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Abstract: This paper investigates a real-world distribution problem arising in the vehicle production
industry, particularly in a logistics company, in which cars and vans must be loaded on auto-carriers
and then delivered to dealerships. A solution to the problem involves the loading and optimal routing,
without violating the capacity and time window constraints for each auto-carrier. A two-phase heuristic
algorithm was implemented to solve the problem. In the first phase the heuristic builds a route with
an optimal insertion procedure, and in the second phase the determination of a feasible loading. The
experimental results show that the purposed algorithm can be used to tackle the transportation problem
in terms of minimizing total traveling distance, loading/unloading operations and transportation costs,
facilitating a decision-making process for the logistics company.

Keywords: heuristic; time windows; feasible loading; auto-carrier transportation problem (ACTP)

1. Introduction

Vehicle production in Mexico has been increasing in recent years [1,2]. As well as the number of
imported vehicles, generating one of the main tasks to be solved by logistics companies: the transport
of vehicles to dealerships. Currently, there are several commercial offers that provide a solution to route
planning and fleet management. However, the cost of these applications is significantly high because they
depend on the number of auto-carriers to route, making the acquisition of application difficult to afford.

This paper presents a vehicle-routing problem with time windows (VRPTW) in the real-world
proposed by a logistics company in Mexico. In the problem, a heterogeneous fleet of auto-carriers departs
from the new car storage yard (NCSY), delivers and unloads vehicles in the dealerships within predefined
time windows, and finishes at the NCSY as shown in Figure 1. The objective of this research is to design
and develop a logistic software to solve it. Considering the restrictions on the transport of vehicles imposed
by Mexican traffic regulations [3], capacity, and allocation constraints, optimal performance with delivery
time windows and proper planning of transportation routes. The software has a two-phase heuristic
algorithm: in the first phase, the heuristic [4] is implemented to design the auto-carrier routes and an
algorithm is proposed for the allocation of the vehicles in the auto-carriers. For experimentation, we used
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a real database of approximately 4000 vehicles, more than 600 auto-carriers, and 44 different dealerships
as a destination, obtaining results with the proposed algorithm in a reasonable time.

The structure of this paper is as follows. A review the relevant literature is provided in Section 2. An
overview of the importance of research and the problem are shown in Section 3. The VRPTW is defined
and mathematical formulations are presented in Section 4. The proposed solution and the developed
methodology are described in Section 5. The experimental results of the algorithm are presented and
analyzed with real-world instances in Section 6. Finally, in Section 7 conclusions and future research work
are given.

06:00-13:00

08:00-12:00

22:00-09:00

23:00-08:00

The New Car 
Storage Yard

(NCSY)

Figure 1. An illustration for the proposed problem by a logistics company.

2. Literature Review

The definition of the vehicle-routing problem (VRP) has its origins in the formulation of the traveling
salesman problem (TSP) [5]. This section first reviews proposed algorithms and methods for the VRP and
its variants. Then, focusing on the revision of the VRPTW and finally conclude with the review of the
auto-carrier transportation problem (ACTP).

An important part of optimization systems are heuristics, which have multiple applications. From
the extraction of features for a voice evaluation mechanism [6] to the generation of feasible VRP solutions.
Arnau et al. [7] studied VRP with dynamic travel times, considering inputs of a dynamic nature and
re-evaluating travel times dynamically as the solution was being developed. They proposed a learnt
heuristic-based approach that integrates statistical learning techniques within a metaheuristic framework.
Cassettari et al. [8] investigated the capacitated vehicle-routing problem (CVRP) applied to natural gas
distribution networks. The authors introduced an algorithm based on the saving algorithm heuristic
approach to solve it. Zhao and Lu [9] presented an electric vehicle-routing problem (EVRP) raised by a
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logistics company. They developed a heuristic approach based on the adaptive large neighborhood search
(ALNS) and integer programming, specifically designed a charging station heuristic adjustment and other
one for the departure time decreasing the total operational cost.

Some well-known heuristic algorithms have been inspired by natural physical phenomena.
Stodola [10] addressed the modified multi-depot vehicle-routing problem (MDVRP). He developed
a metaheuristic algorithm based on the ant colony optimization (ACO) improved by a deterministic
optimization process that is executed repeatedly within the ACO algorithm iterations. Połap and
Woźniak [11] proposed a polar bear optimization algorithm (PBO) which imitates the survival and
hunting behaviors of polar bears for local and global search. The authors presented a novel birth and
death mechanism to control the population. Chen et al. [12] proposed a monarch butterfly optimization
(MBO) algorithm to solve the dynamic vehicle-routing problem (DVRP) using a greedy strategy. Ahmed
and Sun [13] designed a bilayer local search-based particle swarm optimization (BLS-PSO) algorithm to
solve CVRP.

Currently, one of the most studied variants of the VRP is with time windows, in the research
by Desrochers et al. [14] introduced an optimization algorithm to solve a VRPTW, using dynamic
programming. Tan et al. [15] explored simulated annealing (SA), tabu search (TS) and a genetic algorithm
(GA) heuristics to solve it. In another study, Yu et al. [16] proposed a hybrid approach, consisting of the use
of the ACO and TS algorithms, for the VRPTW. To improve the performance of the ACO algorithm, they
introduced a neighborhood search and a TS algorithm to maintain the diversity of the ACO algorithm and
explore new solutions. Taner et al. [17] developed two metaheuristic algorithms to solve the VRPTW, the
SA algorithm and an iterated local search (ILS). Sripriya et al. [18] designed a hybrid genetic search with
diversity control using a GA to solve the VRPTW, using the Pareto approach and two mutation operators
to find the optimal solution set.

