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Abstract: We consider the use of multiple mobile agents to explore an unknown area. The area is
orthogonal, such that all perimeter lines run both vertically and horizontally. The area may consist
of unknown rectangular holes which are non-traversable internally. For the sake of analysis, we
assume that the area is discretized into N points allowing the agents to move from one point to an
adjacent one. Mobile agents communicate through face-to-face communication when in adjacent
points. The objective of exploration is to develop an online algorithm that will explore the entire
area while reducing the total work of all k agents, where the work is measured as the number of
points traversed. We propose splitting the exploration into two alternating tasks, perimeter and room
exploration. The agents all begin with the perimeter scan and when a room is found they transition
to room scan after which they continue with perimeter scan until the next room is found and so on.
Given the total traversable points N, our algorithm completes in total O(N) work with each agent
performing O(N/k) work, namely the work is balanced. If the rooms are hole-free the exploration
time is also asymptotically optimal, O(N/k). To our knowledge, this is the first agent coordination
algorithm that considers simultaneously work balancing and small exploration time.

Keywords: online algorithm; mobile agents; parallel exploration; limited communication; work balancing

1. Introduction

In mobile agent research, there are two types of problems: coverage and exploration. Coverage is
concerned with patrolling an area, i.e., how to organize the agents so they can maximize the area they
can view while still being able to be in contact range of the other agents in a chain [1–4]. This assumes
that the agents already have full understanding of the area to be able to determine the best course of
action to achieve these goals. On the other hand, exploration works with a previously unknown area,
and attempts to map all the area. Applications of area exploration include to find survivors quickly,
setup a network, or to rendezvous distributed agents. Hence, exploration is a more fundamental
problem which may also be used to solve coverage problems.

To explore an unknown area, previous papers have used sensor networks [5–9]. This style of
exploration has the agents placing static sensors at intervals of the area to create a network and cover
the explored area. The sensors then can be used by the agent to find the area boundaries and store
information from previous scans of the robots that can help to explore new parts of the area. The agent
itself has little memory and relies heavily on the sensors. The sensors must be carried by the agents
adding weight that inhibits the mobility.

In this paper, we present a set of algorithms to solve area exploration without using auxiliary static
sensor nodes, but rather, with just self-reliant mobile agents. The area is an orthogonal closed region
that is made up of horizontal and vertical walls. This area is then discretized into N traversable points
that are connected to their neighboring points in the cardinal directions. An agent moves north, east,
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south, or west, on the neighbor points from its current position, whenever these points are available.
The number N is not known to the agents. The agents discover the area and the number of points
during exploration. The area contains holes, non-traversable locations, which are randomly distributed
in the area; for example, Figure 1 depicts black holes in the area. These holes are rectangular and have
a length and width within an aspect ratio a. The agents begin in a chain along the perimeter of the
area, Figure 1 black xs. To close area 1, Figure 1, at the time of reaching the first and second corner a
room cannot be closed, it is only after reaching the third corner in this scenario to close a room. This is
due to the agents not knowing the composition of the room causing them to have a previously visited
x coordinate with the third corner.

Figure 1. Example of Area and Generation of Rooms.

All agents are assumed to be the same with equal traversal ability, communication range, and total
memory. An agent occupies a single point at a time and can move one point in the cardinal directions
in which the point has connection. We assume that it takes one time step to move point to point.
The agents have enough memory to map the entire area (i.e., find coordinates of explored points)
which can be shared between agents. To share area information, the agents must be within adjacent
points, or in a connected chain in which there is a sequence of adjacent pairs of agents. Agents share
information on their total area traversed as well as the orientation of the area. Through this process,
agents can make decisions, such as room scan roles, and which one will be the front agent for perimeter
scan. These constraints on the agents enables them to not rely on sensors to have knowledge of the
unexplored area. The work of an agent is the total number of points it traverses. Each agent keeps
track of the work it has performed, and the goal is to maintain balanced work among the agents.

The main goal is to explore an unknown orthogonal region of N points with k mobile agents in
parallel in order to reduce the work, which is the total number of points visited, of each agent to explore
the area to O(N/k), namely balancing the work and total exploration time O(N/k). The difficulty
with this is the introduction of holes in the area. If the holes were not there, we could simply traverse
the entire perimeter, divide the area into k equal partitions, and send the agents to their respective area.
This is not possible with holes, as one or more of these partitions could consist mainly of holes, so the
agents associated with those partitions would not perform O(N/k) leading to an imbalance of work
between all agents. Thus, we developed an algorithm that handles the unknown holes in the area to
maintain balanced work.

