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Abstract: The paper deals with the problem of global minimization of a polynomial function
expressed through the Frobenius norm of two-dimensional or three-dimensional matrices.
An adaptive procedure is proposed which applies a Multistart algorithm according to a heuristic
approach. The basic step of the procedure consists of splitting the runs of different initial points in
segments of fixed length and to interlace the processing order of the various segments, discarding
those which appear less promising. A priority queue is suggested to implement this strategy.
Various parameters contribute to the handling of the queue, whose length shrinks during the
computation, allowing a considerable saving of the computational time with respect to classical
procedures. To verify the validity of the approach, a large experimentation has been performed on
both nonnegatively constrained and unconstrained problems.

Keywords: global minimization; polynomial function; adaptive strategy

1. Introduction

Global optimization over continuous spaces is an important field of the modern scientific research
and involves interesting aspects in computer science. Given an objective function f modeling a system
of points which depends on a set of parameters, the task is to determine the set of parameters which
optimizes f . For simplicity, in most cases the optimization problem is stated as a minimization problem.

For high dimensional problems, numerical methods are suggested which construct converging
sequences of points by employing local optimizers, for example search methods. In general, procedures of
this type are stochastic and rely on intensive computation to explore the solution space, without too
deep enquires concerning convergence proofs. Roughly speaking, there are two main approaches:
a sampling approach and an escaping approach. Examples of the sampling approach are Pure Random
Search algorithms [1], where an extensive sampling of independent points is considered, and Multistart
algorithms [2,3], which apply local optimizers to randomly generated starting points; then the best among
the found local optima is considered the global optimum. Sampling algorithms have been shown [3]
to converge in infinite time with probability 1, but in practice there is no guarantee that the best local
solution found in a finite amount of computation is really the global optimum. In the escaping approach,
various methods are devised for escaping from an already found local optimum, reaching other feasible
points from which to restart a new local optimizer (see for example the Simulated Annealing [4]).

In practice, most algorithms succeed for small and medium-sized problems, but the chance of
finding the global optimum worsens considerably when the number of the dimensions increases, due
to the necessary limitation of the sampling set size. In any case, the computation of a local solution
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can be very expensive and the convergence of differently started local procedures to the same local
optimum is frequent and should be avoided.

In this paper we propose an adaptive strategy for finding the global minimum of a polynomial
function expressed through the Frobenius norm of matrices and tensors. The considered problem is
outlined in Section 2. The Multistart algorithm, on which the adaptive strategy is based, is described in
Section 3. It implements a particularly tailored local minimization procedure with an ad-hoc stopping
condition. The basic step of the adaptive strategy is implemented through a priority queue and consists
in splitting the runs starting from different initial points in segments of fixed length. The processing
order of the various segments is interlaced, discarding those which appear less promising. The adaptive
procedure is described in Section 4. Finally, in Section 5 the validity of the adaptive procedure is verified
through a large experimentation on both nonnegatively constrained and unconstrained problems.

2. The Problem

A widely studied problem in literature is the one of nonlinear global minimization

min
x∈D

f (x), (1)

where D ⊆ RN is a region determined by a set of constraints and f : D → R+ is a polynomial
function of degree d ≥ 2 which models the problem’s objective. Classical examples are D = RN

+ of
nonnegativity constraints, and D = RN when no constraint is given. Problem (1) is NP-hard [5]. In this
paper we consider specifically objective functions expressed through the Frobenius norm of an array
A whose elements are low degree polynomials in the entries of x:

f (x) = ‖A(x)‖2
F. (2)

We examine in particular the cases where A(x) is a two-dimensional or a three-dimensional
matrix. For example, in the two dimensional case, a problem considered in the experimentation looks
for two low-rank matrices W ∈ Rm×k

+ and H ∈ Rn×k
+ such that M ≈WHT according to

min
W, H≥O

f (W, H), where f (W, H) = ‖M−W HT‖2
F, (3)

given a nonnegative matrix M ∈ Rm×n
+ and an integer k < n. Problem (3), known as Nonnegative

Matrix Factorization (NMF), was first proposed in [6] for data analysis and from then on has received
much attention. It is a particular case of Problem (1) with f (x) as in (2), N = (m + n)k, D = RN

+ and x
a vectorization of the pair (W, H). In a columnwise vectorization, A(x) is the matrix of elements

ai,j(x) = mi,j −
k

∑
r=1

wi,rhj,r = mi,j −
k

∑
r=1

x(r−1)m+ixmk+(r−1)n+j.

Since f is a polynomial, the gradient∇ f and the Hessian∇2 f of f are available. From a theoretical
point of view, a simple way to solve Problem (1) in the unconstrained case would be to look for the
stationary points x where ∇ f (x) = 0 and choose whichever x minimizes f , but this way does not
appear to be practical when N is large, even if d is not too large, because finding a global minimum can
be a very difficult task when f has many local minima. For this reason, numerical methods have been
proposed which do not try to solve ∇ f (x) = 0. Anyway, many numerical methods take advantage of
derivative information to improve the computation.