Tadei et al. [19] investigated and defined a variant of the VRP, called the ACTP, proposed a three-step
heuristic procedure that considers the loading, vehicle selection, and routing aspects for a solution
to the problem. In other research, B. M. Miller [20] addressed the ACTP for collection and delivery
with limitations in the delivery times and the capacity of the auto-carrier, for new and used vehicles.
The author proposed a constructive heuristic to solve the problem. Dell’Amico, et al. [21] defined
the ACTP as a combinatorial problem of the CVRP. The authors presented a study of a real case and
implemented an ILS algorithm for the routing and mathematical techniques for the loading of vehicles.
On the other hand, Tran et al. [22] implemented a heuristic algorithm for location of alternative-fuel stations.
Hosseinabadi et al. [23] developed a method called TIME_GELS that uses the gravitational emulation local
search algorithm (GELS) for solving the multiobjective flexible dynamic job-shop scheduling problem.

The VRP is widely studied in the areas of operations research and computer sciences, due to its
computational complexity and its multiple applications. The variants of the VRP allow the use of time
window restrictions and vehicle capacity, among others, these restrictions allow solving problems with
solutions closer to the optimum of real-world cases, the ACTP is a result from this. As it has been
described in the literature, several authors have proposed algorithms and methods to solve this problem.
Nevertheless, the characteristics of our problem, motivate us to implement a heuristic approach that
contemplates the restrictions imposed by the logistics company.

3. Importance of the Problem

The automotive industry has been one of the most important engines for the development and
economic growth of Mexico [2,24]. Hence, the importance of promoting the insertion of technology in
the sectors that are parts of it. For this reason, it is necessary to implement technology in the process of
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transporting new vehicles within the country. In addition, with it to diminish one of the most expensive
processes for the companies of transport, the routing and scheduling of auto-carriers.

In addition to having a positive impact on the operating expenses for the transportation companies,
decreasing the amount kilometers of the traveled route from each of the auto-carrier also represents a
positive environmental impact because downward the harmful emissions to the environment produced by
diesel motors. According to [25] most of the auto-carriers use this fuel and the main characteristic of diesel
emissions is that particles are produced in a proportion 20 times higher than gasoline engines.

Nitrogen oxides (NOx) are considered an important source of air pollution and contribute greatly to
photochemical smog, acid rain, depletion of the ozone layer and the greenhouse effect. Diesel exhaust
gases are generally composed of more than 90% NOx [26]. Therefore, one of the main contributors to
emissions of NOx and sulfur oxides are diesel engines [27], so it is important to reduce these emissions.
Optimizing the routes of the auto-carriers that generate these emissions are a good way to do it.

According to the National Institute of Statistics and Geography [24], the Mexican automotive industry
is important because:

• It is ranked as the second most important activity in manufacturing after the food industry
• Because its exports were ranked fourth in the world in 2014
• When demanding inputs to carry out its production, it generates impacts on 157 economic activities

out of a total of 259, according to the input-output matrix

The production of the automotive industry has increased its relative importance in the economy.
Before the North American Free Trade Agreement (NAFTA) came into force, this industry represented
1.9% of gross domestic product (GDP) in Mexico, while in 2014 it was 3.0% [24]. This increase was due to
the implementation of new technologies in the last decade. Both in the automotive sector and in the rest of
economic activities that are suppliers of this, one of them the transportation of vehicles.

Finally, the transportation of vehicles is an important field in operations research (OR), which has
attracted increasing interest in recent years, due to the expected benefits of substantial cost reduction and
efficient consumption of resources. The VRPTW has multiple applications such as supermarkets, cement
plants, hospitals, etc., though its main applications are in the industry.

4. Problem Definition and Mathematical Model

A logistics company distributes new vehicles in Mexico, manufactured in another country. It carries
out the delivery of thousands of vehicles, according to the demand of each of the dealerships responsible
for the sale of vehicles. Currently, the logistics company uses an empirical allocation and routing method
for the auto-carriers.

The empirical method consists of the design of the route according to the experience of the operator
of the auto-carrier, based on the vehicles that will be transported without the use of a heuristic or
similar method for the optimization of the route. Similarly, the allocation corresponds to a simulation
with fictitious vehicles of the load of the auto-carrier, positioning the vehicles in different levels of the
auto-carrier, considering the dimensional restrictions.

The process of the routing and loading of the auto-carriers, begins at the moment that the operators
receive a list of the vehicles to be delivered to the different dealerships. In the NCSY, the operators confirm
the vehicles to be transported with the manager of the NCSY, who to complete the loading process verifies
that the vehicles in the auto-carrier correspond to the request of the dealerships.