The difficulty with these holes is that they are arbitrarily placed in the area. As a sub area was
closed, if we simply divided the area into k partitions, then we cannot guarantee that all the agents
perform near equal work as they can only communicate within a single grid point. For example, let’s
assume that the hole in a room of n points takes up all space except a single path around the area,
then if partitioned, each agent encounters the same hole resulting in repeated work, which involves
traversing around the hole and performing nk total work in the area instead of n total work. Moreover,
as another example one agent may have to explore smaller number of holes (or total points) than other
agents again resulting in imbalanced work.
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To get the near equal work for each agent, we have introduced the concept of Leader, Active,
and Inactive agent roles when an area is being closed (room created) and explored. These roles
are determined based on the amount of work that was previously performed in other closed areas,
the most, Leader, the least, Active, and all the rest, Inactive. Leader organizes the other agents to
maintain their overall work when Active return to the Leader. Active performs traversal and when
enough work has been completed, Active returns to the Leader to maintain equal work. Inactive
remain with the Leader until an Active returns sharing its work making them Active. When the
closed area is completed the agents return to being against the perimeter to traverse to the next closed
area. When a room is discovered then all the agents move to explore the room. Inside the room,
the exploration is performed in parallel by the agents while balancing their work. The reason of this
approach, of exploring the rooms one after the other in sequence, is to have an online exploration of
the whole area in one pass of the perimeter. Otherwise, we would first explore the whole perimeter,
and then split the area into rooms, but this would have required to revisit the perimeter. Such a process
would also not give us balanced work as large chunks of the area that most of the agents are sent might
be made up of holes, unbalancing the agents’ work.

In our algorithm, the agents start along all adjacent to each other next to the perimeter. Then they
traverse the perimeter maintaining a convoy. During the traversal, the agents create rooms to explore
and map. The whole area is divided on the fly into a sequence of rooms, which are explored one after
the other.

In our approach, each room is a rectangular closed area which is identified on the fly at corners
of the perimeter. When a room is identified the agents move immediately into the room together
and explore all the points of the room by dividing the work among each other. A room may contain
obstacles which are not immediately detected, and hence, the area of the room may not be able to be
divided equally among the robots, which may cause imbalance of the work. To alleviate this problem,
the agents start the room exploration slowly, and use exponential delay and meeting times when
exploring the room to handle the unknown holes in the room. Agents that exceed their allocated work
quota give future work to other agents to maintain parallelism and load balancing.

Paper Outline

The paper will continue as the following: Section 2 has the related work, Section 3 introduces the
problem and agent description, Section 4 our algorithms, Section 5 the analysis with respective results,
and Section 6 gives conclusion and future work.

2. Related Work

The most related previous work is solving a similar problem, using “oriented disjoint rectangular
obstacles” in an n× n grid [10]. In this, the agents also use only local information, but with the oriented
obstacles, all obstacles follow an oriented pattern that allow the area to be divided into similarly shaped
partitions. Our problem has arbitrarily located rectangular obstacles of ratio a. With this, our problem
or theirs cannot be reduced to the same problem. For this reason, a new algorithm had to be developed
not only to traverse the entire area, as it does not follow their n× n grid rules with disjointed obstacles,
and another algorithm for the room, as the obstacles do not follow the same constraints. Finally, our
focus is on balanced work as well as parallel while theirs is only on parallel work.

The most closely related topics in the literature are “map merging”, concerned with multiple-robot
simultaneous localization and mapping (SLAM) [11], and “map synchronization” [12], where the
agents share the map information of the area explored. Agents are not assumed to be together and
use probabilistic generalized Voronoi diagram to, “achieve fast and accurate map fusion for large
maps”[11]. In map synchronization, agents can form into subgroups that are close enough to have the
same map, while other agents that are not will synchronize maps when they approach [12]. This is also
similar to Frontier based, which is concerned with exploring all points of a grid area in a minimum
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amount of time [13,14]. However, these do not consider load balancing the work of the agents as we
do here.

One topic of focus on this area is agents that can fail. This can be through “black hole” or “black
link” in an edge or link in a sensor network [15], or the agent itself can fail [16]. To be able to explore
the entire area, the number of sensors must be more than the number of edges plus two times the
number of links [15]. With using “pheromones”, Levy Walk was determined to outperform random
walk when exploring, especially when failure prone agents are introduced [16].

Exploration is also a topic of interest in communication networks. Ad-Hoc networks are constantly
changing, mobile agent routing leaves information at nodes it visits and reads the information that is
left at a node [17,18]. In this way, the agents can cooperate much like ants leaving information to share
with others when looking for food. When speed of network changes increases the delay decreases
but roughly only 68% of packets are received and this amount drops greatly as speed increases [17].
MAR [18] can perform at greater speeds with the same percentage of packets received but less delay.

Machine learning algorithms have also been used for mobile agent exploration. Q-Learning has
been used as a “Human-like” learning algorithm to manage energy, avoid obstacles, working towards
goals, and following a line [8]. Another implementation used online-learning Bayesian network to
predict terrain range and magnetic field intensity [19]. A second online-learning method used Gaussian
Processes [20]. In this learning, decentralized agents, flying quadcopters, are used to explore an area
by mapping the distance of an unknown environment [20].

Agents have also been given roles or working with a stationary agent to explore an area. For search
and rescue, agents are given a larger environment than what they can explore while staying in range so
they must go out of communication range with agents being declared explorers or relays [21]. Area is
shared from the explorer to the relay and then back to the command center [21]. Another case is when
the agent must communicate with a computer when an obstacle is located so that the computer can
determine the path to take [22]. The agents can also make a decision given multiple criteria to locate
and rescue victims within a limited amount of time [23]. This MCDM model, used in search and rescue
does not attempt to explore the whole map, but to use the knowledge of the agents exploration to
move quickly to locations that the victims are believed to be, in this manner it finds the majority in the
least amount of time [23].

