
algorithms

Article

Pruning Optimization over Threshold-Based
Historical Continuous Query

Jiwei Qin, Liangli Ma * and Qing Liu

College of Electronic Engineering, Naval University of Engineering, Wuhan 430033, China;
18602706401@163.com (J.Q.); qing@alumni.hust.edu.cn (Q.L.)
* Correspondence: maliangl@163.com

Received: 4 March 2019; Accepted: 18 May 2019; Published: 19 May 2019
����������
�������

Abstract: With the increase in mobile location service applications, spatiotemporal queries over the
trajectory data of moving objects have become a research hotspot, and continuous query is one of
the key types of various spatiotemporal queries. In this paper, we study the sub-domain of the
continuous query of moving objects, namely the pruning optimization over historical continuous
query based on threshold. Firstly, for the problem that the processing cost of the Mindist-based
pruning strategy is too large, a pruning strategy based on extended Minimum Bounding Rectangle
overlap is proposed to optimize the processing overhead. Secondly, a best-first traversal algorithm
based on E3DR-tree is proposed to ensure that an accurate pruning candidate set can be obtained
with accessing as few index nodes as possible. Finally, experiments on real data sets prove that our
method significantly outperforms other similar methods.

Keywords: moving object; historical continuous query; pruning optimization; spatiotemporal index

1. Introduction

With the rapid development of mobile networks and positioning technologies, the trajectory data
of mobile objects can be more conveniently obtained. For example, the Automatic Identification System
is used to report the real-time location information of ships, and the mobile social applications are
used to share the real-time location, etc. The trajectory data of mobile objects contains a large amount
of information that can be analyzed and mined. By managing the trajectory data of mobile objects
through mobile object database [1], a large number of applications based on location services can be
promoted, such as geographic information systems, navigation systems, path planning systems, etc.
Therefore, the performance of a mobile object database will determine the service capabilities that the
location-based applications can provide.

In the past ten years, the research on mobile object database has achieved a lot of results, covering
all aspects of data storage, management, query, and mining. Mobile object query is one of the key
technologies of a mobile object database. In different scenarios, various types of query operations are
needed to provide service support. Research on how to provide high-performance queries is the key to
improving the service capability of a mobile object database. Therefore, it is important to implement a
query operation that can accurately return the results in a short time. With the gradual deepening of
research, people not only consider the spatial information of the moving object when querying, but also
temporal information will be taken into account. At this stage, the query operations for the moving
object include spatiotemporal range query, trajectory similarity query, neighbor query, threshold-based
query [2], etc. We consider the following query requests for the historical trajectory data:

1. Find which ships were within one nautical mile from the berth O1 at any time instance of the time
period from 10:00 on 11 November 2015 to 10:00 on 12 November 2015.

Algorithms 2019, 12, 107; doi:10.3390/a12050107 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
http://dx.doi.org/10.3390/a12050107
http://www.mdpi.com/journal/algorithms
https://www.mdpi.com/1999-4893/12/5/107?type=check_update&version=2

Algorithms 2019, 12, 107 2 of 19

2. Find which ships were within one nautical mile from the ship O2 at any time instance of the time
period from 8:00 on 12 November 2015 to 8:00 on 13 November 2015.

The above two queries require the query results at any time instance of the query time period,
wherein the query request (1) takes a static object as the reference, and the query request (2) takes a
moving object as the reference, both of which can be characterized as continuous queries [3]. However,
there is a certain difference between these continuous queries and the traditional continuous ones.
The traditional continuous query submits the query request to the database at once and remains active,
and the query results are periodically returned until the predetermined query lifetime ends. While
the query requests (1) and (2) demand the database to return all query results at once. It can be seen
that these continuous queries face a greater data processing scale challenge than the traditional ones.
In addition, we can see from the query conditions that the above query requests are constrained by
the spatial distance threshold, so we call them threshold-based historical continuous queries (THC
queries).

Figure 1 displays an example of THC query, where Tq is the historical trajectory of the query
moving object Oq, and T1, T2, and T3 are the historical trajectories of the moving objects O1, O2, and
O3, respectively, and the query time interval is (t1, t4), the distance threshold is d. As time goes by,
the position of the moving object will change continuously. Hence, the query time interval can be
subdivided into a plurality of smaller time segments, and the query results in each time segment are
not the same. As Figure 1 shows, the results are O2 and O3 at the time interval (t1, t3), O1, O2 and O3 at
time instance t3, O1, and O2 at the time interval (t3, t4).

Algorithms 2019, 12, 107 2 of 18

1. Find which ships were within one nautical mile from the berth O1 at any time instance of the
time period from 10:00 on 11 November 2015 to 10:00 on 12 November 2015.

2. Find which ships were within one nautical mile from the ship O2 at any time instance of the time
period from 8:00 on 12 November 2015 to 8:00 on 13 November 2015.

The above two queries require the query results at any time instance of the query time period,
wherein the query request (1) takes a static object as the reference, and the query request (2) takes a
moving object as the reference, both of which can be characterized as continuous queries [3].
However, there is a certain difference between these continuous queries and the traditional
continuous ones. The traditional continuous query submits the query request to the database at once
and remains active, and the query results are periodically returned until the predetermined query
lifetime ends. While the query requests (1) and (2) demand the database to return all query results at
once. It can be seen that these continuous queries face a greater data processing scale challenge than
the traditional ones. In addition, we can see from the query conditions that the above query requests
are constrained by the spatial distance threshold, so we call them threshold-based historical
continuous queries (THC queries).

Figure 1 displays an example of THC query, where Tq is the historical trajectory of the query
moving object Oq, and T1, T2, and T3 are the historical trajectories of the moving objects O1, O2, and O3,
respectively, and the query time interval is (t1, t4), the distance threshold is d. As time goes by, the
position of the moving object will change continuously. Hence, the query time interval can be
subdivided into a plurality of smaller time segments, and the query results in each time segment are
not the same. As Figure 1 shows, the results are O2 and O3 at the time interval (t1, t3), O1, O2 and O3 at
time instance t3, O1, and O2 at the time interval (t3, t4).

time

position

t1

t2

t3

t4

TqT1 T2 T3

d

d

Figure 1. Example of threshold-based historical continuous (THC) query.

THC queries can be processed by the classic "pruning-refinement" method [4]. In the pruning
step, a certain pruning strategy is used to roughly check whether the trajectory data in the moving
object database satisfies the constraint condition, and the trajectory data that does not match the
condition is eliminated, and finally, a candidate set of trajectory data is obtained. The entire pruning
process is usually performed by traversing a spatiotemporal index. In the refinement step, the
candidate set is further filtered by the distance calculation, and the results that finally satisfy the
query condition are returned to the user.

In the above process, the pruning step has a decisive influence on the overall query performance.
This is because, first, the time overhead of pruning is an important part of the overall query time. If
the pruning strategy can be optimized, and the processing time can be reduced, the overall query
performance will undoubtedly be improved effectively. Second, the candidate set of pruning directly
affects the performance of refinement. The closer the candidate trajectory data generated by pruning
is to the final result, the less the number of trajectory distance calculations required in the refinement
step, and the I/O times and the calculation time required for the query can be reduced effectively. In
view of this, in order to achieve efficient query performance, we optimized the pruning step of THC
queries. First, the pruning strategy based on extended Minimum Bounding Rectangle (MBR) overlap

Figure 1. Example of threshold-based historical continuous (THC) query.

THC queries can be processed by the classic “pruning-refinement” method [4]. In the pruning step,
a certain pruning strategy is used to roughly check whether the trajectory data in the moving object
database satisfies the constraint condition, and the trajectory data that does not match the condition is
eliminated, and finally, a candidate set of trajectory data is obtained. The entire pruning process is
usually performed by traversing a spatiotemporal index. In the refinement step, the candidate set is
further filtered by the distance calculation, and the results that finally satisfy the query condition are
returned to the user.

In the above process, the pruning step has a decisive influence on the overall query performance.
This is because, first, the time overhead of pruning is an important part of the overall query time.
If the pruning strategy can be optimized, and the processing time can be reduced, the overall query
performance will undoubtedly be improved effectively. Second, the candidate set of pruning directly
affects the performance of refinement. The closer the candidate trajectory data generated by pruning is
to the final result, the less the number of trajectory distance calculations required in the refinement
step, and the I/O times and the calculation time required for the query can be reduced effectively.
In view of this, in order to achieve efficient query performance, we optimized the pruning step of THC

Algorithms 2019, 12, 107 3 of 19

queries. First, the pruning strategy based on extended Minimum Bounding Rectangle (MBR) overlap
is proposed to reduce the processing overhead of a single pruning check. Secondly, we designed
an extended 3DR-tree [5] structure called E3DR-tree to the index query object, and based on this,
we implemented a best-first traversal algorithm, so that an accurate pruning candidate set was obtained
with accessing as few nodes as possible in the traversal of the indexes.

Our main contributions can be summarized as follows:

• We propose a pruning strategy based on extended MBR overlap to optimize the single pruning
check, thereby effectively reducing the processing time.

• We introduce a best-first traversal algorithm based on E3DR tree, to obtain a precise pruning
candidate set for refinement processing under the premise of effectively controlling the number of
accessed nodes when traversing the indexes.