Empirical routing is inefficient because it does not consider restrictions as the time windows. The
time windows are the hours in which an auto-carrier can perform the unloading of vehicles at a dealership,
who defines an initial time and an end time to carry it out. Time windows are defined to not violate local
traffic laws, thus avoiding monetary penalties.
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Avoiding various penalties and monetary losses for companies, are some reasons of importance for
the VRPTW and its applications. An example of its application is in the cement industry, if the concrete
mixer trucks do not arrive within the stipulated time window. It may be that part of the concrete dries,
becoming unusable, and the work stops. In the case of the logistics company, if an auto-carrier arrives at
the dealership at a time outside the time window, it causes a time penalty that is, the operator must wait at
the dealership to unload vehicles.

In addition to the time window restrictions, this case study includes a total of 44 dealerships, a demand
with approximately 4000 vehicles of different dimensions (which add three restrictions to the allocation)
and a variable number of auto-carriers of different capacity load (3, 6, 7, 10 and 11 vehicles). This paper
describes the algorithm developed for a real-world problem of a logistics company; the problem can be
summarized as follows:

given a heterogeneous fleet of auto-carriers based at a NCSY and a set of dealerships each
requiring a set of vehicles, the loading of the vehicles into the auto-carriers and route the
auto-carriers through the road network to deliver all dealerships with minimum cost (total
number of kilometers traveled) that start and ends in the NCSY, considering the restrictions of
time windows, a LIFO policy for the loading/unloading of vehicles and maximizing the total
use of the capacity of each auto-carrier

The characteristics of the dealerships (time windows), the NCSY and the auto-carriers (capacity), as
well as different operational restrictions on the routes, bring forth the VRPTW, several authors [14–18]
have worked on this variant of the VRP. In this case, study the term vehicle denotes a transported item
(e.g., a car, a van), the term auto-carrier denotes a truck transporting vehicles, and the term dealership
denotes a delivery point (i.e., a customer requiring one or more vehicles). With the previously mentioned
elements, the model can be described as follows [21]:

• Network: Given a complete graph G = (V, E), where V = 0, 1, . . . , n is the set of vertices and E the
set of edges connecting each vertex pair. Vertex 0 corresponds to the NCSY, whereas vertices 1, . . . , n
correspond to the n dealerships to be served. The edge is connecting vertices i and j is denoted by (i, j)
and has an associated routing cost cij(i, j ∈ V) shown in Figure 2. The distance and times matrices
are symmetric.

cij

The New Car 
Storage Yard

(NCSY)

Figure 2. Example for routing cost between dealership i and j.
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• Fleet: Given a heterogeneous fleet of auto-carriers, composed by a set T of auto-carrier types. Each
auto-carrier type t(t ∈ T) has a maximum vehicles capacity Wt and is formed A1,2

k by loading
platforms (levels, shown in Figure 3). There are Kt auto-carriers available for each type t.

2
1 L

ev
el

Figure 3. Auto-carrier levels.

• Demand: The demand of dealership i consists of a set M of vehicles (i ∈ V\{0}). Each vehicle
mi ∈ M demanded by dealership i belongs to a vehicle type (or vehicle model) shown in Figure 4,
which is defined by a height hm and a vehicle identification number (VIN).

Figure 4. Vehicle types (vehicle, vehicle, van).

In this VRPTW, each dealership i ∈ V\{0} has an associated time window [ei, li], with a time allowed
service for arriving auto-carriers to it and service time or delay di. If (i, j) is an arc of the solution and ai
and aj are the arrival times to the dealerships i and j, time window imply that necessarily must be fulfilled
ai ≤ li and aj ≤ lj. On the other hand, if ai ≤ ei, then the auto-carrier must wait until the dealership
"opens" so necessarily aj = ei + di + cij.

Using the nodes 0 and n + 1 to represent the NCSY and the set K to represent the auto-carriers,
the problem is formulated for a heterogeneous fleet of auto-carriers, according to [28]:

min ∑
k∈K

∑
(i,j)∈E

ck
ijx

k
ij (1)

subject to

∑
k∈K

∑
j∈∆−(i)

xk
ij = 1 ∀i ∈ V\{0, n + 1} (2)

∑
j∈∆+(0)

xk
0j = 1 ∀k ∈ K (3)

∑
j∈∆+(i)

xk
ij − ∑

j∈∆−(i)
xk

ji = 0 ∀k ∈ K, i ∈ V\{0, n + 1} (4)

∑
i∈V\{0,n+1}

xk
ij − ∑

j∈∆+(i)
xk

ji ≤Wk ∀k ∈ K (5)

yk
j − yk

i ≥ di + ak
ij − H(1− xk

ij) ∀i, j ∈ V\{0, n + 1}, k ∈ K (6)

ei ≤ yk
i ≤ li ∀i ∈ V\{0, n + 1}, k ∈ K (7)

xk
ij ∈ 0, 1 ∀(i, j) ∈ E, k ∈ K
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yk
i ≥ 0 ∀i ∈ V\{0, n + 1}, k ∈ K

The xk
ij variables indicate if the arc (i, j) is used by the auto-carrier k. The yk

i variables indicate the
arrival time at the dealership i when it is visited by the k auto-carrier (if the dealership is not visited by the
auto-carrier, the variable has no meaning). The objective function (1) minimizes the total routing cost.