Similar to search and rescue, research has also been conducted for agents to rendezvous before
exploration of the area [24]. In this research, agents look for “landmarks” to attempt to see if any
other agents are within range of their sight or if they can find any other “landmarks” to search from
there [24]. This research does not focus on the exploration itself, but attempts to minimize the time for
agents to rendezvous.

Constraints have been set on the power of agents, they are assumed to have limited power and
must work together to find “targets” distributed in an unexplored area. The first strategy is to use a
similar technique as ants, drop pheromones, to tell other agents this area has been explored, or there is
a target in this direction [25]. This strategy does not require communication, so it is able to save more
energy for exploration. Next, the technique is to use communication between agents similar to how
fireflies communicate [25]. The downside to this strategy is that it consumes energy to communicate.
The more complex the task the better firefly approach performs compared to the ant approach.

3. Model

The problem we are exploring consider an orthogonal area on the plane. Through this, the perimeter
edges all meet at right angles. There can also be interior lines within the interior which are extension of
the edges from the perimeter. It is assumed that the whole orthogonal area can be discretized into grid
points that make up the entire orthogonal area. We assume that grid points are spaced one unit distance
apart. Each point is adjacent to those (up to four) neighbor grid points that are one unit distance in the
cardinal directions (north, east, south, west).
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We assume that all agents have the same sense of common cardinal directions, where they all
know where is north, east, south, and west. This helps them to agree on a common clockwise direction
for traversing the perimeter. An agent is dimensionless and resides in exactly one grid point at a time.
Two agents directly communicate (they are in communication range with each other) if they reside in
adjacent grid points (one unit distance away). However, they can also indirectly communicate with
each other through a chain of agents such that each pair along the chain reside in adjacent grid points.
The agent visibility range includes the four adjacent points in the cardinal direction. Agents can
maneuver on the grid points moving from the current grid point to an adjacent grid point.

In the area there are rectangular holes such that no grid point exists in the hole making them
non-traversable. These holes are unknown until discovered by an agent. Each hole in the area has an
aspect ratio a such that a hole can be of any size as long as the width and length are bounded by the
aspect ratio; that is, the width over length ratio is bounded by a, and length over width ratio is also
bounded by a. Each hole must have at least two unit distance separating it from another hole or from
any edge of the perimeter (or internal edge). In this way, at least one grid point fits between the holes
or between a hole and an edge. To completely discover a hole, an agent must traverse around the hole,
which is the only way to detect whether it is a hole or part of the perimeter.

A unit of work corresponds to visiting a grid point. To completely explore the area, all the grid
points that make up the area must be visited, and the information is shared by each agent. The agents
have enough memory to map the entire area as well as recording the amount of work performed by
all agents, both perimeter and room work. A worst case bound for the total amount of memory that
an agent would need to have to map the entire area would be storing N coordinates, corresponding
to the total number of grid points in the area. In addition, an agent may store information to track
the amount of work performed by the other agents. Agents share the information of what they have
encountered, including holes and grid points, when they return to communication range. All agents
are assumed to be identical; able to traverse a single grid point at each time step, communication range
of one grid point, vision of one grid point to map the area surrounding the agent. Each grid point that
an agent moves counts as one unit of work. Multiple agents can all communicate with one another
through a chain of agents.

During the perimeter work, agents move together maintaining a chain along the perimeter.
Agents move together to find a room and then perform the room scan algorithm in parallel. As this
area is unknown the agents must follow in this convoy as communication is limited. In an attempt to
close a room, the front agent will attempt to leave the perimeter to reach a previously explored grid
point. If able to close, then the front agent returns to the other agents and perform the room work,
otherwise, the front agent returns, and they continue traversing the perimeter. After completing room
work, the agents determine, through their chain of communication, which agent has the least total
perimeter work and that agent is moved to the front of the agents to lead the perimeter traversal.

When a room is encountered, then the agents must determine their role, Leader, Active, or Inactive.
The one that is Leader is the one that has the most work, Active is the one that has the least work,
and Inactive are all those in between. As agents communicate their total work, if two agents have
most total work then we assume they have unique identifiers and the one with the lower identifier is
made Leader. Leader communicates with the Active as they return to share or give their work to an
Inactive to maintain equal room work. In keeping balanced work agents must return to the Leader
for communication range to determine what to do with their work. Please note that even through the
Leader is stationary, it already performed most of the work and the other nodes can perform the work,
and in any case the Leader will be swapped by one the remaining k− 1 agents that returns with more
work. Active traverse the area, after a set amount of work if there remains work in the room, then the
Active returns to Leader to determine what is to be done next. Finally, Inactive wait with the Leader
to be given work that remains from the Active. Active agents know the location of the Leader and
Inactive agents to return to communicate with the Leader. When the Active gains more work than the
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Leader, the Active and Leader will change roles. Once the work is completed all agents will return to
the Leader to organize into a line along the perimeter.

This process of performing perimeter work until a room is discovered and then performing room
work is repeated until all points are traversed.

4. Algorithms

As mentioned in the introduction, the exploration algorithms can be separated into two parts,
perimeter exploration and room exploration. In perimeter exploration the area is divided into rooms.
Agents maintain a track of the work they perform during perimeter and the work they perform during
room exploration separately. During perimeter work, agents will rotate the agent with the lowest
perimeter work after a room is attempted to be closed to maintain balanced perimeter work. With room
work, the agent with the most work will be in charge of coordinating the room work between other
agents and transferring the responsibility to a new agent with more work whenever necessary.