• We evaluate our method with the dataset of ship trajectory, the experimental results verify
the efficiency.

Section 2 introduces the related work. The background is introduced in Section 3. The method
of pruning optimization is described in Section 4. Section 5 provides an experimental study of our
method. Finally, we give a brief conclusion in Section 6.

2. Related Work

At present, there are many studies on historical continuous query, in addition to threshold-based
historical continuous query, it also includes k nearest neighbor historical continuous query.

Frentzos et al. [6] introduced a depth-first traversal algorithm to support k nearest neighbor history
continuous query and proposes a new line-to-rectangular Mindist (minimum distance) calculation
method [7] to improve pruning efficiency. Moreover, they apply the above method in the two index
structures of TB-tree [8] and 3DR-tree and verify the feasibility on the real and synthetic data sets.

Güting et al. [9] researched pruning optimization of k nearest neighbor historical continuous
query. They propose an extended 3DR-tree structure to quickly determine the number of candidate
trajectories, design a time-based index named BB-tree to achieve high-precision pruning, and based
on this, implement a breadth-first large-scale node traversal algorithm to efficiently obtain candidate
trajectory data.

Gowanlock et al. [10] conducted a study on threshold-based historical continuous query. In order
to reduce the I/O overhead for query processing, they propose a memory-based R-tree structure to
index the trajectory data and use a query algorithm based on MBR overlap to process the pruning and
refinement. Compared to the first two studies, this study does not focus on the improvement of the
algorithm but does a lot of experiments on real datasets to determine the appropriate parameters for
the construction of memory-based R-tree. In addition, they also explore the parallelization of query
based on OpenMP [11].

Huang et al. [12] propose a new threshold-based historical continuous query operation. For this
query operation, a pruning method based on Mindist-Maxdist (minimum distance-maximum distance)
and a refinement method based on dynamic time warping are introduced. In addition, this study also
discusses the impact of trajectory segmentation on query and evaluates the performance of the query
algorithm on the indexes of 3DR-tree, TB-tree and SETI [13], respectively.

With the rapid development of GPU technology, a series of methods [14–16] which use GPU to
process the threshold-based historical continuous queries in parallel are proposed. On the one hand,
considering that the GPU does not have branch prediction capabilities, these methods avoid using the
tree-like structure to index the trajectory data, using the grid structure instead. On the other hand,
considering that the GPU memory is limited, different from the snapshot queries taken by the above
four methods, these methods divide the trajectory data contained in the mobile object database into
multiple batches and iteratively process them.

Algorithms 2019, 12, 107 4 of 19

Aside from the GPU-based methods, the above methods have more or less the following
shortcomings: (1) Calculating the values of Mindist or Maxdist requires high computational costs [6,9,12].
(2) During the pruning step, the pruning candidate set generated by taking the whole query trajectory
as a whole is not accurate enough [6,12]. Conversely, the pruning method that takes each segment of
the query trajectory as a basic unit can obtain a more accurate candidate set, but the number of the
accessed nodes is greatly increased [9,10]. In response to these two shortcomings, we will discuss the
solutions in detail later.

3. Background

The real trajectory of the moving object is a continuous curve in space and time, but the sampling
and storage of the trajectory data are carried out in discrete form, this is because the sensor device can
only collect and send discrete samples. For example, a taxi equipped with a GPS device reports its
position information every 10 s. The discrete position samples of a moving object constitute an ordered
sequence of segments. When the sampling frequency is high enough, this sequence of segments can be
relatively accurately approximated to the real trajectory of the moving object. Therefore, we used a
segment-based data model to represent the trajectory of a moving object, defined as follows:

Definition 1. The trajectory T of a moving object contains a sequence of trajectory segments (l1, l2, . . . , lM)
arranged chronologically. Each trajectory segment l records the linear motion of a moving object in a time
interval, which can be expressed as l =

{
oid, ps, pe, ts, te

}
, (ts ≤ te), where oid is the identifier of the moving object

and it can represent the moving object, ps and pe respectively represent the spatial position of the moving object
at time instance ts and te.

According to the data model of trajectory described in Definition 1, the spatial position of the
moving object at a certain historical time instance can be obtained by linear interpolation. In the
two-dimensional Euclidean space, given a trajectory segment l =

{
oid, ps, pe, ts, te

}
, the spatial coordinates

of ps and pe are expressed as ps = (qs1, qs2) and pe = (qe1, qe2), let loc(t, oid) represent the spatial position
of oid at the time instance t, and lock(t, oid) denote the k-th dimension coordinate of loc(t, oid). For any
time instance t in the time interval [ts, te], We compute the value of lock(t, oid) as

lock(t, oid) =
{ qek−qsk

te−ts
(t− ts) + qsk ts < te

qsk ts = te
. (1)

Using Formula (1), we can calculate the spatial positions of two moving objects at a timestamp,
and then obtain the distance between them. In this paper, we used Euclidean distance as the distance
metric, let d(loc(t, oid1), loc(t, oid2)) denote the distance between oid1 and oid2 in the time instance t,
according to the Euclidean distance formula

d(loc(t, oid1), loc(t, oid2)) =

√√√ 2∑
k=1

(lock(t, oid1) − lock(t, oid2))
2. (2)

In the two query requests listed in Section 1, the stationary object can be taken as a moving object
that stays in a spatial position, so a uniform query definition can be given.

Definition 2. Given a moving object oidq, a moving object database D, a time interval [tsq,teq], a distance
threshold d, the historical trajectory Tq of oidq in [tsq,teq], the threshold-based historical continuous query return
a collection of query results Rs, the element re of Rs is expressed as a tuple (ti, oids), where ti is a time interval,
and oids is a set of moving objects. Rs satisfies the following two conditions:
(1) Given two elements re1, re2 ∈ Rs, such that re1.ti∩ re2.ti = ∅ and re1.ti, re2.ti ⊆ [tsq, teq].
(2) Given an element re1 ∈ Rs, a time instance t1 ∈ re1.ti, a moving object oid1 ∈ re1.oids, such that
d(loc(t1, oid1), loc(t1, oidq)) ≤ d.

Algorithms 2019, 12, 107 5 of 19

With other words, the time intervals of different Rs elements do not overlap, and the time interval of any Rs
element must be within the query time interval. Moreover, the distance between each oid in Rs.oids and oidq in
any time instance of Rs.ti must not be greater than the distance threshold d.

In order to ensure the spatiotemporal query performance of the mobile object database D,
the spatiotemporal index structure such as 3DR-tree and TB-tree can be used to index the trajectory
data. Since 3DR-tree has stronger spatiotemporal discriminating ability than TB-tree [17], we used a
3DR-tree called drtree to index the trajectory data in D. 3DR-tree is a straightforward extension of R-tree
in the 3D space constituting by 2 + 1 (spatial and temporal, respectively) dimensions [6]. It treats time
as an extra spatial dimension and uses the trajectory segment as the index entry. Figure 2 shows an
example of 3DR-tree.

Algorithms 2019, 12, 107 5 of 18

In order to ensure the spatiotemporal query performance of the mobile object database D, the
spatiotemporal index structure such as 3DR-tree and TB-tree can be used to index the trajectory data.
Since 3DR-tree has stronger spatiotemporal discriminating ability than TB-tree [17], we used a 3DR-
tree called drtree to index the trajectory data in D. 3DR-tree is a straightforward extension of R-tree in
the 3D space constituting by 2 + 1 (spatial and temporal, respectively) dimensions [6]. It treats time
as an extra spatial dimension and uses the trajectory segment as the index entry. Figure 2 shows an
example of 3DR-tree.

b
d

a

c

R

t

x

y

R

a b c d

Figure 2. The example of 3DR-tree.

The pruning step is implemented by traversing drtree. It starts from the root node of drtree,
traverses drtree from top to bottom, discards the irrelevant drtree nodes according to a certain pruning
strategy (a drtree node refers an index node of drtree or a trajectory segment indexed by an index node
of drtree), and retains the trajectory segments related to the query trajectory Tq in time and space,
finally gets results of candidate trajectory segments.

4. Pruning Optimization

This section describes the pruning optimization method. Section 4.1 introduces the extended
MBR-overlap-based pruning strategy, which can effectively reduce the processing overhead of a
pruning check. Section 4.2 proposes an index structure for effectively organizing the query trajectory
Tq. Based on the new index structure, the best-first traversal algorithm is introduced in Section 4.3 to
ensure a high-precision pruning result with accessing as few nodes as possible. Table 1 lists the
frequently used notation in this section.

Table 1. Frequently used notations.

Notation Description
()TS x the time interval of x
()M x the spatial MBR of x

(,)d qMindist M M minimum distance from spatial area Md to spatial area Mq

(,)R x d the coverage area by extending the MBR of x with the distance
threshold d

(,)kM x d the rectangular spatial area by expanding the k-dimensional
spatial range of the MBR of x with the distance threshold d

Root(tree) the root node of the index tree
H(N) the height from N to the trajectory segment layer of the index

4.1. Extended MBR Overlap Based Pruning Strategy

Given a drtree node Nd, for Nd and query trajectory Tq, the basic pruning strategy consists of the
following two steps:

Figure 2. The example of 3DR-tree.