When the dimension N is very large, also numerical methods which require at the same time O(N)

active points might be impracticable. This is the case, for example, of methods such as Nelder–Mead
algorithm [7] which works on a polytope of N + 1 vertices, or Differential Evolution [8] which generates
at each iteration a new population of more than N + 1 points, or Simulated Annealing [9] which for the
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continuous minimization uses a downhill simplex of N + 1 points. In this paper we propose a method
which allows solving Problem (1) also when N is very large. To validate its performances against other
methods, it is necessary to restrict our experimentation to dimensions where the other methods could
still compute reliable solutions.

3. A Multistart Algorithm

Multistart algorithms are widely used heuristics for solving Problem (1) [2,3]. Over the years,
many variants and generalizations have been produced. We consider here its basic form which consists
of the following steps:

• start with a fixed number q of independent initial points x(r)0 , r = 1, . . . , q, randomly generated.

• For r = 1, . . . , q, a local optimizer, say L, is applied to x(r)0 to find an approximation of a local
minimum. We assume L to be an iterative procedure which, in the constrained case, takes on
the nonnegativity of x and denote by x(r)ν , ν = 1, 2, . . ., the sequence of points computed until
a suitable stopping condition is satisfied. The corresponding function values f (x(r)ν ) estimate
the quality of the approximation. Both the chosen procedure L and the stopping condition
employed by L are of crucial importance. Ideally, the stopping condition should verify whether
the local minimum has been reached within a given tolerance ε, but of course more practical tests
must be used.

• When all the q points x(r)0 have been processed, the point x(r)ν with the smallest function value

f (x(r)ν ) is selected as an approximation of the global minimum. It is evident that the minimum
found in this way is not guaranteed to suitably approximate the global minimum, even if a large
number of starting points is considered.

In the experimentation we have implemented a version of the basic Multistart algorithm,
here denoted by MS, as reference. The chosen local optimizer L is particularly suitable for the problems
we are considering and exploits the differentiability of the function f (x). Its execution time turns
out to be much smaller than what is generally expected from a library method, which relies on
general purpose procedures as local optimizers and does not exploit the differentiability information.
The stopping condition we have implemented monitors the flatness of the approximation by assuming
x(r)ν as an acceptable approximation of a local minimum when

(max g −min g)/mean g ≤ ε, where g =
[

f (x(r)ν−2), f (x(r)ν−1), f (x(r)ν )
]
. (4)

Of course, if an index ν exists such that f (x(r)ν ) = 0, the algorithm stops and condition (4) is not
tested. The tolerance ε is set equal to some power of the machine eps. As usual, a maximum number
dmax of allowed iterations is imposed to each run.

As an example, we have applied MS to one of the problems described in Section 5.3,
namely problem 10× 5× 15 (5, 3), generating q = 5 initial points. Figure 1a shows the log plot
of the histories f (x(r)ν ), ν = 1, 2, . . ., computed by MS for r = 1, . . . , q using the stopping condition (4)
with ε = 10−12. All the sequences converge to the same local minimum, but one (plotted with black
solid line) requires 300 iterations and appears to be faster than the others which require from 400 to
500 iterations. The number of iterations of the overall execution is 2100.

Letting the local algorithm run until convergence for all the starting points is a time-consuming
procedure, in particular when the iterates obtained from many different starting points lead to the
same local minimum. A reasonable approach, that we presently propose, modifies this procedure
adaptively. It is based on an efficient premature recognition of the more promising runs of the local
algorithm and interrupts with high probability the runs which may lead to already found local minima
or to local minima of larger value than those already found.
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Figure 1. (a) History plots of MS; (b) History plots of AD.

4. An Adaptive Procedure

Because of the large computational cost of the strategy described in the previous section,
the straightforward implementation can be profitably applied only to small problems. For this reason
we propose here a heuristic approach, which we denote by the name AD, suitable for large problems
whose basic step consists in the splitting of the runs in segments of a fixed length λ. Each segment,
identified by the index r, r = 1, . . . , q, stores the partial solution produced at the end of the λ iterations,
which will be used as the starting point for the next run with the same index r. The processing order of
the various segments is modified by interlacing the computation of segments with different indices r.
This strategy requires segments corresponding to different r’s to be available at any moment of the
computation. The segments, which appear to be the more promising ones depending on the behavior
of the computed function values, are carried on and the other segments are discarded.

The strategy is accomplished using a priority queue Q whose items have the form

Y = {r, h, x, g, δ, χ}, r = 1, . . . , q,

where

• r ∈ {1, . . . , q} is the index of the segment; it identifies the seed chosen for the random generation
of the initial point following a uniform distribution between 0 and 1.

• h = h(r) is the number of iterations computed until now by L in all the segments with the same
index r, i.e., starting with x(r)0 .

• x = x(r)h is the partial solution computed by L at the end of the current rth segment.

• g =
[

f (x(r)h−2), f (x(r)h−1), f (x(r)h )
]

is the array containing the function values of the last three points
computed by L in the current rth segment.