4.1. Perimeter Exploration

The first algorithm performs the exploration of perimeter P (Algorithm 1) . When the exploration
begins, the agents all traverse clockwise along the perimeter, depicted in Figure 1 by the black arrow.
The agents follow the front agent in that direction maintaining a connected convoy (chain of agents),
as discussed in Section 3, along the perimeter of the area, adding explored points to P. If the front agent
is no longer against the perimeter or they have reached a perimeter wall along the path they notify
the other agents that a corner has been reached at point δ = (Xt, Yt). At this point, before continuing
along the perimeter moving along the path, if a corner is encountered then the front agent looks at its
mapping of the area to determine if they have already visited a perimeter point across, namely δ′ such
that δ′ = (X, Y) where X = Xt or Y = Yt and (X, Y) is in the visited P. The agent can find possibly
up to three candidate δ′ depending on exploration history of P, as shown for example in Figures 2a,b.
Figure 2a,b depicts zooming in on a corner point such that in Figure 2a, the agent encounters the
corner from traversing from the top, while in Figure 2b, the agent encounters the corner traversing
from the left. Each of these candidate closures can be placed in a queue, without loss of generality,
we can assume they are placed in the queue from cardinal direction north then clockwise around the
front agent.

Figure 2. Possible room closure directions. (a) Maximum possible directions given internal wall; (b)
Minimum possible directions given 90 degree perimeter angle; (c) Traversing around holes.

The front agent then takes the first direction in the queue and begins moving towards the picked δ′

to determine if a room closure is possible. The front agent continues along a straight path until reaching
the previously explored position δ′, as for example depicted in room 1 generated in Figure 1 where no
obstacle is encountered. Otherwise, as depicted in Figure 1 in the generation of room 3, if the agent
detects an obstacle along its path then it must determine if the obstacle is a hole or a wall, which is
determined by calling the obstacle subroutine Algorithm 2.
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The front agent returns to δ if an unexplored wall was hit or the agent successfully reached δ′.
After returning, if δ′ was reached a room has been found, and then room scan is called, and the corner
is marked as used. After performing room scan, or hitting a wall and returning, the front agent of the
convoy switching with the agent that has the least amount of perimeter work completed, to balance
the work in the perimeter. After all the δ′ have been explored for that δ, the agents perform the turn
and continue scanning the remainder of the perimeter.

Algorithm 1: PerimeterScan
/* Algorithm for agents to scan around the perimeter */
Each agent tracks its work done during perimeter scan;
All agents begin together and parallel to exterior wall;
Explored perimeter points P← ∅;
while A perimeter point δ is left to be scanned (i.e., p /∈ P) do

Agents move together as a convoy keeping a line adjacent to the exterior wall they are against;
The front of the convoy will be on top of δ; P← δ ∪ P;
if convoy front agent performs a turn at δ = (Xt, Yt) or there is an unused corner perpendicular to traversal direction then

// Check possible directions for closing room
RoomPoints← the set of closest perimeter points (X, Y) ∈ P such that either X = Xt or Y = Yt;
Remove from RoomPoints all the points (X, Y) such that the straight line from (Xt, Yt) to (X, Y) goes through

a previously visited hole or wall that is not in P;
// Attempt to close a room
for δ′ ∈ RoomPoints do

WallHit, Sucess← f alse;
`← convoy front agent;
while not (WallHit or Success) do

Agent ` moves one point closer towards point δ′;
if agent ` has reached δ′ then

Success← true;
end
if obstacle encountered then

WallHit← ObstacleCheck(δ, δ′);
end

end
Agent ` returns to δ;
if Success then

RoomScan(δ′);
mark corner as used;

end
Change front agent of convoy to that one with smallest perimeter scan traversal;

end
end

end

The obstacle subroutine Algorithm 2 determines if the obstacle encountered is a hole or a wall.
Let the point that the obstacle is encountered be o. The agent checks that the first length of the obstacle
D1 (see Figure 2c), perpendicular to the line l between δ and δ′, is shorter than the aspect ratio a
multiplied by the length of l which is Dist = |Xt − X|+ |Yt − Y|. If this value is exceeded, then the
obstacle cannot be a hole that fits between δ and δ′. Continuing from this point, the agent checks each
dimension to make sure that the obstacle is a hole. It checks if both of the lengths D2 and D3, Figure 2c,
are within the a aspect ratio, first between D1 and D2 and finally between D2 and D3. During the
exploration to D3 the agent will pass o′ such that o′ is on the line from δ to δ′. After this point, it is
known that the obstacle adheres the aspect ratio restrictions of a hole, but the agent must make sure
that it is rectangular by returning to o around the points that are between D1 and D3 that have not been
explored. If it is indeed a hole, the agent adds in its memory as a known hole, a hole that is detected in
the area, and returns to o′.
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Algorithm 2: ObstacleCheck(δ, δ′)
/* Algorithm to check if perimeter wall hit when closing a room */
Dist← |Xt − X|+ |Yt −Y|, where δ = (Xt, Yt) and δ′ = (X, Y);
o ← point obstacle encountered;
Move to corner of obstacle (wall or hole), in the direction point of previous than δ in list P;
D1 ← points traversed;
if D1 > a · Dist then

return true;
end
Turn along obstacle;
Move to next corner of obstacle;
D2 ← points traversed;
if D1 > a · D2 then

return true;
end
Turn along obstacle;
Move along obstacle until a · (D2 + 1) points have been traversed or corner is reached;
D3 ← points traversed;
o′ ← point along δ and δ′ found during traversal of D3;
if D3 < a · D2 or D2 < a · D3 then