The pruning step is implemented by traversing drtree. It starts from the root node of drtree,
traverses drtree from top to bottom, discards the irrelevant drtree nodes according to a certain pruning
strategy (a drtree node refers an index node of drtree or a trajectory segment indexed by an index node
of drtree), and retains the trajectory segments related to the query trajectory Tq in time and space, finally
gets results of candidate trajectory segments.

4. Pruning Optimization

This section describes the pruning optimization method. Section 4.1 introduces the extended
MBR-overlap-based pruning strategy, which can effectively reduce the processing overhead of a
pruning check. Section 4.2 proposes an index structure for effectively organizing the query trajectory
Tq. Based on the new index structure, the best-first traversal algorithm is introduced in Section 4.3
to ensure a high-precision pruning result with accessing as few nodes as possible. Table 1 lists the
frequently used notation in this section.

Table 1. Frequently used notations.

Notation Description

TS(x) the time interval of x
M(x) the spatial MBR of x

Mindist(Md, Mq) minimum distance from spatial area Md to spatial area Mq
R(x, d) the coverage area by extending the MBR of x with the distance threshold d

Mk(x, d) the rectangular spatial area by expanding the k-dimensional spatial range of
the MBR of x with the distance threshold d

Root(tree) the root node of the index tree
H(N) the height from N to the trajectory segment layer of the index

Algorithms 2019, 12, 107 6 of 19

4.1. Extended MBR Overlap Based Pruning Strategy

Given a drtree node Nd, for Nd and query trajectory Tq, the basic pruning strategy consists of the
following two steps:

1. Check whether the time interval of Nd overlaps with the time interval of Tq, if TS(Nd)∩TS(Tq) = ∅,
then Nd should be pruned.

2. Determine whether the Mindist between the MBR of Nd and the MBR of Tq is not greater than the
distance threshold d, if Mindist(M(Nd), M(Tq)) > d, then Nd should be pruned.

In the step (2) of the basic pruning strategy, although the Mindist-based method can effectively
exclude the trajectory data that does not satisfy the query conditions, its calculation process is
complicated and requires a lot of CPU time. When calculating the value of Mindist between M(Nd) and
M(Tq), it first determines whether M(Nd) is overlapped with M(Tq), if so, then the value of Mindist is 0.
Otherwise, it needs to calculate the minimum distance from any edge of M(Nd) to M(Tq), and chooses
the minimum value as the value of Mindist, namely computing the MBR-to-MBR Mindist requires four
times of Mindist calculations between a line segment and a rectangle. Moreover, a segment-to-rectangle
Mindist calculation is subdivided into six times of distance calculations. As shown in Figure 3, when
calculating the minimum distance between the line segment L and the rectangle M, it is necessary
to calculate two Mindists from each vertex of L to M and four Mindists from each vertex of M to L,
and then select the minimum value among them as the result. Hence, if M(Nd) does not overlap
with M(Tq), 24 times of distance calculations are needed to get the value of Mindist between M(Nd)

and M(Tq).

Algorithms 2019, 12, 107 6 of 18

1. Check whether the time interval of Nd overlaps with the time interval of Tq, if
() ()d qTS N TS T = ∅ , then Nd should be pruned.

2. Determine whether the Mindist between the MBR of Nd and the MBR of Tq is not greater than
the distance threshold d, if ((), ())d qMindist M N M T d> , then Nd should be pruned.

M

L
Mindist(M,L)

Figure 3. The Mindist between a line segment and a rectangle.

In the step (2) of the basic pruning strategy, although the Mindist-based method can effectively
exclude the trajectory data that does not satisfy the query conditions, its calculation process is
complicated and requires a lot of CPU time. When calculating the value of Mindist between ()dM N
and ()qM T , it first determines whether ()dM N is overlapped with ()qM T , if so, then the value of
Mindist is 0. Otherwise, it needs to calculate the minimum distance from any edge of ()dM N to

()qM T , and chooses the minimum value as the value of Mindist, namely computing the MBR-to-
MBR Mindist requires four times of Mindist calculations between a line segment and a rectangle.
Moreover, a segment-to-rectangle Mindist calculation is subdivided into six times of distance
calculations. As shown in Figure 3, when calculating the minimum distance between the line segment
L and the rectangle M, it is necessary to calculate two Mindists from each vertex of L to M and four
Mindists from each vertex of M to L, and then select the minimum value among them as the result.
Hence, if ()dM N does not overlap with ()qM T , 24 times of distance calculations are needed to get
the value of Mindist between ()dM N and ()qM T .

Obviously, the cost of calculating Mindist between two MBRs is expensive, and if the
computational cost can be optimized, the query efficiency can be significantly improved. In the
process of calculating Mindist, it can be noticed that the cost for checking whether two MBRs overlap
is much smaller than the multiple distance calculation, which only needs to compare the spatial
positional relationship between the MBR vertices. Suppose the spatial coordinates of the lower left
and upper right corners of ()dM N are 1 1(,)d dx y and 2 2(,)d dx y , the spatial coordinates of the lower
left and upper right corners of ()qM T are 1 1(,)q qx y and 2 2(,)q qx y , if the result of Discriminant (3)
is true, then ()dM N is overlapped with ()qM T . Taking advantage of the low overhead of
overlapping calculation, we propose a pruning strategy based on extended MBR overlap to optimize
the computational overhead.

2 1 1 2 2 1 1 2!((() ()) (() ()))d q d q q d q dx x y y x x y y< ∨ > ∨ < ∨ > . (3)

First, we use the distance threshold d to extend the spatial range of ()qM T . In the two-
dimensional Euclidean space, we can get a coverage area (,)qR T d shaped as a rounded rectangle. It
is easy to know that if the MBR of a drtree node overlaps with (,)qR T d , then the Mindist between it
and ()qM T is no larger than d. However, since the coverage area of (,)qR T d is not a rectangular
area, determining whether ()qM T overlaps with (,)qR T d cannot be based only on the spatial
positional relationship between the vertices, and additional calculations are required. With this in
mind, we use the circumscribed rectangle ((,))qM R T d of (,)qR T d to approximate (,)qR T d , if

Figure 3. The Mindist between a line segment and a rectangle.

Obviously, the cost of calculating Mindist between two MBRs is expensive, and if the computational
cost can be optimized, the query efficiency can be significantly improved. In the process of calculating
Mindist, it can be noticed that the cost for checking whether two MBRs overlap is much smaller than
the multiple distance calculation, which only needs to compare the spatial positional relationship
between the MBR vertices. Suppose the spatial coordinates of the lower left and upper right corners of
M(Nd) are (xd1, yd1) and (xd2, yd2), the spatial coordinates of the lower left and upper right corners of
M(Tq) are (xq1, yq1) and (xq2, yq2), if the result of Discriminant (3) is true, then M(Nd) is overlapped
with M(Tq). Taking advantage of the low overhead of overlapping calculation, we propose a pruning
strategy based on extended MBR overlap to optimize the computational overhead.

!(((xd2 < xq1)∨ (yd1 > yq2))∨ ((xq2 < xd1)∨ (yq1 > yd2))). (3)

First, we use the distance threshold d to extend the spatial range of M(Tq). In the two-dimensional
Euclidean space, we can get a coverage area R(Tq, d) shaped as a rounded rectangle. It is easy
to know that if the MBR of a drtree node overlaps with R(Tq, d), then the Mindist between it and
M(Tq) is no larger than d. However, since the coverage area of R(Tq, d) is not a rectangular area,
determining whether M(Tq) overlaps with R(Tq, d) cannot be based only on the spatial positional

Algorithms 2019, 12, 107 7 of 19

relationship between the vertices, and additional calculations are required. With this in mind, we use
the circumscribed rectangle M(R(Tq, d)) of R(Tq, d) to approximate R(Tq, d), if M(Nd) does not overlap
with M(R(Tq, d)), then it also does not overlap with R(Tq, d). Hence, we summarize the Pruning
strategy 1.

Pruning strategy 1. Given a drtree node Nd and a query trajectory Tq, a distance threshold d, if M(Nd) ∩

M(R(Tq, d)) = ∅, then Nd must not contain data related to the query results, and it should be pruned.

Pruning strategy 1 does not involve complex calculations, so it can effectively reduce computational
overhead. However, M(R(Tq, d)) increases the coverage area compared to R(Tq, d), for such a drtree
node whose MBR overlaps with M(R(Tq, d)) but does not overlap with R(Tq, d), Pruning strategy 1
cannot prune it. For example, in Figure 4, Pruning strategy 1 cannot prune the node N4. Therefore,
the candidate set generated by using Pruning strategy 1 may contain more irrelevant candidates, which
increases the processing overhead of refinement to some extent.

Algorithms 2019, 12, 107 7 of 18

()dM N does not overlap with ((,))qM R T d , then it also does not overlap with (,)qR T d . Hence, we
summarize the Pruning strategy 1.

M(Tq)

Tq
d

d

R(Tq,d)

N1

N2

N3

N4
N5

M(R(Tq,d))

M1(Tq,d)

M2(Tq,d)

Coverage area：

M1(Tq,d) M2(Tq,d)

M(Tq)

R(Tq,d)M(R(Tq,d))

Figure 4. Example of extended MBR overlap based pruning strategy.