Constraint (2) state that each dealership is visited exactly once, while constraints (3) and (4) determine
that each auto-carrier k ∈ K goes through a path of 0 to n + 1. The capacity of each auto-carrier is imposed
in (5). Since H is a sufficiently large constant, restriction (6) ensures that if an k auto-carrier travels from
i to j, it cannot reach j before yi + di + ak

ij. These constraints also eliminate subtours and constraints (7)
enforce time windows restriction.

The use of a heterogeneous fleet and the nature of the demand (vehicles and vans) impose the
allocation constraints:

hm > 2.5 = (A1−2
k , W3

k ) ∀mi ∈ M, k ∈ K (8)

1.8 < hm < 2.5 = (A1
k , W1

k ) ∀mi ∈ M, k ∈ K (9)

hm < 1.8 = (A1,2
k , W1

k ) ∀mi ∈ M, k ∈ K (10)

The constraint (8) considers the assignment of a vehicle m with a height hm greater than 2.5 m (meters)
that corresponds to a van, which occupies an allocated space in level A1

k and two spaces on level A2
k , using

three spaces of the capacity W of the auto-carrier k. A vehicle m with height hm greater than 1.8 m and less
than 2.5 m, its assignment corresponds to a space W1

k and can only be accommodated at level A1
k , i.e., the

constraint (9). The last assignment constraint (10) defines that a vehicle m with a height hm less than 1.8 m
corresponds to an allocation space W1

k and can be accommodated in either of the two levels A1
k or A2

k .

5. Methodology

The use of a heuristic methodology allows obtaining the solution to the routing problem of the
auto-carriers at a reasonable time, meaning a representative change versus the empirical methodology
previously used by the logistics company. A graphic illustration of the comparison of the insertion
heuristic I1 is made in [29,30]. Regarding its comparison with other methods is presented in [31] and
its computational complexity of the proposed algorithm is O(n2 log n2). Hereafter, the approach and
development of the heuristic algorithm are described.

5.1. Heuristic Approach

The development of the solution is divided into two phases, the first one is to generate the route of
the auto-carrier and the second one the vehicle allocation in the auto-carrier, both phases are part of a
main algorithm. In the first phase, the routes are obtained with the implementation of the Solomon I1
insertion heuristic, due to the logistics company is needed to obtain a solution to the VRPTW in fairly
necessary time, given that the VRPTW is an NP-complete problem [28]. This routing process applies a
methodology of cluster first, route second, i.e., first group by the dealership, to then build the route, which
starts with the dealership that has the shortest and earliest time window, considering the allocation and
capacity constraints. The following describes the application of the Solomon I1 insertion heuristic [4] and
the vehicle loading process for allocation phase on this VRPTW.
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The routing algorithm builds a feasible solution by constructing one route at a time. At each iteration
the algorithm decides which new dealership u∗ ∈ U has to be inserted in the current solution, and between
which adjacent dealerships i(u∗) and j(u∗) the new dealership u∗ has to be inserted on the current route.
When choosing u∗, the algorithm takes into account both the cost increase associated with the insertion
of u∗, and the delay in service time at dealerships following u∗ on the route. The three steps of the
algorithm are:

Step 0. (Initialization). The first route is initially R1 = {0, i, 0}, where i is the dealership with the
shortest and earliest time window. In the allocation phase, if vehicle m of dealership i has a feasible
assignment, then set k = 1, otherwise get the next vehicle from dealership i or next dealership with the
shortest and earliest time window, until the allocation phase of the vehicle m is feasible.

Step 1. Let Rk = {i0, i1, . . . , im} be the current route, where i0 = im = 0, i.e., the NCSY. Set

f 1(ip−1, u, ip) = α(rip−1u + ruip − µrip−1ip) + (1− α)(bu
ip
− bip) (11)

where 0 ≤ α ≤ 1, µ ≥ 0 and bu
ip

is the time when service begins at dealership ip provided that dealership
u is inserted between ip−1 and ip. For each unrouted dealership u, compute its best feasible insertion
position in route Rk as:

f 1(i(u), u, j(u)) = min
p=1,...,m

f 1(ip−1, u, ip)

where i(u) and j(u) are the two adjacent vertices of the current route between which u should be inserted.
Determine the best unrouted customer u∗ to be inserted yielding.

f 2(i(u∗), u∗, j(u∗)) = max
u
{ f 2(i(u), u, j(u))}

where

f 2(i(u), u, j(u)) = λr0u − f 1(i(u), u, j(u)) (12)

with λ ≥ 0.
Step 2. Insert dealership u∗ in route Rk between i(u∗) and j(u∗), in the allocation phase, if vehicle

m of dealership u∗ has a feasible assignment, then go back to Step 1, otherwise get the next vehicle from
dealership u∗ until the allocation phase of the vehicle m is feasible. If u∗ does not exist, but there are
still unrouted dealerships, set k = k + 1, initialize a new route Rk (as in Step 0) and go back to Step 1.
Otherwise, STOP, a feasible solution has been found.

The insertion heuristic tries to maximize the benefit obtained when servicing a dealership on the
current route rather than on an individual route. For example, when µ = α = λ = 1, Equation (12)
corresponds to the saving in distance from servicing dealership u on the same route as dealerships i and
j rather than using an individual route. The best feasible insertion place of an unrouted dealership is
determined by minimizing a measure, defined by the Equation (11), of the extra distance and the extra
time required to visit it. Different values of the parameters µ, α and λ lead to different possible criteria for
selecting the dealership to be inserted and its best position in the current route.