Attempt to return to o along points not yet traversed;
if obstacle is rectangular then

Move back to o′;
return f alse;

end
end
return true

4.2. Room Exploration

After front agent in perimeter scan successfully reaches δ′ and returning to the other agents,
a room is found, the room scan is invoked. Now that the dimension of the room is known, the agents
could have divided the room into k equal areas and begin to search. However, given that the holes are
arbitrarily placed, it can be such that the assignments of some agents may contain no work. The other
agents cannot detect this until being within communication range. With this, it can also be such that
the agents repeat the same work when traversing around a hole in the area. Therefore, to maintain
balanced work, we introduce agent roles and a slow start to increase parallelism.

The agents are set to the roles of Leader, Active, or Inactive. All agents are within communication
range at this point and communicate their work with the other agents to determine who has the most
work, Leader, and the one with least work, Active, and the remaining, Inactive. If two share work
then that agent with the lower ID will be Leader. The purpose of the Leader is to maintain a ratio of
work between all agents to balance the work performed by each agent. The Active agent is given a
task in the form of a stack of areas to explore, and performs the exploration until a work threshold is
reached. This stack is initially a single task consisting of the entire room. As the Active agent performs
the traversal it will split the current task and push it back on the stack. A task is two corner points
of the perimeter of the area they are required to explore. In giving the Active agent these two points,
the agent can discern the rectangle of exploration.

The Inactive agents are in a convoy by the Leader waiting for the Leader to give them a task and
become Active. The allocation of the work to the agents is performed in a balanced way, such that
those agents with lower work are given work and those that exceed the work of lower working agents
are made Inactive. If this is the first room attempted to close then no agent has any room work so
it is arbitrary which agent is set to Leader, Active, or Inactive. Otherwise, the agent with the most
room work is set to the Leader, yellow ‘x’ in Figure 3, the one with the least room work is set to Active,
black ‘x’ in Figure 3, and the rest begin as Inactive, white ‘x’ in Figure 3.
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Figure 3. Splitting a Room with Holes.

The work threshold of an Active agent is initially set to a value dmax that is determined by the
longest length of the room and the cost of traversing around holes on a straight path, discussed in
more detail in Section 5 where we analyze the algorithm. As the room exploration progresses, the work
threshold exponentially increases to accommodate the expected work in the newly discovered areas.
The amount of work threshold only increases when work is not shared or given to another agent.
This is due to the fact that if no other agent was there, then doubling the amount of work to return
will maintain equal work among the agents. Gradually, Inactive agents are becoming Active as more
area is discovered in the room.

The Leader subroutine (Algorithm 3) describes the Leader’s role as Active agents return to the
Leader. The Leader’s job is to maintain the remaining work between itself and the Active and Inactive
agents. When an agent i has performed work that exceeds its threshold or it ran out of tasks to perform,
it returns to communication range of the Leader. In performing this the agents repeats the same
amount of work as the threshold to return, but with exponentially increasing work threshold the agent
will perform more new work than the cost to return to the Leader. This way, load balancing can be
achieved at a faster pace. It is necessary to return to communication with the Leader to enable the
Leader to balance the work between the Inactive agents. If the agent i has a stack remaining, or the
Leader has a stack, then the Leader takes agent is stack and merges it with its own. The Leader must
first make sure that the total work performed by agent i has not exceeded a ratio 3 between the Leader
and agent i, if agent i did exceed this ratio, then the Leader and agent swap roles and the Leader begins
the Active part of RoomScan. If at least one other Inactive agent j is waiting with agent i then the
Leader must check the ratio of work between agent i and all Inactive agents j to decide what to do
with the stack. If agent is work is within a ratio 4 of all other agents j then the Leader splits the stack
in half, giving one part back to agent i and the other to the agent with lowest total work. After this,
the Leader resets the threshold back to the minimum for agent i and signals agents i and j to become
Active. Otherwise, if Inactive agent(s) j are waiting and i has exceeded the ratio, then the entire stack
is given to the agent with lowest total work. Finally, if no other agent is Inactive and agent i is within a
ratio of 4 between all the Active agents, then the stack is returned to agent i and agent i is signaled to
remain Active.

The Active subroutine (Algorithm 4) describes the Active agents’ role as they are given a task by
the Leader. The agent i tracks their current work, and their current threshold of work to determine
when to return to the Leader. While the agent has task(s) to accomplish and the new work they have
completed has not exceeded the current work threshold, the agent will take a task to accomplish. Agent
i then takes the current task area and determines what are the smaller and larger dimensions of this task
area. Then, agent i moves to the middle of the larger dimension and determines how many sub areas
will be generated by traversing across the line that splits the task area. The sub areas are determined
by the holes encountered through this line, such that holes touching the line and the boundaries of the
original area determine new sub areas. We give an example of this step in Figure 3, as explained below.
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The reason for the room split is to parallelize the exploration task of the room, as the different agents
will move to the various identified sub areas and explore them in parallel. The created sub areas are
pushed to the stack, and each of them has the potential to be subdivided further.