Pruning strategy 1. Given a drtree node Nd and a query trajectory Tq, a distance threshold d, if
() ((,))d qM N M R T d = ∅ , then Nd must not contain data related to the query results, and it should be pruned.

Pruning strategy 1 does not involve complex calculations, so it can effectively reduce
computational overhead. However, ((,))qM R T d increases the coverage area compared to (,)qR T d ,
for such a drtree node whose MBR overlaps with ((,))qM R T d but does not overlap with (,)qR T d ,
Pruning strategy 1 cannot prune it. For example, in Figure 4, Pruning strategy 1 cannot prune the
node N4. Therefore, the candidate set generated by using Pruning strategy 1 may contain more
irrelevant candidates, which increases the processing overhead of refinement to some extent.

To overcome this problem, an intuitive method is to further check the drtree node that has passed
the check of Pruning strategy 1 by calculating Mindist. However, as mentioned earlier, Mindist
calculation requires a lot of CPU time and should be avoided during the pruning process. In this
regard, we consider the property to be one or more rectangular areas that are fully covered by

(,)qR T d , if ()dM N overlaps with any of them, then ((), ())d qMindist M N M T d≤ . Further, to ensure
the pruning effect, these rectangular areas should fully cover ()qM T . Such a rectangular spatial area
can be obtained by expanding the spatial range of each dimension of ()qM T by using d. Assuming
that the coordinates of the lower left corner and the upper right corner of ()qM T are 1(,)q1 qx y and

2(,)q q2x y , respectively. Therefore, the coordinates of the lower left corner and upper right corner of

1(,)qM T d are 1(,)q1 qx d y− and 2(,)q q2x d y+ , and the coordinates of the lower left corner and upper
right corner of 2 (,)qM T d are 1(,)q1 qx y d− and 2(,)q q2x y d+ . It is easy to know that 1(,)qM T d and

2 (,)qM T d are fully covered by (,)qR T d , and ()qM T is fully covered by them. Hence, we obtain
Pruning strategy 2.
Pruning strategy 2. Given a query trajectory Tq, a distance threshold d, a drtree node Nd which has passed the
check by Pruning strategy 1. If 1 2(() (,)) (() (,))d q d qM N M T d M N M T d ≠ ∅   , then the value of Mindist
between M(Nd) and M(Tq) is not greater than d. Otherwise, we should calculate ((), ())d qMindist M N M T to
determine whether pruning Nd.

For example, in Figure 4, nodes N3 and N5 overlap with 1(,)qM T d , they need not be pruned,
while nodes N2 and N4 do not overlap with 1(,)qM T d and 2 (,)qM T d , and it is necessary to further
calculate the value of Mindist to decide whether pruning N2 and N4.

In summary, we name this method which combines Pruning strategy 1 and Pruning strategy 2
as Extended MBR overlap based pruning strategy (EMOB pruning strategy), Algorithm 1 gives its

Figure 4. Example of extended MBR overlap based pruning strategy.

To overcome this problem, an intuitive method is to further check the drtree node that has passed
the check of Pruning strategy 1 by calculating Mindist. However, as mentioned earlier, Mindist
calculation requires a lot of CPU time and should be avoided during the pruning process. In this
regard, we consider the property to be one or more rectangular areas that are fully covered by R(Tq, d),
if M(Nd) overlaps with any of them, then Mindist(M(Nd), M(Tq)) ≤ d. Further, to ensure the pruning
effect, these rectangular areas should fully cover M(Tq). Such a rectangular spatial area can be obtained
by expanding the spatial range of each dimension of M(Tq) by using d. Assuming that the coordinates
of the lower left corner and the upper right corner of M(Tq) are (xq1, yq1) and (xq2, yq2), respectively.
Therefore, the coordinates of the lower left corner and upper right corner of M1(Tq, d) are (xq1 − d, yq1)

and (xq2 + d, yq2), and the coordinates of the lower left corner and upper right corner of M2(Tq, d) are
(xq1, yq1 − d) and (xq2, yq2 + d). It is easy to know that M1(Tq, d) and M2(Tq, d) are fully covered by
R(Tq, d), and M(Tq) is fully covered by them. Hence, we obtain Pruning strategy 2.

Pruning strategy 2. Given a query trajectory Tq, a distance threshold d, a drtree node Nd which has passed the
check by Pruning strategy 1. If (M(Nd)∩M1(Tq, d))∪ (M(Nd)∩M2(Tq, d)) , ∅, then the value of Mindist
between M(Nd) and M(Tq) is not greater than d. Otherwise, we should calculate Mindist(M(Nd), M(Tq)) to
determine whether pruning Nd.

For example, in Figure 4, nodes N3 and N5 overlap with M1(Tq, d), they need not be pruned, while
nodes N2 and N4 do not overlap with M1(Tq, d) and M2(Tq, d), and it is necessary to further calculate
the value of Mindist to decide whether pruning N2 and N4.

Algorithms 2019, 12, 107 8 of 19

In summary, we name this method which combines Pruning strategy 1 and Pruning strategy 2
as Extended MBR overlap based pruning strategy (EMOB pruning strategy), Algorithm 1 gives its
detailed flow. This algorithm is triggered when traversing each drtree node Nd. If the return value
is true, then Nd should not be pruned. Otherwise, Nd should be pruned. The general flow of the
algorithm is as follows:

1. The algorithm first determines whether the time interval of Nd overlaps with the time interval of
Tq. If there is overlap between the two, the algorithm will perform the next step, and return false
otherwise (line 1 to 3).

2. Whether M(Nd) overlaps with M(R(Tq, d)) is checked. If any exist, the algorithm will continue to
the next step. Otherwise, the false is returned (line 4 to 6).

3. The algorithm judges whether M(Nd) overlaps with M1(Tq, d) or M2(Tq, d). If no overlaps exist,
the next step will be performed. Otherwise true is returned (line 7 to 9).

4. Whether the value of Mindist(M(Nd), M(Tq)) is not larger than d is checked. The return value is
true if Mindist(M(Nd), M(Tq)) ≤ d. Otherwise false is returned (line 10 to 14).

Algorithm 1. EMOB Pruning Strategy

Input: Query trajectory Tq, drtree node Nd, Distance Threshold d;
Output: The true value means retaining Nd, the false value means pruning Nd;

1 if TS(Nd)∩ TS(Tq) = ∅ then
2 return false;
3 endif
4 if M(Nd)∩M(R(Tq, d)) = ∅ then
5 return false;
6 endif
7 if (M(Nd)∩M1(Tq, d))∪ (M(Nd)∩M2(Tq, d)) , ∅ then
8 return true;
9 endif
10 if Mindist(M(Nd), M(Tq)) > d then
11 return false;
12 else
13 return true;
14 endif

As with the basic pruning strategy, EMOB pruning strategy is also valid when any sub-trajectory
of Tq is used as the pruning reference object. Hence, our method is suitable for higher precision pruning
occasions. In Section 4.3, we will apply EMOB pruning strategy in the best-first traversal algorithm.

4.2. E3DR-Tree

Compared with the pruning method with taking the whole query trajectory as the pruning
reference object, the pruning method with taking each trajectory segment of it as the reference one can
obtain more accurate pruning results. This is because the invalid space of the MBRs which enclose
the trajectory segments is less than that of the MBR which encloses the whole trajectory. For example,
in Figure 5, the Mindist between the MBR of drtree node N1 and M(Tq) is smaller than d, but the
Mindists between the MBR of the N1 and the MBRs of the trajectory segment l1 is greater than d.
Therefore, N1 does not satisfy the candidate requirement of l1, and it is not necessary to calculate the
distance between any trajectory segments contained in N1 and l1 in the refinement step.

Algorithms 2019, 12, 107 9 of 19

Algorithms 2019, 12, 107 9 of 18

drtree

N1

N2 N3

Tql1

l2 l3

Mindist(M(N1),M(l3))>d
Mindist(M(N1),M(l2))>d

Mindist(M(N1),M(Tq))<d

Mindist(M(N1),M(l1))>d

Figure 5. Example of Mindists of different data granularities.

Although the trajectory segment-based method can improve the pruning precision, in the
pruning process, it is necessary to traverse the drtree once for each trajectory segment of Tq, resulting
in a large increase in node traversal overhead. In order to reduce the node traversal overhead, we also
organized all the trajectory segments contained in Tq by a spatiotemporal index called qrtree. In the
pruning step, drtree and qrtree are traversed at the same time, this makes it possible to generate a
precise pruning result without having to traverse the drtree multiple times, thus effectively reducing
the overhead of traversing the nodes. The traversal algorithm will be discussed separately in Section
4.3, this section first describes the index structure used by qrtree.

N0

N1

N2

N3

l1 l2

l3 l4

l5

l6

l7

l9

l10

l8

N0

N1 N2 N3

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10

Node ID

Child Nodes

Time Interval

MBR

Node structure:

Figure 6. Example of E3DR-tree.

Qrtree uses an index structure called the Extended 3DR-tree (E3DR-tree). An example of the
structure of E3DR-tree is shown in Figure 6. The difference between E3DR-tree and the traditional
3DR-tree is shown in three aspects:

1. Node selection condition. Whenever a trajectory segment is inserted, the node with the smallest
change in the time interval is selected as the inserted node.