After starting a new route Rk or inserting a dealership u∗ in the current route, the vehicle allocation
phase is responsible for obtaining the feasible load of the auto-carrier, considering the constraints imposed
by the logistics company, which are listed below by rank:

• Vehicle hm > 2.5 m: It uses three spaces of the capacity of the auto-carrier k, i.e., a space in level A1
k

and two spaces on level A2
k , this is shown in Figure 5. To maximize the use of the capacity of the

auto-carrier, another allocation is to occupy one space above (A2
k) and two below (A1

k).
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Figure 5. Constraint of vehicles with h > 2.5 m.

• Vehicle 1.8 m < hm < 2.5 m: It uses a space of the capacity of the auto-carrier k and can only be
assigned in level A1

k , as shown in Figure 6.

>1.8

Figure 6. Constraint of vehicles with 1.8m < h < 2.5 m.

• Vehicle hm < 1.8 m: It uses a space of the capacity of the auto-carrier k and can be assigned in any
available space to it, as shown in Figure 7.

Figure 7. Constraint of vehicles with h < 1.8 m.

• Policy Last In First Out (LIFO): Last vehicle loaded, first vehicle unloaded. For example, if the first
dealership to visit is d2 on the current route, the vehicles of d2 should be the last to be loaded on
the auto-carrier.

If the assignment of a vehicle m is not feasible and there are still vehicles on demand, then go back to
the routing phase, while the vehicle m will be assigned to the next auto-carrier route. The development of
the heuristic algorithm is described in the following subsection.

5.2. Development of the Two-Phase Heuristic

To implement the heuristic algorithm, it was necessary to create a distance matrix, with the distance
information (in kilometers) among the 44 dealerships, as shown in Table 1, the NCSY is represented by d0,
e.g., a trip from the NCSY (d0) to dealership 2 (d2) has a cost of 1373 km, while the trip from dealership 2
(d2) to dealership 44 (d44) would represent a route of 1245 km.
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Table 1. Distance (in kilometers) between dealerships.

Dealership d0 d1 d2 d... d44

d0 0 885 1373 . . . 114
d1 885 0 498 . . . 752
d2 1373 498 0 . . . 1245

d...

...
...

... 0
...

d44 114 752 1245 . . . 0

A time matrix is also required for the implementation of the heuristic algorithm. Table 2 shows the
duration in minutes of the travel times between the dealerships, for example, the duration of the trip from
NCSY (d0) to dealership 1 (d1) is 568 min, in other words, 9 h and 28 min. A route from the dealership 44
(d44) to dealership 2 (d2) is 13 h and 49 min of travel.

Table 2. Travel times (in minutes) between dealerships.

Dealership d0 d1 d2 d... d44

d0 0 568 880 . . . 92
d1 568 0 319 . . . 490
d2 880 319 0 . . . 829

d...

...
...

... 0
...

d44 92 490 829 . . . 0

The distances (Table 1) and times (Table 2) matrices are symmetric, but in the time windows, a matrix
was created with the earliest (ei) and the latest (li) time window, using a 24-h time format, as shown in
Table 3. The NCSY (d0) does not have a time window established, therefore, ei = 00:00 and li = 23:59.
Figure 1 shows an example of the dealerships who have established a time window, otherwise they do not
have a time window established as the NCSY.

Table 3. Time windows for the dealerships in 24-h time format.

TimeWindow

Dealership ei li

d0 00:00 23:59
d1 06:00 13:00
d2 08:00 12:00

d...

...
...

d44 22:00 09:00

The heuristic is described in Algorithm 1, first phase is responsible for generating the route for the
auto-carriers and the second of the feasible load of vehicles in the auto-carrier. This algorithm is codified in
JAVA language, it has as input a matrix M with the demand of vehicles to be transported and a matrix with
auto-carriers K available for the delivery of vehicles. The first phase clusters the demand M according to
the dealerships to visit (U), then perform the sorting of the dealerships with the shortest and earliest time
window, considering that the execution time (current time, CT) of the algorithm influences this ordination,
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i.e., the execution of the algorithm at different times of the day with the same data produces different
routing outputs and vehicle accommodation.

Algorithm 1: Two-phase heuristic
Data: M (demand), K (auto-carriers).
Output: The K auto-carriers with Ak arrangement, Rk route and delivery schedules. A vector with

the remaining M, if any.
1 begin
2 U ←− get dealerships from demand
3 CT ←− get current time
4 while M > 0 and K > 0 do
5 Initialization a new route Rk
6 Wt ←− get capacity from k
7 Ak ←− generate a new arrangement with capacity Wt

8 u←− get f irst dealership to visit from U
9 while Wt > 0 and u∗ ∈ U do

10 while mu ∈ M do
11 if Allocation(mu, Ak) then
12 Update demand M, capacity Wt and route Rk

13 end
14 end
15 u∗ ←− get next dealership(Rk, CT) to visit and update U
16 end
17 if K ≤ 0 and M > 0 then
18 Get remaining from M
19 end
20 Add to Solution(Rk, Ak), k = k + 1
21 end
22 end

The first loop is the demand M and the auto-carriers K, while there are vehicles to load and
auto-carriers, a new route Rk is initialized with time and distance counters, the auto-carrier k ∈ K is
obtained, assigns Wt according to k, which is the vehicle load capacity of k for its type t, then a new
accommodation Ak based on capacity Wt is generated. After determining the first dealership to visit u, i.e.,
Step 0 of the heuristic, this is shown in line 8 of Algorithm 1.