• δ = f (x(r)h−1)− f (x(r)h ) is an estimate of the decreasing rate of the function.

• χ = χ(r) is the priority of the item, which rules the processing order of the various segments
according to the minimum policy.

The belonging of an element to an item Y is denoted by using the subscript (Y), for example r(Y)
denotes the index of item Y.

During the computation three global quantities, gmin, xmin, and rmin, play an important role:

• gmin is the minimum of all the function values computed so far relative to all the items already processed
• xmin is the computed point corresponding to gmin and rmin is the index of the item where gmin has

been found.

The priority is defined by χ = γ + ξ, where γ = log10( f (x)/gmin) measures the accuracy of the
last computed iterate in the current segment and ξ = h/λ measures the age of the computation of the
rth seed. Between two items which have the same age, this expression favors the one with the better
accuracy and, between two items which have comparable accuracies, it favors the younger one, that is
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the quicker one. The inclusion of the age into the priority is important to avoid that only the best item
is processed and all the other items are ignored. In fact, with the increase of the age, also items which
had been left behind take their turn.

At the beginning the initial points x(r)0 , r = 1, . . . , q, are randomly generated and gmin =

minr=1,...,q f (x(r)0 ) is set. The initial priorities are defined by χ(r) = log10( f (x(r)0 )/gmin) and the queue
is formed by the q items

{r, h, x(r)0 , g, δ, χ(r)}, for r = 1, . . . , q, (5)

where h = δ = 0 and g is a void array.
The length of the queue, i.e., the number of items in Q, is found by calling the function Length.

At the beginning the length is q and it is modified by the functions:

• Y = Dequeue(Q) returns the item Y which has the smallest priority and deletes it from Q,
• Enqueue(Q, Y) inserts the item Y into Q.

A further function Maxdelta(Q) returns the largest value among the quantities δ of all the items inQ.
During the computation the following quantities deriving from g = g(Y), h = h(Y) and δ = δ(Y)

are referred (their expressions have been tested by an ad hoc experimentation):

• ϑ = (max g−min g)/mean g measures the flatness of the last computed values of f according to (4),
• ϕ = δ/mean g measures the decreasing rate of f . If ϕ < 0 the last computed iteration increases

over the preceding one. Only small increases, corresponding to limited oscillations, are tolerated,
• c = (1− 2−ξ/λ)2 + 0.5 ( f (x)− gmin)/ f (x) measures the discarding level. The larger c, the higher

the probability of discarding the item. Among items which have comparable values f (x), the
older one has greater probability to be discarded.

Three other functions are needed:

• Random (n) generates n numbers uniformly distributed over [0, 1].
• The local minimization algorithm L is applied for the predefined number λ of iterations (in the

experiments we assume λ = 10) and returns x, g, the minimum ĝ of the function values of
the current segment, its corresponding point x̂, the number ν of performed iterations and
the decreasing rate δ. Since algorithm AD is based on the splitting into segments of the run
corresponding to a single starting point, the local optimizer L needs to be stationary, in order to
get a computation which gives the same numerical values as if a single run had been performed
without segmentation.

• The following Boolean function Control verifies whether an item is promising (i.e., must be
further processed) or not. For notes (a)–(e) see the text.

function Control
(
Y
)
;

the selected item Y is enqueued again if True is returned, otherwise it is discarded.

g = g(Y); h = h(Y); δ = δ(Y); compute ϑ, ϕ and c;

if ϕ < −0.6 then return False; (a)

if ϑ < ε, then return False; (b)

if Length (Q) > 2 and δ ≥ Maxdelta(Q) then return True; (c)

if r(Y) = rmin, then return True; (d)

if Random (1) < c then return False; (e)

return True;

The decision on which course to choose depends mainly on the flatness, but other conditions are
also taken into consideration as described in the following notes:
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(a) large oscillations are not allowed,
(b) the flatness level has been reached,
(c) the selected item decreases more quickly than other items in the queue,
(d) the selected item has the same index r of the item where gmin has been found,
(e) if none of the preceding conditions holds, the selected item is discarded with probability given by

its discarding level.

After the initialization of the queue, the adaptive process AD evolves as follows: an item Y is extracted
from the queue according to its priority χ(Y). When enough iterations (6λ iterations in the experiments)
have been performed for stabilizing the initial situation, the function Control is applied, and if Y is
recognized promising, the function L is applied to point x(Y). A new item is so built and inserted back
intoQ. If the computed f (x̂) is smaller than gmin, then gmin, xmin and rmin are updated. Otherwise, if Y is
not promising, no new item is inserted back intoQ, i.e., Y is discarded. At the end, xmin and f (xmin) are
returned. A bound dmax is imposed on the number of iterations of the overall execution.