2. Node split processing. When a node needs to be split, while balancing the number of child nodes
included in the new nodes, it is also necessary to ensure that the time intervals of new nodes
have no overlap.

3. The child nodes (or trajectory segments) of a node are sorted in the ascending order of the start
timestamp of the corresponding time interval.
Although the construction of E3DR-tree does not consider the spatial factor directly, for the

trajectory data of the same moving object, the trajectory segments that are close in time are usually
close in space, so E3DR-tree still has a strong spatial distinguishing ability. Moreover, E3DR-tree

Figure 5. Example of Mindists of different data granularities.

Although the trajectory segment-based method can improve the pruning precision, in the pruning
process, it is necessary to traverse the drtree once for each trajectory segment of Tq, resulting in a large
increase in node traversal overhead. In order to reduce the node traversal overhead, we also organized
all the trajectory segments contained in Tq by a spatiotemporal index called qrtree. In the pruning step,
drtree and qrtree are traversed at the same time, this makes it possible to generate a precise pruning
result without having to traverse the drtree multiple times, thus effectively reducing the overhead of
traversing the nodes. The traversal algorithm will be discussed separately in Section 4.3, this section
first describes the index structure used by qrtree.

Qrtree uses an index structure called the Extended 3DR-tree (E3DR-tree). An example of the
structure of E3DR-tree is shown in Figure 6. The difference between E3DR-tree and the traditional
3DR-tree is shown in three aspects:

1. Node selection condition. Whenever a trajectory segment is inserted, the node with the smallest
change in the time interval is selected as the inserted node.

2. Node split processing. When a node needs to be split, while balancing the number of child nodes
included in the new nodes, it is also necessary to ensure that the time intervals of new nodes have
no overlap.

3. The child nodes (or trajectory segments) of a node are sorted in the ascending order of the start
timestamp of the corresponding time interval.

Algorithms 2019, 12, 107 9 of 18

drtree

N1

N2 N3

Tql1

l2 l3

Mindist(M(N1),M(l3))>d
Mindist(M(N1),M(l2))>d

Mindist(M(N1),M(Tq))<d

Mindist(M(N1),M(l1))>d

Figure 5. Example of Mindists of different data granularities.

Although the trajectory segment-based method can improve the pruning precision, in the
pruning process, it is necessary to traverse the drtree once for each trajectory segment of Tq, resulting
in a large increase in node traversal overhead. In order to reduce the node traversal overhead, we also
organized all the trajectory segments contained in Tq by a spatiotemporal index called qrtree. In the
pruning step, drtree and qrtree are traversed at the same time, this makes it possible to generate a
precise pruning result without having to traverse the drtree multiple times, thus effectively reducing
the overhead of traversing the nodes. The traversal algorithm will be discussed separately in Section
4.3, this section first describes the index structure used by qrtree.

N0

N1

N2

N3

l1 l2

l3 l4

l5

l6

l7

l9

l10

l8

N0

N1 N2 N3

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10

Node ID

Child Nodes

Time Interval

MBR

Node structure:

Figure 6. Example of E3DR-tree.

Qrtree uses an index structure called the Extended 3DR-tree (E3DR-tree). An example of the
structure of E3DR-tree is shown in Figure 6. The difference between E3DR-tree and the traditional
3DR-tree is shown in three aspects:

1. Node selection condition. Whenever a trajectory segment is inserted, the node with the smallest
change in the time interval is selected as the inserted node.

2. Node split processing. When a node needs to be split, while balancing the number of child nodes
included in the new nodes, it is also necessary to ensure that the time intervals of new nodes
have no overlap.

3. The child nodes (or trajectory segments) of a node are sorted in the ascending order of the start
timestamp of the corresponding time interval.
Although the construction of E3DR-tree does not consider the spatial factor directly, for the

trajectory data of the same moving object, the trajectory segments that are close in time are usually
close in space, so E3DR-tree still has a strong spatial distinguishing ability. Moreover, E3DR-tree

Figure 6. Example of E3DR-tree.

Algorithms 2019, 12, 107 10 of 19

Although the construction of E3DR-tree does not consider the spatial factor directly, for the
trajectory data of the same moving object, the trajectory segments that are close in time are usually
close in space, so E3DR-tree still has a strong spatial distinguishing ability. Moreover, E3DR-tree
ensures that the trajectory segments can be processed in chronological order during traversal, which is
consistent with their order in the trajectory so that the overhead of the subsequent sorting processing
can be effectively reduced.

4.3. Best-First Traversal Algorithm

We designed a best-first traversal algorithm that traverses drtree and qrtree simultaneously to
handle the pruning process. Compared to the pruning method that traverses drtree alone, it can
generate an accurate result with accessing fewer nodes. Its basic principle is to select the accessed
objects of the next iteration according to the heights of the accessed drtree node and the qrtree node.
As the number of iterations increases, the pruning precision continues to rise, a set of candidate
trajectory segments is eventually generated for each trajectory segment of Tq.

To support the best-first traversal algorithm, we use a first priority queue (FirstPQ) and multiple
secondary priority queues (SecPQ) to record the intermediate results during the traversal process [18].
FirstPQ is used to control the traversal order of the qrtree nodes, and SecPQ is used to control the
traversal of the drtree nodes. First, the data structures of FirstPQ entry (F-entry) and SecPQ entry
(S-entry) are introduced.

Definition 3. Attributes of each F-entry (Nq, hq, tq, SPQ) are described as follows:

(1) Node Nq—a qrtree node, which can be an index node or a trajectory segment;
(2) Height hq—the height from Nq to the trajectory segment layer of qrtree. if hq = 0, then Nq is a trajectory

segment. In addition, the F-entries in a FirstPQ are sorted by hq value (largest to smallest).
(3) Timestamp tq—the starting timestamp of the time interval of Nq. In addition, tq is the secondary keyword

for sorting F-entries, when two F-entries have the same hq value, they are sorted by tq value (smallest to
largest).

(4) SecPQ SPQ—a SecPQ that records the qrtree nodes which pass the pruning check with Nq.

Definition 4. Attributes of each S-entry (Nd, hd, td) are described as follows:

(1) Node Nd—a drtree node, which can be an index node or a trajectory segment;
(2) Height hd—the height from Nd to the trajectory segment layer of drtree. if hd = 0, then Nd is a trajectory

segment. In addition, the S-entries in a SecPQ are sorted by hd value (largest to smallest).
(3) Timestamp td—the starting timestamp of the time interval of Nd. In addition, td is the secondary keyword

for sorting S-entries, when two S-entries have the same hd value, they are sorted by td value (smallest
to largest).

Algorithm 2 gives its detailed flow of the best first traversal algorithm, it is divided into two
steps of initialization (lines 1 to 8) and iteration (lines 9 to 19) and using a collection Ps to collect all
pruning results.

In the initialization step, an E3DR tree qrtree is first created for the query trajectory Tq (line 1).
A SecPQ SPQ and a FirstPQ FPQ are then initialized (lines 2 to 3). Next, the root nodes of qrtree and
drtree are obtained, and the pruning check is performed. If the root node of drtree is not be pruned, an
S-entry and an F-entry are created and inserted in SPQ and FPQ, respectively. Otherwise, the algorithm
ends (lines 4 to 8).

For each iteration of the while loop, the first F-entry fe1 is dequeued from FPQ, and the head
S-entry se1 of the fe1.SPQ is also checked without dequeuing (lines 10 to 11). Based on the values of
fe1.hq and se.hd, a decision is made whether to traverse qrtree, to traverse drtree or to add a pruning
result to Ps, the processing of the three cases are as follows:

Algorithms 2019, 12, 107 11 of 19

• Case 1 (At least one of fe1.hq and se1.hd is not 0, and f e1.hq ≥ se1.hd-): The child nodes of fe1.Nq are
traversed by the function TRA-Q(FPQ, fe1, d), and when each child node is accessed, the pruning
check is performed for the drtree node of each S-entry in fe1.SPQ (lines 12 to 13). The pseudo code
of the function TRA-Q(FPQ, fe1, d) is shown in Algorithm 3.

• Case 2 (At least one of fe1.hq and se1.hd is not 0, and f e1.hq < se1.hd): The child nodes of se1.Nd are
traversed by the function TRA-D(FPQ, fe1, d), and the pruning check is performed when each
child node is accessed (lines 14 to 15). The pseudo code of the function TRA-D(FPQ, fe1, d) is
shown in Algorithm 4.

• Case 3 (Both of fe1.hq and se1.hd are 0): Namely both of fe1.Nq and se1.Nd are the trajectory segments.
Moreover, according to the ordering rule of SecPQ, the drtree node of any S-entry in fe1.SPQ is
also a trajectory segment and is a candidate of fe1.Nq. Therefore, fe1 can be regarded as a pruning
result and added to Ps (line 16 to 17).