With the first dealership u to be selected, start the loop of the auto-carrier k with capacity Wt and loop
of the existing demand M of the dealership u, carrying out the loading of the vehicle mu in the auto-carrier
k in the second phase of the algorithm, the allocation, this is shown in line 11 of Algorithm 1. The allocation
algorithm receives as parameters the vector Ak of the current arrangement and the vehicle mu to be loaded
(see Algorithm 2). If the load is successful, then update the demand M (eliminating mu), the number of
available spaces of the capacity Wt and the route Rk. In the case that the auto-carrier k is not filled or the
vehicle mu does not comply with the assignment restrictions, obtain the next vehicle mu + 1 to load, until
the auto-carrier k is full.
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Algorithm 2: Allocation
Data: mu (vehicle), Ak (arrangement).
Output: The Ak arrangement with mu assigned if it is feasible.

1 begin
2 Wt ←− size of Ak

3 level ←− Wt
2

4 for Aki
∈ Ak do

5 if hmu > 2.5 and i < level and parity then
6 if Aki

∈ Ak and Aki+1
∈ Ak and Aki+level

∈ Ak then
7 Allocate mu vehicle to spaces Aki

, Aki+1
and Aki+level

8 else
9 if Aki

∈ Ak and Aki+(level−1)
∈ Ak and Aki+level

∈ Ak then
10 Allocate mu vehicle to spaces Aki

, Aki+(level−1)
and Aki+level

11 end
12 end
13 else
14 if Aki

∈ Ak and Aki+1
∈ Ak and Aki+(level+1)

∈ Ak then
15 Allocate mu vehicle to spaces Aki

, Aki+1
and Aki+(level+1)

16 else
17 if Aki

∈ Ak and Aki+level
∈ Ak and Aki+(level+1)

∈ Ak then
18 Allocate mu vehicle to spaces Aki

, Aki+level
and Aki+(level+1)

19 end
20 end
21 end
22 if hmu > 1.8 and hmu < 2.5 and i > level and Aki

∈ Ak then
23 Allocate mu vehicle in space Aki

24 end
25 if hmu < 1.8 and Aki

∈ Ak then
26 Allocate mu vehicle in space Aki

27 end
28 end
29 return Ak

30 end

If the auto-carrier k still has available spaces Wt, but the demand of the dealership u does not comply
with the assignment restrictions, update accumulators of time and distance to obtain the next dealership
u∗ to visit, this is Step 1 of the heuristic and is observed on line 15 of Algorithm 1. To obtain u∗ the route
Rk built so far and the current time CT are received as parameters, finally enter the demand loop M of the
dealership u∗.

Once selected u∗, in the capacity loop Wt the vehicle mu∗ allocation phase of the auto-carrier k starts,
this is Step 2 of the heuristic algorithm. If the accommodation of mu∗ is feasible and there are still spaces of
Wt, return to Step 1 of the heuristic algorithm, to obtain the next vehicle mu∗ + 1, the capacity loop ends
when Wt is equal to 0 or does not exist u∗. Then, the route Rk and the arrangement Ak of the auto-carrier k
add to the Solution, and finally a new route Rk+1 is started.
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A requirement of the logistics company is to add to the solution the remaining demand M, in the case
that the number of auto-carriers K were not enough to transport the demand M, line 17. Algorithm 1 ends
when there is no demand M or auto-carriers K available for routing.

In the allocation phase (Algorithm 2), to accommodate the vehicles in the auto-carrier, Ak is abstracted
as a vector of size Wt (capacity of the t-type auto-carrier), to simulate and delimit the levels of the
auto-carrier a variable called level is created. If t is pair, the index i of the upper level initializes at i = 0
and ends at i = level − 1, while the lower level initializes at i = level and ends at i = Wt, as shown in
Figure 8a. If t is odd, the index i of the upper level initializes at i = 0 and ends at i = level, while the lower
level initializes at i = level + 1 and ends at i = Wt, as shown in Figure 8b.

Once Ak is defined, the load and assignment of the vehicle mu is defined by its height hmu , Algorithm 2
starts by obtaining level = Wt

2 . If hmu > 2.5 m, the vehicle mu will occupy spaces in the two levels of the
auto-carrier, then first determine if there is available space in the lower level i < level, otherwise mu is
assigned in the next auto-carrier with available space, the case that is met i < level, parity verifies if t is
even or odd, depending on this result obtain the spaces that comply with Equation (8) and if are available,
perform the allocation of mu (e.g., see Figure 5) to these spaces.
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Figure 8. Vector of auto-carrier capacity: (a) Pair (b) Odd.