Our proposed algorithm is implemented in the following function Chi.

function Chi
(
q, λ, ε, dmax

)
;

for r = 1, . . . , q let x(r)0 = Random (N);

initialize rmin, xmin, gmin,; initialize Q according to (5);

d = 0;

while Length (Q) ≥ 1 and gmin > ε and d < dmax

Y = Dequeue (Q);
cond = True;

if h(Y) > 6 λ then cond = Control (Y);

if cond then(
x, g, ĝ, x̂, ν, δ

)
= L

(
x(Y), λ

)
;

d = d + ν; h = hY + ν; χ = log10( f (x)/gmin) + h/λ;

Enqueue
(
Q, {r(Y), h, x, g, δ, χ}

)
;

if ĝ < gmin then gmin = ĝ; xmin = x̂; rmin = r(Y);

end if

end while

return xmin and f (xmin);

Figure 1b shows the log plots of the histories f (x(r)ν ) obtained by applying AD to the same problem
of the example considered in Section 3 with MS, using also the same q = 5 initial points. Only the
sequence plotted with the black solid line survives in the queue, while all the other sequences are
discarded from the queue at different steps of the computation. At the end 800 overall iterations have
been performed, compared with the 2100 of MS, as it is evident from the two figures, pointing out the
outperformance of AD on MS.
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5. Experimentation

The experimentation is performed with a 3.2 GHz 8-core Intel Xeon W processor machine using
IEEE 754-64 bit double precision floating point format (with eps = 2.22× 10−16) and is carried out on the
three nonnegatively constrained test problems described in Sections 5.1–5.3 and on the unconstrained test
problem described in Section 5.4. The following methods are applied to each test problem.

• Class 1 methods: library versions of Nelder–Mead method (denoted in the tables by the name NM),
Differential Evolution (denoted DE) and Simulated Annealing (denoted SA). These methods are
run for at most 200 iterations and are applied for comparison purpose.

• Class 2 methods: the Multistart procedure described in Section 3 (denoted MS) and the adaptive
procedure described in Section 4 (denoted AD). Two values for the tolerance ε in (4) are used by MS
and AD, namely ε1 = 10−8 ∼ eps1/2 and ε2 = 10−12 ∼ eps3/4. The names MS1 and AD1 refer to ε1

and the names MS2 and AD2 refer to ε2. The number of randomly generated initial points is q = 10.
The bound to the number of iterations for each run of MS is dmax = 1000, while the overall number
of iterations of AD is bounded by dmax = 5000.

With Class 2 methods the procedure L used as local minimizer differs according to the presence
of constraints or not. In the test problems two different situations occur:

• The problem has a region D related to nonnegativity constraints. In this case, a block nonlinear
Gauss–Seidel scheme [10] is implemented as L, in order to find constrained local minima of
f (x). The vector x is decomposed into µ disjoint subvectors, cyclically updated until some
convergent criterium is satisfied. The convergence of this scheme, more specifically called in
our case Alternating Nonnegative Least Squares (ANLS), is analyzed in [10]. We apply it for
the particular case of Problem (1) with f (x) as in (2) in the two-dimensional case (µ = 2 in
Sections 5.1 and 5.2) and in the three-dimensional case (µ = 3 in Section 5.3).

• The problem is unconstrained (Section 5.4). In this case the local minimizer L is a library procedure
based on Levenberg-Marquardt method.

The aim of the experimentation is:

• To analyze, in terms of both execution time and accuracy, the effects on the performance of Class 2
methods of the two chosen values for the tolerance ε used in the stopping condition (4). Of course,
we expect that a weaker request for the tolerance (ε1 = 10−8) would result in lower accuracy
and time saving than a stronger request (ε2 = 10−12). This issue is experimentally analyzed by
comparing the performances of method MS1 with those of method MS2 and the performances of
method AD1 with those of method AD2.

• To compare the performances of the adaptive and non adaptive procedures of Class 2. We wonder
whether the adaptive procedure, with its policy of discarding the less promising items, can overlook
the item which eventually would turn out to be the best one. This issue is experimentally analyzed
by comparing the performances of method MS1 with those of method AD1 and the performances of
method MS2 with those of method AD2.

• To compare the performances of Class 1 and of Class 2 methods. Naturally, we expect that in the
case of constrained problems the execution times of Class 1 methods, which implement general
purpose procedures, would be larger than those of Class 2, specifically tailored to functions of type (2).
Beforehand, it is not clear whether the latter ones would pay the time saving with a lower accuracy.

For each problem we assume that an accurate approximation of the solution f ∗ of (1) is known.
In the tables two performance indices are listed:

• the execution time (denoted time) in seconds. In order to get a more reliable measure for this
index, the same problem is run 5 times with each starting point and the average of the measures
is given in the tables as time.
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• the quantity lerr = − log10( f (xmin)− f ∗), rounded to the first decimal digit, as a measure of
accuracy. Approximately, lerr gives the number of exact decimal digits obtained by the method.
The larger lerr, the more accurate the method. When a method produces a very good value
f (xmin) such that f (xmin)− f ∗ ∼ eps, the case is marked by the symbol +.

We give now a description of the test problems together with their numerical results.