Algorithm 2. Best-First Traversal Algorithm

Input: Query Trajectory Tq, distance threshold d, drtree;
Output: Pruning results Ps;

1 qrtree←Create an E3DR-tree for trajectory Tq;
2 SPQ←initialize an instance of SecPQ;
3 FPQ←initialize an instance of FirstPQ;
4 Nd←Root(drtree);
5 Nq←Root(qrtree);
6 if EMOB(Nd, Nq, d)=true then
7 SPQ.enqueue((Nd, H(Nd), TS(Nd)));
8 FPQ.enqueue((Nq, H(Nq), TS(Nq), SPQ));
9 while FPQ , ∅ do
10 fe1←FPQ.dequeue();
11 se1←fe1.SPQ.getFirst();
12 if (f e1.hq , 0∨ se1.hd , 0)∧ (f e1.hq ≥ se1.hd) then
13 TRA-Q(FPQ, fe1, d);
14 else if (f e1.hq , 0∨ se1.hd , 0)∧ (f e1.hq < se1.hd) then
15 TRA-D(FPQ, fe1, d);
16 else if f e1.hq = 0∧ se1.hd = 0 then
17 Ps.add(fe1);
18 endif
19 endwhile
20 endif
21 return Ps;

In the function TRA-Q(FPQ, fe1, d), for each child node Cq of the node fe1.Nq, the following
processing is performed:

1. Initialize a SecPQ CSPQ (line 2);
2. Loop read each S-entry of fe1.SPQ (without dequeuing), let cse be the current read S-entry if cse.Nd

is not pruned, then cse is inserted into CSPQ (lines 3 to 7).
3. Create a new F-entry for Cq by using the relevant parameters and insert it into FPQ (line 8).

Algorithms 2019, 12, 107 12 of 19

Algorithm 3. TRA-Q(FPQ, fe1, d)

Input: FirstPQ FPQ, F-entry fe1, distance threshold d;
Output: Null;

1 for each child node Cq of fe1.Nq do
2 CSPQ←initialize an instance of SecPQ;
3 for each entry cse of fe1.SPQ do
4 if EMOB(cse.Nd, Cq, d)=true then
5 CSPQ.enqueue(cse);
6 endif
7 endfor
8 FPQ.enqueue((Cq, H(Cq), TS(Cq), CSPQ));
9 endfor

The process of the function TRA-D (FPQ, fe1, d) is as follows:

1. Dequeue the head S-entry se1 from fe1.SPQ (line);
2. Traverse the child nodes of se1.Nd, and perform the pruning check for each child node Cd, if Cd is

not pruned, then an S-entry is created for Cd and inserted into fe1.SPQ (line 2 to 6);
3. Insert fe1 into FPQ again (line 7).

Algorithm 4. TRA-D(FPQ, fe1, d)

Input: FirstPQ FPQ, F-entry fe1, distance threshold d;
Output: Null;

1 se1←fe1.SPQ.dequeue();
2 for each child node Cd of se1.Nd do
3 if EMOB (Cd, fe1.Nq, d)=true then
4 fe1.SPQ.enqueue(Cd, H(Cd), TS(Cd));
5 endif
6 endfor
7 FPQ.enqueue(fe1);

The best-first traversal algorithm ends when there are no F-entries in FPQ. According to the F-
entry structure, each entry of Ps records a query trajectory segment of Tq and a set of candidate trajectory
segments, and the entries of Ps are sorted based on the chronological order of the query trajectory
segment, so in the refinement step, the entries of Ps will be processed naturally in chronological order,
thereby effectively reducing the processing overhead of sorting. Compared with the method of pruning
drtree nodes with taking the whole query trajectory as the pruning reference object, the best priority
traversal algorithm can generate more accurate candidate results and reduce the overhead required for
the refinement step. In addition, because our method adopts the strategy of traversing drtree and qrtree
at the same time, it ensures that the drtree is not traversed multiple times in the case of obtaining a
high-precision pruning results, so the cost of accessing the index nodes is greatly reduced.

After the pruning step is finished, the candidate trajectory segments need to be refined to obtain
the final results. Since the focus of our study is pruning optimization, the refinement step is only briefly
explained here, and the detailed process of the refinement step of the historical continuous query can
be found in the literature [6]. In the pruning result Ps, for each trajectory segment lq of Tq, assume that
one of its candidate trajectory segments is ld. First, ld is interpolated to obtain the time interval tiq that
overlaps with that of lq. Then the distance between ld and lq at any time instance in tiq is calculated,
the square of this distance is a quadratic expression with time as the parameter. Next, the distance
threshold d is brought into the expression to obtain a quadratic equation inequality, this inequality is
solved to obtain a time interval tic where the distance between ld and lq is less than d. If tiq overlaps

Algorithms 2019, 12, 107 13 of 19

with tic (naming the overlap time Interval as tio), then the moving object ld.oid is a query result of tio.
After all the data of Ps is processed, all the query results are returned to the user, and the query ends.

4.4. Performance Analysis

The time complexity of the best-first traversal algorithm comes from the processes of creating
the E3DR-tree and iterative searching. Suppose that the query trajectory Tq and the moving object
database D contain respectively n and m trajectory segments. First, in the aspect of creating the E3DR-
tree, since the E3DR-tree is created in the same way as the traditional R-tree, the running time of
creating it is O(nlogn). Second, in the aspect of iterative searching, all candidate trajectory segments are
concentrated on just one leaf node of the drtree in the best case, so the time complexity is O(n+logm).
Conversely, in the worst case, each trajectory segment in Tq needs to match each trajectory segment in
D, it takes O(mn) rounds of computation. Certainly, it is difficult to achieve the theoretical worst-case
complexity when actually performing iterative searching. In summary, the total time complexity of the
best-first traversal algorithm is O(nlogn+logm) to O(nlogn+mn).

Figure 7 shows an example of the pruning process of THC query, where Tq contains six trajectory
segments, each trajectory in D contains four trajectory segments, and the distance threshold d is one.
The maximum number of children of a node in the 3DR-tree that indexes Tq or D is three. Considering
that there are not many trajectory segments in the example, we do not consider the time attribute, and
only performed pruning based on the spatial distance.

Algorithms 2019, 12, 107 13 of 18

The maximum number of children of a node in the 3DR-tree that indexes Tq or D is three. Considering
that there are not many trajectory segments in the example, we do not consider the time attribute,
and only performed pruning based on the spatial distance.

y

x

Tq

T1

T2

T3

T4
l1

l2

l3

l4

l5
l6

Figure 7. Example of the pruning process of THC query.

The best first traversal algorithm (shorted as BFT) takes a total of 105 pruning checks to get the
pruning results, in which the number of pruning is 100 times by checking the overlap between the
MBRs, and the number of pruning is only five times by checking the Mindist. As a comparison, the
pruning method proposed in literature [10] that takes each segment of the query trajectory as a
reference object (shorted as TDS) takes 114 pruning checks, while the pruning method proposed in
literature [12] (shorted as CDQLTD) that regards the whole query trajectory as the pruning reference
takes only 31 pruning checks. From the pruning results shown in Table 2, benefiting from the
segment-based pruning way, the pruning results of TDS and BFT are closer to the final results than
that of CDQLTD. Moreover, compared to TDS, due to the pruning strategy that combines MBR
overlap and Mindist calculation, the pruning accuracy achieved by BFT is more than that of TDS.

Table 2. Comparison of pruning results.

Trajectory
segment

candidate
quantity

(BFT)

candidate
quantity
(TDS)

candidate
quantity

(CDQLTD)
l1 0 1 15
l2 2 2 15
l3 8 10 15

l4 10 11 15
l5 4 4 15
l6 6 7 15

5. Experiment

5.1. Experimental Set Up

In order to verify the effectiveness of our pruning optimization method, we implemented it in
Java and verified in the Linux environment. For the experiment, a PC (Intel Xeon E5-2620 V2, 16GB
memory, 2TB disk) running Ubuntu 16.04 64-bit was used.

The experiments used the global AIS (Automatic Identification System) [19] data from 1 July to
5 July 2012 as the data source, in which each AIS message was regarded as a spatial location of a
moving object at a timestamp. We randomly extracted some data from the data source to form five
datasets. The statistical information is shown in Table 3. When constructing a 3DR-tree for a dataset
during the experiment, it was considered that the motion track between the spatial positions with a
long time interval may be significantly different from the real motion track, according to the

Figure 7. Example of the pruning process of THC query.

The best first traversal algorithm (shorted as BFT) takes a total of 105 pruning checks to get the
pruning results, in which the number of pruning is 100 times by checking the overlap between the MBRs,
and the number of pruning is only five times by checking the Mindist. As a comparison, the pruning
method proposed in literature [10] that takes each segment of the query trajectory as a reference object
(shorted as TDS) takes 114 pruning checks, while the pruning method proposed in literature [12]
(shorted as CDQLTD) that regards the whole query trajectory as the pruning reference takes only
31 pruning checks. From the pruning results shown in Table 2, benefiting from the segment-based
pruning way, the pruning results of TDS and BFT are closer to the final results than that of CDQLTD.
Moreover, compared to TDS, due to the pruning strategy that combines MBR overlap and Mindist
calculation, the pruning accuracy achieved by BFT is more than that of TDS.

Algorithms 2019, 12, 107 14 of 19

Table 2. Comparison of pruning results.

Trajectory
Segment

Candidate Quantity
(BFT)

Candidate Quantity
(TDS)

Candidate Quantity
(CDQLTD)

l1 0 1 15
l2 2 2 15
l3 8 10 15
l4 10 11 15
l5 4 4 15
l6 6 7 15

5. Experiment

5.1. Experimental Set Up

In order to verify the effectiveness of our pruning optimization method, we implemented it in
Java and verified in the Linux environment. For the experiment, a PC (Intel Xeon E5-2620 V2, 16GB
memory, 2TB disk) running Ubuntu 16.04 64-bit was used.