Algorithm 3: Leader part of RoomScan
/* Algorithm performed by each Leader until room is entirely explored */
Upon (agent i returning to meeting point with Leader)
set agent i to Inactive;
if agent i has a stack or Leader has a stack then

if agent i has a stack then
Leader takes stack of newly discovered areas from agent i and merges with current stack;

end
if agent is work exceeds ratio 3 above Leader’s work then

Leader and agent i role swapped;
end
else if more than one agent is waiting without a stack then

if agent is work is within ratio 4 of all other agents’ work which is at least 1/4 the initial traversal of i then
Leader splits stack into two parts of equal size;
Leader gives one part back to agent i;
Other part is given to an Inactive agent j with lowest work;
Reset agent i work threshold to minimum;
Signal agents i and j to get Active;

end
else

Give stack to Inactive agent with lowest work;
end

end
else if agent i within ratio 4 of all other Active agents then

Give stack to agent i;
Signal agent i to get Active;

end
end

For example, Figure 3 shows the vertical traversal line that goes through the room and splits it
across the hole boundaries (holes labeled 1, 2, 3) into three subareas A, B, and C. As shown in Figure 3,
agent i does not have to change its traversal due to hole 1 as this hole is at least one point away from
the traversal line. Agent i will have to change its traversal, due to hole 2 as this is along the traversal
path and unknown to agent i. As Figure 3 has the Leader in the top right and the split is vertical,
the agent pushes areas onto the stack from the right to the left so that the area furthest from the Leader
is the next task to be explored. For each room on the right of the split the agent i pushes the furthest
from the Leader on the stack, from Figure 3 only C is on the right. Then, agent i begins pushing the
rooms on the left from the closest to the furthest from the Leader, Figure 3 first A then B. This process
is similar for other locations of the Leader and split type, to maintain a stack of connected areas with
the top being the furthest from the Leader on the opposite half of the area.

When the work threshold was reached and agent i still has a stack of task(s), it doubles the work
threshold and goes back to the Leader. The purpose of doubling the work threshold is such that if
no other agent was there to share work, then the other agents j are all Active and the agent i should
perform more exploration before going to the Leader again. As all other agents j are Active, agent i
can perform double the work and maintain the ratio 4 between all other Active agents j. If at any point
agent i has no more tasks to do then agent i returns to the Leader.
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Algorithm 4: Active agent i in RoomScan
/* Algorithm performed by each agent i after being activated by Leader in RoomScan */
// Initially work threshold is set to minimum by Leader
Upon(Signal received from Leader)
while Area.top && NewWork < workthreshold do

CurArea = Area.pop;
SmDim = min(CurrAreax , CurrAreay);
LgDim = max(CurrAreax , CurrAreay);
Move to middle of LgDim;
Determine the path to be taken and the amount of areas, area1, . . . , areai to be created given known holes along the

path;
Move along path to other appending NewWork end of area;
If a hole is encountered agent i moves around to remain in their half of LgDim returning to path;
Without loss of generality, assume Leader is top right of room and initial split is vertical;
Push areas onto stack from right to left;
for each right room do

Push farthest from Leader first
end
for each left room do

Push closest to Leader first
end
Similar stack construction for horizontal split and other locations of Leader;

end
Double work threshold and go to the Leader position;

5. Analysis

We continue now with the analysis of the algorithms. We have separated the two types of agents’
actions, perimeter and room scan, to clearly discuss the work performed during each algorithm.
Section 5.1 goes though the proof for perimeter scan and obstacle check. Section 5.2 will deal with
room scan and the actions of the Leader and other agents (Active/Inactive). Finally, in Section 5.3, we
combine the analysis for the works completed during all algorithms to prove the total work performed
by each agent is O(N/k) and total time is Θ(N/k) where N is the total number of grid points in the
orthogonal region.

5.1. Perimeter Scan

To analyze these algorithms, we begin by proving the completeness of perimeter scan. We show
that the algorithm performs a post-order traversal of all the rooms through converting the sequence of
steps as rooms are generated into a tree structure. From here, we analyze the total amount of work
that has been completed by each agent during the perimeter scan and obstacle check algorithms.

5.1.1. Sequence of Steps

Perimeter scan can be broken down into a sequence of steps S = σ1, σ2, . . . , σz, such that each σa is
a grid point σa = (xa, ya), and any two consecutive points in the sequence differ in only one dimension,
namely either |xa − xa+1| = 1 and ya = ya+1, or |ya − ya+1| = 1 and xa = xa+1, for 1 ≤ a < z.
From this sequence, three types of subsequences occur: Wall, Corner, and Cross.

• Wall: subsequence of steps sa, . . . , sa+b, where j ≥ 2, such that either the x-coordinate is the same
(xa = xa+1 = · · · = xa+b), or the y-coordinate is the same (ya = ya+1 = · · · = ya+b), i.e., the
subsequence of steps follows along the same x or y coordinate.

