; Shahzad, A.; Roth, H. Path Planning and Motion Coordination for Multi-Robots System Using
Probabilistic Neuro-Fuzzy. IFAC-PapersOnLine 2015, 48, 46–51. [CrossRef]

40. El Ferik, S.; Nasir, M.T.; Baroudi, U. A Behavioral Adaptive Fuzzy controller of multi robots in a cluster space.
Appl. Soft Comput. 2016, 44, 117–127. [CrossRef]

41. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
42. Astudillo, L.; Melin, P.; Castillo, O. Optimization of a Fuzzy Tracking Controller for an Autonomous Mobile

Robot under Perturbed Torques by Means of a Chemical Optimization Paradigm. In Recent Advances on
Hybrid Intelligent Systems; Springer: Heidelberg/Berlin, Germany, 2013; pp. 3–20.

43. Lagunes, M.L.; Castillo, O.; Soria, J. Optimization of Membership Function Parameters for Fuzzy Controllers
of an Autonomous Mobile Robot Using the Firefly Algorithm. In Fuzzy Logic Augmentation of Neural and
Optimization Algorithms: Theoretical Aspects and Real Applications; Springer: Berlin, Germany, 2018; pp. 199–206.

44. Lagunes, M.L.; Castillo, O.; Valdez, F.; Soria, J.; Melin, P. Parameter Optimization for Membership Functions
of Type-2 Fuzzy Controllers for Autonomous Mobile Robots Using the Firefly Algorithm. In Proceedings of
the North American Fuzzy Information Processing Society Annual Conference, Cancun, Mexico, 16 October
2017; Springer: Berlin, Germany; IEEE: Piscataway, NJ, USA, 2018; pp. 569–579.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/0020-0255(75)90017-1
http://dx.doi.org/10.1109/2.53
http://dx.doi.org/10.1016/j.proeng.2012.06.042
http://dx.doi.org/10.1016/j.asoc.2009.02.014
http://dx.doi.org/10.1016/j.ifacol.2015.08.106
http://dx.doi.org/10.1016/j.asoc.2016.03.018
http://dx.doi.org/10.1016/j.advengsoft.2013.12.007
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background on FA, WDO, DSO, and Fuzzy Logic
	Firefly Algorithm (FA)
	Wind-Driven Optimization (WDO)
	Drone Squadron Optimization (DSO)
	Fuzzy Logic

	Proposed Methodology
	Case 1: Benchmark Functions
	Case 2 Fuzzy Controller

	Results
	Case 1 Results: Benchmark Functions
	Case 2 Results of the Fuzzy Controller Optimization

	Discussion
	Conclusions
	References