If hmu > 1.8 m and hmu < 2.5 m, to assign the vehicle mu verify if there is available space in the lower
level i > level as shown in line 22 of Algorithm 2, otherwise mu is assigned to the next auto-carrier with
available space in the lower level. Finally, for hmu < 1.8 m it is only determined if there is space available
in the auto-carrier and mu is allocated, with the assignment of mu in any of the cases and the return of Ak,
the allocation phase ends.

6. Results and Analysis

6.1. Experimental Results

To evaluate the performance of the auto-carriers routing algorithm with time windows, two scenarios
were designed with 11 different instances of the demand, the last instance corresponds to the real problem
of the logistics company. The scenarios are the following:
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• Random Dealerships with Time Windows (RDTW)—context in which most of the dealerships (34 of 44)
were set different time windows for vehicle unloading.

• Main Dealerships with Time Windows (MDTW)—context that corresponds to the case of the logistics
company, only the dealerships (14 of 44) that are located in the main cities of the country establish a
time window for the unloading of vehicles.

The configuration of the most important parameters for the implementation of the proposed heuristic
algorithm is shown in Table 4. Next, the content of the instances is described in Table 5, the first column
corresponds to the instance number, the second is the demand size, and in the following columns the
content of this in terms of vehicles (cars, partners) and vans (managers). It is necessary to emphasize
the number of vans because they use more spaces in the auto-carrier compared to the vehicles. For both
scenarios, the same instances demand was used to perform tests and compare the results of the total
distance of the generated routes.

Table 4. Parameters of the proposed heuristic algorithm.

Parameter Value

Algorithm 1
mu 1
alpha 0.9
lamda 1
time_unloading 15
k 1

Algorithm 2
initial 0
Wt It depends on the auto-carrier K
level Wt

2
parity It depends on the auto-carrier K

Table 5. Test Instances.

Instance Demand Size Cars Partners Managers

1 20 6 14 0
2 50 46 1 3
3 100 32 66 2
4 200 108 87 5
5 500 206 270 24
6 1000 456 502 42
7 1500 654 767 79
8 2000 941 974 85
9 2500 1164 1224 112
10 3000 1433 1431 136
11 3884 1810 1906 168

With the instances of Table 5, a total of 132 tests were made in the two scenarios to the Algorithm 1, as a
result of each of the tests the routes were obtained (auto-carriers, each route corresponds to one scenario
previously mentioned) and the accommodation of the auto-carrier considering the allocation restrictions,
in order to present all the results, these are grouped according to the capacity of the auto-carriers (3, 6,
7, 10, 11, and a heterogeneous fleet with these). Each table shows a comparison of the two scenarios for
the eleventh instance, each table contains the column Routes (K=Auto-carriers), this shows the number
of routes generated for the eleventh instance, the Distance (KM) column contains the cost in terms of
kilometers of the routes and the Time (Min) column shows the cost in minutes of the same.
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Table 6 concentrates the results of the routing of the instances using auto-carriers with a capacity 10
and 11 vehicles in the MDTW scenario. The use of capacity auto-carriers 11 obtains a 13% decrease in total
distance and total time compared to capacity 10. In addition, 60 less auto-carriers were used to route the
demand of the eleventh instance.

Table 6. Results of the main dealerships with different auto-carriers.

Auto-Carrier with W = 10 Auto-Carrier with W = 11

Instance Routes (K) Distance (Km) Time (Min) Routes (K) Distance (Km) Time (Min)

1 4 19,263 12,660 4 19,263 12,660
2 7 18,329 12,481 7 18,338 12,493
3 18 71,366 48,256 14 62,571 41,809
4 24 81,429 55,950 21 71,231 48,997
5 69 148,588 102,617 59 130,604 87,928
6 137 323,696 213,737 118 270,872 179,242
7 195 417,909 277,747 170 364,385 241,743
8 254 550,555 367,032 220 471,456 312,449
9 318 681,336 458,476 278 585,245 389,968
10 366 794,553 525,284 323 696,878 459,669
11 478 1,037,633 686,562 418 900,562 597,259

Algorithm 2 was designed to work with a heterogeneous fleet of auto-carriers, the results of the tests
in the two scenarios are shown in Table 7. In this table the results obtained from the tests are compared
with the 11 instances in the two scenarios. Sometimes obtaining a smaller number of routes does not
guarantee that it is the lowest total distance of the routes, e.g., in the row of instance 5 for the RDTW
scenario, 95 routes are generated. In comparison with the 102 routes obtained in the MDTW scenario, but
the total travel distance is 41,218 km smaller in this scenario (MDTW).

Table 7. Results of heterogeneous fleet (3,6,7,10 & 11).

Random Dealerships Main Dealerships

Instance Routes (K) Distance (Km) Time (Min) Routes (K) Distance (Km) Time (Min)

1 4 17,458 11,416 5 25,649 16,875
2 10 27,626 18,854 9 22,964 15,622
3 26 94,510 62,905 22 91,525 61,156
4 32 111,317 75,206 37 124,226 84,035
5 95 240,376 160,016 102 199,158 134,659
6 180 436,777 284,208 190 446,823 294,392
7 278 563,385 367,985 278 572,442 381,464
8 350 724,204 476,686 350 764,601 511,309
9 444 932,767 611,969 450 933,942 623,494
10 490 1,091,345 710,645 495 1,049,780 696,274
11 655 1,389,356 907,976 660 1,416,358 943,464

Regarding the assignment of vehicles, Algorithm 2 returned feasible loads as illustrated in Figure 9.
Table 8, concentrates the data of 18 vehicles (VIN and height (hk)) before entering the allocation phase.
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Table 8. Vehicle data.