5.1. The Nonnegative Matrix Factorization

The first test problem is the NMF problem (3) already outlined in Section 2, i.e., given M ∈ Rm×n
+

and k < n, we look for the basis matrix W ∈ Rm×k
+ and the coefficient matrix H ∈ Rn×k

+ which minimize
f (W, H) = ‖M−W HT‖2

F under the constrains W, H ≥ O.
ANLS is applied to f (W, H) with µ = 2. An initial W0 ∈ Rm×k

+ is chosen and the sequences
Hν = argmin

H≥0
‖M−Wν−1 HT‖2

F,

Wν = argmin
W≥0

‖MT − Hν WT‖2
F,

(6)

for ν = 1, 2, . . ., are computed.
Although the original problem (3) is nonconvex, subproblems (6) are convex and can be easily

dealt with. In the experimentation we use for (6) the Greedy Coordinate Descent method (called GCD
in [11]), which is specifically designed for solving nonnegative constrained least squares problems.
The attribute “Greedy” refers to the selection policy of the elements updated during the iteration,
based on the largest decrease of the objective function. In our tests this method has shown to be fast
and reliable. The corresponding code can be found as Algorithm 1 in [11].

For the experimentation, given the integers m, n and h ≤ min{m, n}, two matrices A ∈ Rm×h
+

and B ∈ Rn×h are generated with random elements uniformly distributed over [0, 1] and the matrix
M = A BT is constructed. The test problem (3) requires computing the NMF of M, i.e., given an integer
k ≤ h, two matrices W ∈ Rm×k

+ and H ∈ Rn×k
+ such that M ≈ WHT are to be found. The following

cases are considered
m = 20, n = 10, h = 5, with k = 3 and k = 5,
m = 40, n = 30, h = 10, with k = 5 and k = 10.

The dimension of the solution space is N = (m + n) k. In the cases k = h we expect f ∗ = 0.
The results are shown in Table 1.

Table 1. Execution times and accuracies for nonsymmetric Nonnegative Matrix Factorization (NMF) problems.

m × n (h, k) N Indices NM DE SA MS1 MS2 AD1 AD2

time 18 42 38 19 27 16 18
20× 10 (5, 3) 90

lerr 14.1 13.7 13.4 12.9 13. 12.9 13.0

time 336 168 536 37 55 7 8
20× 10 (5, 5) 150

lerr 13.9 13.2 13.6 8.9 + 8.2 +

time 617 696 783 200 323 135 148
40× 30 (10, 5) 350

lerr 12.1 12.4 12.5 6.6 10.8 6.6 10.8

time 3158 5011 3929 606 917 183 255
40× 30 (10, 10) 700

lerr 13.2 11.5 12.2 8.6 12.4 8.6 12.0

In the table we note that Class 1 methods, which use general purpose local optimizers, are more
time consuming than Class 2 methods, as expected. Moreover, this gap increases with the dimension N.
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Averagely, Class 1 methods are more accurate than Class 2 methods. Within the Class 2, each adaptive
method is faster than the corresponding non adaptive one, as can be seen by comparing the times
in column AD1 with those in column MS1 and the times in column AD2 with those in column MS2.
Obviously, MS1 and AD1 give lower accuracies than MS2 and AD2 respectively, due to a weaker request
on the flatness imposed by (4). By comparing the measures lerr in column AD2 with those in column
MS2, we see that AD2 does not lose accuracy with respect to MS2.

5.2. The Symmetric NMF

In some applications, matrix M ∈ Rn×n
+ is symmetric, then the objective function to be minimized

becomes f (W) = ‖M−W WT‖2
F, under the constrain W ≥ O. This problem is known as symmetric

NMF (SymNMF). As suggested in [12], the solution W ∈ Rn×k
+ can be found through a nonsymmetric

penalty problem of the form

min
W, H≥O

fα(W, H), with fα(W, H) = ‖M−WHT‖2
F + α‖W − H‖2

F,

α being a positive parameter which acts on the violation of the symmetry. Hence, applying ANLS,
we solve alternatively the two subproblems

Hν = argmin
H≥0

∥∥∥∥
[

M√
αν WT

ν−1

]
−
[

Wν−1√
αν Ik

]
HT
∥∥∥∥2

F
,

Wν = argmin
W≥0

∥∥∥∥
[

M√
αν HT

ν

]
−
[

Hν√
αν Ik

]
WT
∥∥∥∥2

F
.

In [12], the sequence of penalizing parameters is constructed by setting

αν = βν max M, with β0 = 1

and βν is modified according to a geometric progression of the form βν = ζν with the fixed ratio
ζ = 1.01. We suggest instead to let βν be modified adaptively, as shown in [13].

Symmetric NMF problems arise naturally in clustering. Given n points pi in an Euclidean space
and the number k of the required clusters, the clustering structure is captured by a symmetric matrix M,
called similarity matrix, whose elements mi,j represent the similarity between pi and pj. These similarity
values are computed through the Gaussian kernel

ei,j = exp
(
−
‖pi − pj‖2

2

σ2

)
, for i 6= j, and ei,i = 0, (7)

where σ is a suitable scaling parameter, followed by the normalized cut

mi,j = d−1/2
i ei,jd

−1/2
j where di =

n

∑
r=1

ei,r, for i = 1, . . . , n.