The experiments used the global AIS (Automatic Identification System) [19] data from 1 July to
5 July 2012 as the data source, in which each AIS message was regarded as a spatial location of a
moving object at a timestamp. We randomly extracted some data from the data source to form five
datasets. The statistical information is shown in Table 3. When constructing a 3DR-tree for a dataset
during the experiment, it was considered that the motion track between the spatial positions with a
long time interval may be significantly different from the real motion track, according to the maximum
transmission time interval of the AIS message, we made the following provisions: If an AIS message
had an adjacent message within six minutes of the time interval, the motion track between the spatial
positions of the two messages was taken as a trajectory segment. Otherwise, it was regarded as a
special trajectory segment with the same start time and end time. We evaluated the performance of
BFT with TDS [10] and CDQLTD [12]. The query performances were evaluated under different data
scales, different time ranges and different distance thresholds. The evaluated metrics included the
following four aspects:

1. Number of the accessed nodes: The sum of the number of index nodes and the number of
trajectory segments checked during pruning;

2. Selectivity: The ratio of the number of candidate trajectory segments obtained by pruning to the
number of trajectory segments contained in the dataset;

3. Pruning Latency: The execution time of the pruning step during a query;
4. Query Latency: The execution time of a query.

Table 3. Statistics of Datasets.

Name No. of Moving Objects No. of AIS Messages

AIS01 73,490 10,000,000
AIS02 95,732 20,000,000
AIS03 110,566 40,000,000
AIS04 136,932 80,000,000
AIS05 152,807 160,000,000

For each experiment, we performed 50 queries, and used the average as the experiment result.
By default, we used AIS05 as the experimental dataset, 24 h as the query time range, and two nautical
miles as the distance threshold.

Algorithms 2019, 12, 107 15 of 19

5.2. Performance of Different Data Scales

In this part of the experiments, datasets AIS01, AIS02, AIS03, AIS04, and AIS05 were used as
experimental data to evaluate the query performance of the three methods under different scales,
as shown in Figure 8.

It can be seen from Figure 8a,b that as the data scale increases, the number of accessed nodes
increases in the pruning step. However, the increase rate of the pruning results is smaller than the
change of data scales, so the selectivity is gradually decreasing. Among the three methods, CDQLTD
has the fewest number of the accessed nodes, because it uses a single MBR of the whole query trajectory
as the pruning reference, and the spatiotemporal index of the dataset only needs to be traversed
once. However, CDQLTD has the lowest pruning precision, and the pruning results contain some
irrelevant data, so CDQLTD has the worst selectivity. While TDS uses each trajectory segment of the
query trajectory as the reference, it is necessary to repeatedly traverse the spatiotemporal index of the
dataset, and the number of the accessed nodes is one order of magnitude larger than the two methods.
However, it also benefits from the segment-based pruning way, the pruning results of TDS is closer
to the final query results, so its selectivity performance is better than that of CDQLTD. BFT also uses
each query trajectory segment as the pruning reference, but thanks to the E3DR-tree structure and
the best-first traversal algorithm, the number of the accessed node is much smaller than that of TDS.
Moreover, the pruning strategy adopted by BFT combines MBR overlap and Mindist calculation, so the
selectivity performance of BFT is better than that of TDS which only consider MBR overlap.

Algorithms 2019, 12, 107 15 of 18

time-consuming pruning check method, but the number of the accessed nodes is much more than the
two methods, resulting in the most time-consuming pruning.

(a) (b)

(c) (d)

Figure 8. Performance of different scales: (a) Number of the accessed nodes, (b) selectivity, (c) pruning latency,

(d) query latency.

The performance of query latency is shown in Figure 8d, where BFT performs best, not only
because BFT takes the least time to complete the pruning step, but also generates the highest precision
of pruning results, so the process of refinement also takes the least time. The pruning results of
CDQLTD have the lowest precision, which makes it necessary to spend a lot of time on refinement
processing, the time difference between it and the two methods will be further amplified as the data
scale increases.

5.3. Performance of Different Time Ranges

Figure 9 shows the query performance of the three different methods at different time ranges. It
can be seen from Figure 9a that as the query time range increases, the number of candidates involved
also increases, and all three methods need to access more nodes to obtain candidates. Figure 9b shows
that the change in selectivity is proportional to the change in the time range, this is because the
increase in the number of candidate segments will naturally increase the selectivity when the data
size is constant. As shown in Figure 9c,d, since all three methods require more time to generate and
process the candidate segments, their pruning latency and query latency increase with the increase
of time range. Among the three methods, BFT has the best query performance. In all cases, BFT takes
less than eight seconds to complete the query process, while the time spent by CDQLTD gradually
increases from 34 s to 134 s. The reason for this difference in performance has been explained in
Section 5.2, it will not be described in detail here.

Figure 8. Performance of different scales: (a) Number of the accessed nodes, (b) selectivity, (c) pruning
latency, (d) query latency.

Figure 8c shows the performance of pruning latency. Since BFT accesses fewer nodes and its
pruning strategy based on extended MBR overlap effectively reduce the time overhead of a single
pruning check, so BFT takes less time than the two methods. Although CDQLTD visits the fewest
nodes when pruning, the calculation process of pruning check based on Mindist is complex and
time-consuming, resulting in a large time overhead for the entire pruning process. TDS has the lowest

Algorithms 2019, 12, 107 16 of 19

time-consuming pruning check method, but the number of the accessed nodes is much more than the
two methods, resulting in the most time-consuming pruning.

The performance of query latency is shown in Figure 8d, where BFT performs best, not only
because BFT takes the least time to complete the pruning step, but also generates the highest precision
of pruning results, so the process of refinement also takes the least time. The pruning results of
CDQLTD have the lowest precision, which makes it necessary to spend a lot of time on refinement
processing, the time difference between it and the two methods will be further amplified as the data
scale increases.

5.3. Performance of Different Time Ranges

Figure 9 shows the query performance of the three different methods at different time ranges.
It can be seen from Figure 9a that as the query time range increases, the number of candidates involved
also increases, and all three methods need to access more nodes to obtain candidates. Figure 9b shows
that the change in selectivity is proportional to the change in the time range, this is because the increase
in the number of candidate segments will naturally increase the selectivity when the data size is
constant. As shown in Figure 9c,d, since all three methods require more time to generate and process
the candidate segments, their pruning latency and query latency increase with the increase of time
range. Among the three methods, BFT has the best query performance. In all cases, BFT takes less than
eight seconds to complete the query process, while the time spent by CDQLTD gradually increases
from 34 s to 134 s. The reason for this difference in performance has been explained in Section 5.2,
it will not be described in detail here.Algorithms 2019, 12, 107 16 of 18

(a) (b)

(c) (d)

Figure 9. Performance of different time ranges: (a) Number of the accessed nodes, (b) selectivity, (c) pruning

latency, (d) query latency.

5.4. Performance of Different Distance Thresholds

This part of the experiments evaluated the query performance of different distance thresholds,
as shown in Figure 10. As the distance threshold increases, the query spatial range of query increases,
and the increased speed shows an increasing trend. It causes more index nodes and trajectory
segments to be accessed and checked, and the pruning results contain more candidates. As shown in
Figure 10a,b, the growth rate of the number of accessed nodes, and that of selectivity will also
increase. Naturally, when the distance threshold is increased from one nautical mile to five nautical
miles. It can be seen from Figure 10c,d that the pruning latency and query latency of the three
methods also increases. Among them, the performance of BFT is still better than that of the other two.
In terms of pruning latency, it takes less than one-fifth of the two methods. In terms of query latency,
it takes less than half of that of TDS, and is an order of magnitude smaller than that of CDQLTD.

5.5. Summary of the Experiments

In order to measure the performance of our pruning method, we conducted the above
experimental study based on a real dataset. Regarding the historical continuous queries, it has been
shown that the best-first traversal algorithm always has better performance of selectivity rate and
query latency compared with the other two methods in all cases. This is because the pruning accuracy
and the number of accessed nodes are considered comprehensively in our method. Moreover, we
demonstrated that our improvement over the pruning strategy can sufficiently increase the
performance of the proposed algorithms, compared with CDQLTD method, it achieves less pruning
latency in the case of accessing more nodes.

Figure 9. Performance of different time ranges: (a) Number of the accessed nodes, (b) selectivity,
(c) pruning latency, (d) query latency.

5.4. Performance of Different Distance Thresholds

This part of the experiments evaluated the query performance of different distance thresholds, as
shown in Figure 10. As the distance threshold increases, the query spatial range of query increases, and

Algorithms 2019, 12, 107 17 of 19

the increased speed shows an increasing trend. It causes more index nodes and trajectory segments to
be accessed and checked, and the pruning results contain more candidates. As shown in Figure 10a,b,
the growth rate of the number of accessed nodes, and that of selectivity will also increase. Naturally,
when the distance threshold is increased from one nautical mile to five nautical miles. It can be seen
from Figure 10c,d that the pruning latency and query latency of the three methods also increases.
Among them, the performance of BFT is still better than that of the other two. In terms of pruning
latency, it takes less than one-fifth of the two methods. In terms of query latency, it takes less than half
of that of TDS, and is an order of magnitude smaller than that of CDQLTD.Algorithms 2019, 12, 107 17 of 18

(a) (b)

(c) (d)

Figure 10. Performance of different distance thresholds: (a) Number of the accessed nodes, (b) selectivity, (c)

pruning latency, (d) query latency.