VIN Vehicle hk VIN Vehicle hk

1 2.52 m 10 1.47 m
2 1.47 m 11 1.47 m
3 1.47 m 12 1.47 m
4 1.47 m 13 1.47 m
5 1.47 m 14 1.47 m
6 1.47 m 15 1.47 m
7 2.52 m 16 1.47 m
8 1.87 m 17 1.47 m
9 1.47 m 18 1.47 m

From Table 8, Figure 9a shows the output of Algorithm 2 using the auto-carriers of capacity 11 (odd),
in which we can observe the allocation of two vans (VIN1, VIN7) using three spaces in both auto-carriers
in their platforms, the rest of spaces are occupied by other vehicles. On the other hand, Figure 9b shows
the output of the allocation of the vans in auto-carriers of capacity 6.
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Figure 9. Output of vehicles allocation in auto-carriers: (a) Odd capacity (b) Pair capacity.

In Table 9 concentrates the results obtained to perform the routing of the demand in the MDTW
scenario, using different capacities of auto-carriers and heterogeneous fleet, as it is highlighted in the
capacity row of 11 vehicles, this shows the best results as regards distance (km) and time (min), as well
as a lower number of auto-carriers (418) employed to carry out the routing of the real demand of the
logistics company. A computer with Intel Core i5 7600K@3.8 GHz processor and 16 GB of RAM were used
to perform the tests.

Table 9. Results of routing instance 11 with different auto-carriers.

Auto-Carrier (Capacity) Main Dealerships

Routes (K) Distance (Km) Time (Min)

3 2043 4,146,291.8 2,720,157
6 936 2,018,547.9 1,332,574
7 688 1,488,546.3 980,416
10 478 1,037,633.2 686,562
11 418 900,562.8 597,259

3, 6, 7, 10 & 11 660 1,416,358.8 943,464
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6.2. Analysis of the Results

The logistics company before the implementation of Algorithm 1 routed the auto-carriers empirically,
i.e., the personnel in charge of this process did it without the assistance of some planning or optimization
software, meaning the construction of inefficient routes [17]. Similarly, the loading of the vehicles in the
auto-carrier was the responsibility of the operators, a process prone to damage during the unloading of
the vehicles upon arrival at the dealership. Due to the absence of a LIFO policy that considers the route of
the auto-carrier in the process of vehicle allocation.

The planning and routing of the auto-carriers of the logistics company were favorably impacted by the
implementation of Algorithm 1, obtaining as output the generated routes (e.g., d0− > d44− > d35− > d0)
for the auto-carriers, the unloading vehicles in each dealership and auto-carrier schedules, as shown in
Table 10. These results were possible to obtain thanks to the heuristic routing algorithm that considers the
time (CT variable and time matrix). In addition, the proposed Algorithm 2 allowed to automate the process
of allocation of vehicles in the auto-carrier, making it easier for operators to load the vehicles, examples of
the output of this Algorithm 2 are shown in Figure 9. The allocation constraints can be adjusted to the
requirements of different vehicles to be transported, but retaining the allocation logic.

Table 10. Example of schedule of the auto-carrier route.

Dealership Arrival Departure Unloaded Vehicles

d0 –:– 18:19 0
d44 22:59 23:14 6
d35 08:21 08:36 5
d0 21:55 –:– 0

The efficiency of the proposed algorithm was demonstrated by being able to generate planning (routes,
schedules, vehicle accommodations) in a reasonable time for more than 2000 routes, using auto-carriers of
3 vehicles of capacity. With the same performance, the results were obtained in a real case of the logistics
company, using a heterogeneous fleet were generated 660 routes as shown in Table 9. As a consequence
of the size of the demand, the routes constructed by Algorithm 1 contain from one dealership to four
dealerships in their planning.

7. Conclusions and Future Research Works

The results of the experimental work with the proposed heuristic algorithm were satisfactory. These
show the ability to route and obtain feasible loads for the auto-carriers with the demand of the logistics
company. The allocation of vehicles using restrictions reduced the likelihood that the vehicles suffer
some damage during the loading/unloading in the dealership, in addition to complying with the traffic
guidelines that govern the auto-carriers in Mexico.

The implementation of the algorithm allowed obtaining the planning of the routes and the feasible
loading of vehicles at a reasonable time, considering a demand of 4000 vehicles and 44 dealerships as
a destination, which translates into thousands of kilometers diminished, i.e., a saving of fuel, money,
and time for the logistics company, while polluting emissions are reduced. Impacting favorably in the
decision-making regarding the planning and programming of the routing of the auto-carriers that has
its service.

Future work is to develop tests with other auto-carrier capabilities, in addition to developing a
metaheuristic algorithm, with the combination of the heuristic Algorithm 1 to obtain an initial solution
and a PSO to improve the current solution. In addition to implementing a dynamic routing according to a
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series of variables that can be presented in the current route of the auto-carrier, such as blocked routes or
the transport of vehicles from one dealership to another.
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