The experimentation deals with two sets C1 and C2 of n points randomly generated in R2

(see Figure 2 for n = 50).
Set C1 is generated with n = 10, 50, 100 and set C2 is generated with n = 50, 100, 200. The number

of the required clusters is fixed to k = 5 for all the cases. The dimension of the solution space is N = 2nk.
The results are shown in Table 2. On these problems, Class 2 methods outperform Class 1 methods in
both the computational time and the accuracy. Moreover, by comparing the measures lerr in column
AD1 with those in column MS1 and the measures lerr in column AD2 with those in column MS2, we see
that, for each value of the tolerance ε, the adaptive method and the corresponding non adaptive one
share the same accuracy.
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(a) (b)

Figure 2. (a) Set C1 and (b) Set C2 with n = 50 points.

Table 2. Execution times and accuracies for symmetric Nonnegative Matrix Factorization (NMF) problems.

cluster N Indices NM DE SA MS1 MS2 AD1 AD2

time 5 18 11 10 10 6 6
C1, n = 10 100

lerr + + + + + + +

ltime 1232 1092 1363 15 14 12 13
C1, n = 50 500

err 8.6 8.6 8.6 + + + +

time 991 1138 1085 12 12 11 11
C2, n = 50 500

lerr 8.5 8.5 8.5 + + + +

time 7541 8275 7749 108 107 83 87
C1, n = 100 1000

lerr 8.2 8.3 8.2 + + + +

time 5577 5645 6184 84 94 81 82
C2, n = 100 1000

lerr 8.6 8.6 8.6 14.8 14.8 14.8 14.8

time 28,003 36,256 37,424 356 421 137 164
C2, n = 200 2000

lerr 9.2 9.8 9.8 9.0 + 9.0 +

5.3. The Nonnegative Factorization of a 3rd-Order Tensor

Let T be a 3rd-order tensor, i.e., a three-dimensional array whose elements are ti,j,k, with i =
1, . . . , m, j = 1, . . . , n and k = 1, . . . , `. A common way to represent graphically T is through its (frontal)
slices Tk, k = 1, . . . , `, where Tk is the matrix obtained by fixing to k the third index.

If T can be expressed as the outer product of three vectors u, v and z, i.e., T = u ◦ v ◦ z, where ◦
denotes the vector outer product, T is called rank-one tensor or triad.

Among the many factorizations of a tensor defined in the literature, we consider here the
CANDECOMP/PARAFAC (in the following CP) decomposition (see [14]) into the sum of triads,
which extends in a natural way the decomposition of matrices in sum of dyads. Given an integer ρ,
three matrices U ∈ Rm×ρ, V ∈ Rn×ρ and Z ∈ R`×ρ are computed such that

T ≈
ρ

∑
s=1

us ◦ vs ◦ zs, (8)

where us, vs and zs are the sth columns of U, V and Z (see [14,15]). Elementwise, (8) is written as

ti,j,k ≈
ρ

∑
s=1

ui,s vj,s zk,s, for i = 1, . . . , m, j = 1, . . . , n, k = 1, . . . , `.
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The objective function of the CP decomposition of T is

f (U, V, Z) = ‖T −
ρ

∑
s=1

us ◦ vs ◦ zs‖2
F =

m

∑
i=1

n

∑
j=1

`

∑
k=1

(
ti,j,k −

ρ

∑
s=1

ui,s vj,s zk,s

)2
. (9)

The smallest integer ρ for which (8) holds with equality, i.e., min f (U, V, Z) = 0, is the tensor rank
of T.

By flattening its slices, the elements of T can be arranged into a matrix. For example, one can
leave the ith index and linearize the two other indices, obtaining a matrix which is denoted by T(i).
Thus, T(1) ∈ Rm×n`, T(2) ∈ Rn×m` and T(3) ∈ R`×m n are the matrices whose elements are

t(1)i,n(k−1)+j = t(2)j,m(k−1)+i = t(3)k,m(j−1)+i = ti,j,k.

These matrices are written in a compact way by using the notation of the Khatri-Rao product,
defined as follows. Given two matrices A ∈ Rm×h and B ∈ Rn×h, the Khatri-Rao product A� B is the
m n× h matrix

A� B = [a1 ⊗ b1 | a2 ⊗ b2 | . . . | ah ⊗ bh],

where ai and bi are the ith columns of A and B respectively, and ⊗ denotes the Kronecker product of
two vectors. With this notation (8) becomes

T(1) ≈ U(Z�V)T , T(2) ≈ V(Z�U)T , T(3) ≈ Z(V �U)T . (10)

In the experimentation we consider the nonnegatively constrained CP decomposition and
minimize (9) by applying ANLS as the local minimizer to the three matrices given in (10). Having
fixed nonnegative U0 and V0, the computation proceeds alternating on three combinations as follows