• Corner: Is a single point σa, 1 ≤ a ≤ z that changes from the dimension of the subsequence path,
either |xa−1 − xa| = 1, ya−1 = ya and |ya − ya+1| = 1, xa = xa+1 or |ya−1 − ya| = 1, xa−1 = xa

and |xa − xa+1| = 1, ya = ya+1.
• Cross: a subsequence of closing a room from corner or a wall to another wall or corner. Namely,

it is a subsequence after a corner or wall, σa, . . . , σa+b such that σa+b+1 is a recently visited grid
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point and σa and σa+b+1 share either x or y value (xa = xa+b+1 and ya 6= ya+b+1 or ya = ya+1

and xa 6= xa+b+1). The other points will differ by one point in the x or y direction such that
xi − xi−1 = 0 and |yi − yi−1| = 1 or xi − xi−1 = 1 and |yi − yi−1| = 0 as the agents could
have encountered holes along the Cross. Algorithm 1, when closing a room ends in Success
(Lines 11–25).

5.1.2. Special Subsequences and Rooms

Define a new sequence Q0 = q1, q2, . . . , ql , where each element qi ∈ Q0 is a subsequence of S,
representing either walls, corners, crosses, i.e., qi.type ∈ {Wall, Corner, Cross, Empty}. First three type
have an attribute: for Wall, qi.attribute ∈ {sx, sy, ex, ey}, where the start point is (sx, sy), and the end
point is (ex, ey); for Corner, qi.attribute ∈ {x, y, Turn}, where (x, y) is the corner coordinate, and Turn
denotes the direction of the turn which is either left or right; and for Cross, qi.attribute ∈ {sxsy, ex, ey},
where start point is (sx, yx) and the end point is (ex, ey).

In closing a room, a room starts with a Wall or Corner, and ends with a Cross. A Wall is followed
by a Corner or a Cross if they all had exterior walls along the path, or a Cross if there was a successful
room closure direction. In Figure 4, part a begins with a Wall, qi, and repeats until the Corner is
reached that reached that has the previously explored point in qi that was successfully reached by the
front agent, whereas in part b, the room begins with a Corner, qi.

Figure 4. Two Basic Room Types. (a) Room that begins with a Wall; (b) Room that begins with a Corner.

5.1.3. Replacing Rooms and Sequence Transformation

We can define a sequence of subsequences Q0, Q1, . . . , Qr. Each pth subsequence is generated by
the p− 1 item in the sequence, so that subsequence Qp is generated after room discovered in Qp−1.
Subsequence Qp replaces the subsequence of Qp−1: qi, qi+1, . . . , qi+j that made up room Rp with a
new subsequence that transforms the Cross into Wall(s) and Corner(s) depend on how the room was
entered and the holes along the Cross. When a room is closed we want to treat the Cross of that room
as a Wall for future room generation. To do this we create a new subsequence and treat that qi+j as a
Wall in the subsequence.

This new subsequence is q′i, q′i+1, . . . , q′i+j such that j is the maximum number of subsequence
elements. In Figure 5a the sequence in Qi, qi, qi+1, . . . , qi+j is replaced in Qi+1 to q′i, q′i+1, q′i+2, q′i+3,
the attributes developed from the attributes of qi, qi+j, and qi+j−1, see for example Table 1. Similarly,
Figure 5b transforms from qi, qi+j, and qi+j−1 to q′i, q′i+1, q′i+2. In performing this transformation, Table 1
depicts how each basic q is mapped to q′. Similarly, more complex q′ are generated in the same manner.
As these are only two basic room types, without any holes, other closures will have multiple q′ created
for qi+j, the Cross, as with the introduction of holes the Cross will transform into multiple Wall(s) and
Corner(s) as it is no longer a traversal along a single dimension.

For Qr, the last room in the region, as qi, qi+1, . . . , qi+j will be all elements of Qr−1, Qr replaces
the subsequence of Qr−1, qi, qi+1, . . . , qi+j that made up room Rr−1 with q′i.type = Empty signifying
that the region is explored in its entirety.
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Figure 5. Two Basic Transformations After Room Scan. (a) Sequence after closure when starting with a
Wall; (b) Sequence after closure when starting with a Corner.

Table 1. Basic Possible Values of q′.

Figure 5a Figure 5b

q′i

q′i .ey = qi+j.ey − 1
q′i .sy = qi.sy
q′i .sx = qi.sx

q′i .ey = qi+j.ey − 1
q′i .sy = qi−1.sy
q′i .sx = qi−1.sx
q′i .ex = qi−1.ex

q′i+1
q′i .x = qi+j.ex

q′i .y = qi+j.ey − 1
q′i .x = qi+j.ex

q′i .y = qi+j.ey − 1

q′i+2

q′i .sy = qi+j.ey − 1
q′i .ey = qi+j.sy − 1

q′i .sx = qi+j.ex
q′i .sx = qi+j.ex

q′i .sy = qi+j.ey − 1
q′i .ey = qi+j+1.sy
q′i .sx = qi+j.ex

q′i .ex = qi+j+1.ex

q′i+3
q′i .x = qi+j.sx

q′i .y = qi+j.sy − 1

5.1.4. Conversion to Tree

Given Qi is a sequence of steps qi that discovers a room i + 1, traversing the discovery of rooms in
reverse, Qr, Qr−1, . . . , Q1, Q0, a tree T of rooms can be generated (see Figure 6b). The root of T is room
Rr (room R3 in Figure 6) which is the last room to be discovered and corresponds to the room where
the agents started the whole discovery process. Suppose that Rr corresponds to sequence q1, . . . , ql in
Qr−1. Room Rr−1 was generated from Qr−2 and is included in q1, . . . , ql .