6. Conclusions

We studied a specific sub-domain of the continuous queries of moving objects, namely the
pruning optimization of historical continuous queries based on a threshold. First, we optimized the
processing overhead of a single pruning check using a pruning strategy based on extended MBR
overlap. Secondly, a 3DR-tree extension structure called E3DR-tree was proposed for traversing the
query trajectory, and based on this, the best-first traversal algorithm was introduced, so that the
accurate pruning results could be obtained with accessing as few nodes as possible. Finally, a large
number of experimental results verify the effectiveness of our method. In the future work, we plan
to apply this method to the distributed environment, and combine it with a distributed index, to
further improve the query performance based on parallelization techniques. Moreover, we will
improve this method to solve another sub-problem of historical continuous query—k-nearest history
continuous query.

Author Contributions: Conceptualization, J.Q. and Q.L.; data curation, J.Q.; methodology, J.Q.; supervision,
L.M.; validation, J.Q. and Q.L.; writing—original draft, J.Q.; writing—review and editing, L.M. and Q.L. All
authors have read and approved the final manuscript.

Funding: This research was funded by National Natural Science Foundation of China, grant number 61802425.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zhang, Z.; Jin, C.; Mao, J.; Yang, X.; Zhou, A. TrajSpark: A Scalable and Efficient In-Memory Management
System for Big Trajectory Data. In Proceedings of the Asia-Pacific Web (APWeb) and Web-Age Information
Management (WAIM) Joint Conference on Web and Big Data, Beijing, China, 7–9 July 2017.

2. Salmon, L.; Ray, C. Design principles of a stream-based framework for mobility analysis. GeoInformatica
2017, 21, 237–261.

3. Nutanong, S.; Ali, M. E.; Tanin, E.; & Mouratidis, K. Dynamic Nearest Neighbor Queries in Euclidean
Space. Encycl. GIS, 2015, 1–7.

Figure 10. Performance of different distance thresholds: (a) Number of the accessed nodes, (b) selectivity,
(c) pruning latency, (d) query latency.

5.5. Summary of the Experiments

In order to measure the performance of our pruning method, we conducted the above experimental
study based on a real dataset. Regarding the historical continuous queries, it has been shown that
the best-first traversal algorithm always has better performance of selectivity rate and query latency
compared with the other two methods in all cases. This is because the pruning accuracy and the number
of accessed nodes are considered comprehensively in our method. Moreover, we demonstrated that
our improvement over the pruning strategy can sufficiently increase the performance of the proposed
algorithms, compared with CDQLTD method, it achieves less pruning latency in the case of accessing
more nodes.

6. Conclusions

We studied a specific sub-domain of the continuous queries of moving objects, namely the pruning
optimization of historical continuous queries based on a threshold. First, we optimized the processing
overhead of a single pruning check using a pruning strategy based on extended MBR overlap. Secondly,
a 3DR-tree extension structure called E3DR-tree was proposed for traversing the query trajectory, and
based on this, the best-first traversal algorithm was introduced, so that the accurate pruning results

Algorithms 2019, 12, 107 18 of 19

could be obtained with accessing as few nodes as possible. Finally, a large number of experimental
results verify the effectiveness of our method. In the future work, we plan to apply this method to
the distributed environment, and combine it with a distributed index, to further improve the query
performance based on parallelization techniques. Moreover, we will improve this method to solve
another sub-problem of historical continuous query—k-nearest history continuous query.

Author Contributions: Conceptualization, J.Q. and Q.L.; data curation, J.Q.; methodology, J.Q.; supervision, L.M.;
validation, J.Q. and Q.L.; writing—original draft, J.Q.; writing—review and editing, L.M. and Q.L. All authors
have read and approved the final manuscript.

Funding: This research was funded by National Natural Science Foundation of China, grant number 61802425.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zhang, Z.; Jin, C.; Mao, J.; Yang, X.; Zhou, A. TrajSpark: A Scalable and Efficient In-Memory Management
System for Big Trajectory Data. In Proceedings of the Asia-Pacific Web (APWeb) and Web-Age Information
Management (WAIM) Joint Conference on Web and Big Data, Beijing, China, 7–9 July 2017.

2. Salmon, L.; Ray, C. Design principles of a stream-based framework for mobility analysis. GeoInformatica
2017, 21, 237–261. [CrossRef]

3. Nutanong, S.; Ali, M.E.; Tanin, E.; Mouratidis, K. Dynamic Nearest Neighbor Queries in Euclidean Space.
Encycl. GIS 2015, 1–7.

4. Trajcevski, G.; Tamassia, R.; Cruz, I.F.; Scheuermann, P.; Hartglass, D.; Zamierowski, C. Ranking continuous
nearest neighbors for uncertain trajectories. VLDB J. 2011, 20, 767–791. [CrossRef]

5. Theodoridis, Y.; Vazirgiannis, M.; Sellis, T. Spatio-temporal indexing for large multimedia applications.
In Proceedings of the Third IEEE International Conference on Multimedia Computing and Systems,
Hiroshima, Japan, 17–23 June 1996.

6. Frentzos, E.; Gratsias, K.; Pelekis, N.; Theodoridis, Y. Algorithms for nearest neighbor search on moving
object trajectories. Geoinformatica 2007, 11, 159–193. [CrossRef]

7. Papadias, D.; Zhang, J.; Mamoulis, N.; Tao, Y. Query processing in spatial network databases. In Proceedings
of the 29th International Conference on Very Large Data Bases, Berlin, Germany, 9–12 September 2003.

8. Pfoser, D.; Jensen, C.S.; Theodoridis, Y. Novel Approaches in Query Processing for Moving Object Trajectories.
In Proceedings of the 26th International Conference on Very Large Data Bases, Cairo, Egypt, 10–14
September 2000.

9. Güting, R.H.; Behr, T.; Xu, J. Efficient k-nearest neighbor search on moving object trajectories. VLDB J. 2010,
19, 687–714.

10. Gowanlock, M.; Casanova, H. In-memory distance threshold queries on moving object trajectories.
In Proceedings of the Sixth International Conference on Advances in Databases, Knowledge, and Data
Applications, Chamonix, France, 20–25 April 2014.

11. Dagum, L.; Menon, R. OpenMP: An industry-standard API for shared-memory programming. CiSE 1998, 1,
46–55. [CrossRef]

12. Huorong, H.; Jianqiu, X.; Xiaolin, Q. Continuous Distance Queries over Large Trajectory Data. J. Chin.
Comput. Syst. 2017, 38, 2505–2510. (In Chinese)

13. Chakka, V.P.; Everspaugh, A.; Patel, J.M. Indexing large trajectory data sets with SETI. CIDR 2003, 75, 76.
14. Gowanlock, M.; Casanova, H. Distance threshold similarity searches on spatiotemporal trajectories using

GPGPU. In Proceedings of the 2014 21st International Conference on High Performance Computing (HiPC),
Goa, India, 17–20 December 2014.

15. Gowanlock, M.; Casanova, H. Indexing of spatiotemporal trajectories for efficient distance threshold similarity
searches on the GPU. In Proceedings of the 2015 IEEE International Parallel and Distributed Processing
Symposium, Hyderabad, India, 25–29 May 2015.

16. Gowanlock, M.; Casanova, H. Distance threshold similarity searches: Efficient trajectory indexing on the
GPU. IEEE Trans. Parallel Distrib. Syst. 2016, 27, 2533–2545. [CrossRef]

17. Mahmood, A.R.; Punni, S.; Aref, W.G. Spatio-temporal access methods: A survey (2010–2017). GeoInformatica
2019, 23, 1–36. [CrossRef]

http://dx.doi.org/10.1007/s10707-016-0256-z
http://dx.doi.org/10.1007/s00778-011-0249-3
http://dx.doi.org/10.1007/s10707-006-0007-7
http://dx.doi.org/10.1109/99.660313
http://dx.doi.org/10.1109/TPDS.2015.2500896
http://dx.doi.org/10.1007/s10707-018-0329-2

Algorithms 2019, 12, 107 19 of 19

18. Nutanong, S.; Jacox, E.H.; Samet, H. An Incremental Hausdorff Distance Calculation Algorithm. Proc. VLDB
Endow. 2011, 4, 506–517. [CrossRef]

19. Harati-Mokhtari, A.; Wall, A.; Brooks, P.; Wang, J. Automatic Identification System (AIS): Data reliability and
human error implications. J. Navig. 2007, 60, 373–389. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.14778/2002974.2002978
http://dx.doi.org/10.1017/S0373463307004298
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Background
	Pruning Optimization
	Extended MBR Overlap Based Pruning Strategy
	E3DR-Tree
	Best-First Traversal Algorithm
	Performance Analysis

	Experiment
	Experimental Set Up
	Performance of Different Data Scales
	Performance of Different Time Ranges
	Performance of Different Distance Thresholds
	Summary of the Experiments

	Conclusions
	References