Zν = argmin
Z≥0

f (Uν−1, Vν−1, Z) = argmin
Z≥0

‖T(3)T −
(
Vν−1 �Uν−1

)
ZT‖2

F

Uν = argmin
U≥0

f (U, Vν−1, Zν) = argmin
U≥0

‖T(1)T −
(
Zν �Vν−1

)
UT‖2

F

Vν = argmin
V≥0

f (Uν, V, Zν) = argmin
V≥0

‖T(2)T −
(
Zν �Uν

)
VT‖2

F

for ν = 1, 2, . . .
For the experimentation, given the integers m, n, ` and h, three matrices A with columns as ∈ Rm

+,
B with columns bs ∈ Rn

+ and C with columns cs ∈ R`
+ are generated for s = 1, . . . , h, with random

elements uniformly distributed over [0, 1]. The tensor T = ∑h
s=1 as ◦ bs ◦ cs is then constructed.

Given an integer ρ, the proposed problem requires computing the CP decomposition (8) of T into the
sum of ρ triads under nonnegative constraints. The problem is dealt with for the two cases ρ = h and
ρ < h. The following cases are considered

m = 10, n = 5, ` = 15, h = 5, ρ = 3,
m = 10, n = 5, ` = 15, h = 5, ρ = 5,
m = 10, n = 20, ` = 30, h = 8, ρ = 4,
m = 10, n = 20, ` = 30, h = 5, ρ = 5.

The dimension of the solution space is N = (m + n + `) ρ. In the cases ρ = h we expect f ∗ = 0.
The results are shown in Table 3. From the point of view of the computational time, the performances
of Class 1 and Class 2 methods agree with those seen in the other tables. From the point of view
of the accuracy, Class 2 methods with the stronger request ε2 for the tolerance are competitive with
Class 1 methods.
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Table 3. Execution times and accuracies for nonnegative CANDECOMP/PARAFAC (CP) problems.

m × n × ` (h, ρ) N Indices NM DE SA MS1 MS2 AD1 AD2

time 244 268 217 36 58 17 19
10× 5× 15 (5, 3) 90

lerr 11.3 9.6 9.8 7.1 11.1 7.1 10.9

time 805 1024 580 111 182 32 40
10× 5× 15 (5, 5) 150

lerr 13.1 13.0 10.2 8.1 12.0 8.1 12.0

time 6898 5743 4993 195 364 92 109
10× 20× 30 (8, 4) 240

err 7.8 8.7 9.3 5.3 9.3 5.2 9.1

time 2050 9782 14548 223 334 82 92
10× 20× 30 (5, 5) 300

lerr 12.3 14.5 9.8 8.3 12.0 8.3 12.0

5.4. Tensor Factorization for the Matrix Product Complexity

The theory of matrix multiplication is strictly related to tensor algebra. In particular, the concept
of tensor rank plays an important role in the determination of the complexity of the product of
matrices [16]. We consider here the case of square matrices.

Given A, B ∈ Rn×n, the elements of C = A B can be written in the form

cr,s = aTKr,s b, r, s = 1, . . . , n,

where a and b are the vectors obtained by vectorizing columnwise A and rowwise B, i.e.,

aT = [a1,1, . . . , an,1, a1,2, . . . , an,2, . . . , a1,n, . . . , an,n] ∈ Rn2
,

bT = [b1,1, . . . , b1,n, b2,1, . . . , b2,n, . . . , bn,1, . . . , bn,n] ∈ Rn2
,

and Kr,s ∈ Rn2×n2
is expressed by the Kronecker product Kr,s = In ⊗ Hr,s where the n× n matrix Hr,s

has elements hi,j = δr,iδs,j. The associated 3rd order tensor T ∈ Rn2×n2×n2
is the one whose slides are

Kr,s, i.e., the elements of T are ti,j,k = (Kr,s)i,j, with k = n(r− 1) + s. Most elements of T are null.
A reduction of the representation is obtained when A is triangular. For example, in the case of

an upper triangular matrix A of size n, a can be represented by the n(n + 1)/2 elements

aT = [a1,1, a1,2, a2,2, . . . , a1,n, . . . , an,n],

with a resulting reduction in the first dimension of the matrices Kr,s. If B is a full matrix, the associated
tensor has n2 × n(n + 1)/2× n2 elements.

A fact of fundamental relevance is that the complexity of the computation of the product A B, i.e.,
the minimum number of nonscalar multiplications sufficient to compute the product, is equal to the
tensor rank of T. In the experimentation we consider problems of the form (9) for a given integer ρ. If the
minimum is equal to zero, then the tensor rank of T is lower than or equal to ρ. The difficulty which
characterizes these problems is due to the presence of large regions of near flatness of f , leading to a slow
convergence to local minima. The difficulty increases when the parameter ρ decreases.

The dimension of the solution space is N = 3n2ρ when both A and B are full, and is N =

(2n2 + n(n + 1)/2)ρ when one of the matrix is triangular. In the tests we consider the following cases
with matrices A and B of size n = 3 and ρ such that f ∗ = 0.

Problems TF3(ρ): A is a triangular matrix and B is a full matrix, with ρ = 16, 17, 18,
Problems FF3(ρ): A and B are full matrices, with ρ = 24, 25, 26, 27.

The results are shown in Table 4.
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Table 4. Execution times and accuracies for the tensor factorization associated to matrix product complexity.

Problem (ρ) N Indices NM DE SA MS1 MS2 AD1 AD2

time 1015 1102 1138 1920 1917 393 5770
TF3(16) 384

lerr 3.5 3.4 3.0 7.6 7.6 8.0 12.0

time 457 370 1161 1097 1104 37 53
TF3(17) 408

lerr 8.5 8.7 6.5 + + 8.2 +

time 1070 816 432 146 167 35 35
TF3(18) 432

lerr 7.6 8.1 9.6 + + + +

time 3485 3501 3724 3640 4086 255 257
FF3(24) 648

lerr 3.8 3.3 4.0 + + 13.1 13.1

time 643 2263 3145 2503 2783 217 219
FF3(25) 675

lerr − 7.8 6.9 + + + +

time 2633 2320 2639 1689 2880 146 197
FF3(26) 702

lerr 7.8 8.1 8.2 + + 8.7 +

time 1356 1138 2502 1016 1523 210 210
FF3(27) 729

lerr 9.6 9.6 8.3 + + + +

The low accuracies of Class 1 methods point out the effective difficulty of the problems. In one
case a method of Class 1 fails to give an acceptable solution and this fact is marked by the symbol −.
In this case there is not a great discrepancy between the computational times of Class 1 methods and
non adaptive Class 2 methods, as can be seen by comparing the times in columns NM, DE and SA with
those in columns MS1 and MS2. Typically, the adaptive methods lower the computational time while
maintaining better accuracies. Only for the first problem, a much better accuracy of AD2 is paid by
a much larger computational time.

From the point of view of the accuracy, Class 2 methods definitely outperform Class 1 methods.

5.5. Summary of the Results

First, we analyze the effect of the chosen tolerance on Class 2 methods. The experiments confirm
the expectation that stronger tolerance requests, which pay in terms of larger execution time, in general
lead to more accurate results. The comparison of the performances of Class 1 and Class 2 methods
shows that the accuracy of MS2 and AD2 does not appear to suffer too much with respect to the accuracy
of Class 1 methods, in spite of the fact that they enjoy a much smaller execution time.

In order to summarize the results of the experimentation, we plot in Figure 3 the average of all the
values of lerr, taken as a measure of the methods accuracy on all the problems, versus the averaged
time. The larger the ordinate value, the more accurate the method.

NM

DE

SA

MS1

MS2

AD1

AD2

0 500 1000 1500 2000 2500 3000 3500
time

9

10

11

12

13

Figure 3. Average lerr (taken as a measure of accuracy) versus time.
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From the figure we see that, on average, the adaptive procedure AD2 not only is faster, but also
gives comparable accuracy with MS2. This is due to the fact that the computational effort of AD2 is
focused where it is more useful and is not wasted.

To study how time depends on N, we need data corresponding to large values of N. A problem
for which it is possible to obtain these data is the symmetric NMF applied to clustering. In fact, in this
case it is easy to construct problems of the same type with increasing dimensions.

Figure 4 gives an idea of the time performance of the methods when they are applied to the cluster
problem C2. Class 2 methods have been run with increasing dimensions until n = 2000, corresponding
to size N = 20,000. The execution times of AD2 (dashed line) and MS2 (solid line) are plotted together
with the times of NM (solid line), chosen as the representative of Class 1 for N ≤ 2000 (larger dimensions
for Class 1 methods could not be considered). For the lower dimensions, the use of the adaptive
method does not give advantages, because of the initialization overhead (due to the 6λ iterations
performed for stabilization before starting the adaptive strategy). This is shown by the overlap of the
plots of AD2 and MS2 in the initial tract.

500 1000 5000 10
4

N

10

50

100

500

1000

5000

10
4

time

MS2

AD2

NM

Figure 4. Log-log plot of the execution times of AD2, MS2, and NM versus N.

The lines which appear in the log-log plot suggest that the asymptotical behavior of the
computational cost for increasing N is of the form α Nβ. Very similar values of β suggest that the costs
of MS2 and NM have roughly the same order, while the cost of AD2 has a lower order. It is evident that
the multiplicative constant α, whose log is readable from the vertical offset of the lines, of MS2 and AD2
is very lower than the one of NM.

6. Conclusions

In this paper an adaptive strategy, called AD, has been introduced for finding the global minimum
of a polynomial function expressed through the Frobenius norm of matrices and tensors. The strategy is
based on a heuristic approach to the Multistart algorithm. To compare the proposed method with some
classical library methods, an extensive experimentation has been performed on both nonnegatively
constrained and unconstrained problems, which include the nonnegative factorization of matrices
and tensors and the determination of the tensor rank associated to the matrix product complexity.
The proposed method allows a considerable saving of the computational time and comparable accuracy
with respect to classical procedures.
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