Figure 6. Conversion from Rooms to Tree Structure. (a) Sequence of room traversals; (b) Converting
area to visualize as tree structure; (c) Changing sequence of points as rooms are discovered through
traversal.

The children of Ri are the rooms Rh such that Rh is in the sequence of Ri in Qi−1 between the
points qi and qi+j that generated Ri (see Figure 6c). Given multiple children of Ri they are added to the
tree from left to right following their ordering in the sequence. If a room Rh does not have any room
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sequence between its respective qi and qi+j, then it is considered to be a leaf of the tree. Following
these rules we generate a tree structure, with Rr as the root, as we work backwards from the room
discovery, Figure 6c, adding the respective children of each room as it is expanded from Qi to Qi−1
until we return to Q0.

For the discussion below assume that two points qi and qj are ordered as qi < qj if i < j,
and qi = qj if i = j. Consider two rooms Rp and Rt that in Q0 have the corresponding subsequences
qi0p , . . . , qi0p+j0p and qi0t , . . . , qi0t+j0t respectively. The sequences of Rp and Rt in Q0 are either disjoined,
when qi0p > qi0t+j0t or qi0p+j0p < qi0t , or contained, when qi0p > qi0t and qi0p+j0p < qi0t+j0t or qi0t > qi0p

and qi0t+j0t < qi0p+j0p , or connected, when qi0p = qi0t+j0t or qi0t = qi0p+j0p .

Lemma 1. Any pair of connected rooms, with neither being the root, have the same parent.

Proof. Let us assume that Rp and Ru are two connected rooms. Let Rt be the parent Rp. Since Rt is the
parent of Rp we have that Rt is the first room that contains Rp, we have qi0t < qi0p and qi0p+j0p < qi0t+j0t .
Also, from connected we know that either qi0p = qi0u+j0u or qi0u = qi0p+j0p . Thus, qi0t < qi0u+j0u or
qi0u < qi0t+j0t . Therefore, from our projections Rt and Ru are not disjoined or connected, namely one
contains the other.

Suppose that t < u. Therefore, Ru contains Rt. Since Rt contains Rp, we have that Ru contains Rp,
which is a contradiction, since Ru and Rp are connected. Therefore, t > u. Consequently, Rt must also
contain Ru.

Suppose that there is another room Rγ that is the parent of Ru. Therefore qi0γ
< qi0u as rooms Ru

and Rp are connected then Rγ contains Rp, qi0γ
< qi0p As Rt is the parent of Rp, Rt must be contained

in Rγ. This results in a contradiction because Rt contains Ru and is a descendant of Rγ. From this, Rt

is the parent of Rp and Ru.

If the room discovered in Qr−1 was not the room the agents began the exploration in, then there
are two connected rooms that are the roots of two trees.

Lemma 2. For disjoint rooms Rp and Rt where p < t, the subsequence that generates Rp must appear earlier
than Rt in Q0.

Proof. Let’s assume that it is possible for Rt subsequence, qi0t , . . . , qi0t+j0t , to appear earlier than Rp

subsequence, qi0p , . . . , qi0p+j0p , in Q0; q0, . . . , qi0t , . . . , qi0t+j0t , . . . , qi0p , . . . , qi0p+j0p , . . . , ql . As traversal is
from left to right, at some Qc such that c < p the subsequence, qi0t , . . . , qi0t+j0t would be traversed and
then at Qp the subsequence qi0p , . . . , qi0p+j0p would be traversed. Thus, it is not possible for an earlier
subsequence that makes up a disjoined room to be explored after a later disjoined room.

All points will be covered by agents after the entire perimeter is traversed. Given Lemmas 1 and
Lemma 2 the whole area is divided into room which are explored in a post-order traversal of T. As we
see from Figure 6a, from the agent’s start position and traversal direction, the agents discover room
0, 1, 2, and 3 which after generating the tree structure, Figure 6b, traverses the left subtree, then the
right subtree, and finally the root, a post-order traversal.

Corollary 1. The area is divided into rooms through the traversal of the perimeter. Following in reverse order
create a tree T of rooms which are explored following post-order traversal of the tree.

5.1.5. Perimeter Traversal

During perimeter scan, all agents will perform the traversal along the perimeter of the outer wall.
When agents reach a corner that is along a previously explored point, the front agent will attempt to
close the room and return. If an obstacle is detected then that agent will try to determine if it is a hole,
given the aspect ratio, if it is then that agent continues to attempt to close the room. The agent returns
to other agents if it is a room or runs into a wall. From there, if it is a room, room scan will begin,
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otherwise the agents will continue perimeter scan. Before continuing perimeter scan the agent that has
the least amount of perimeter work completed, such that it has not attempted to close a room or has
had the smallest attempt of all agents to close a room, switches places with the front agent.

Lemma 3. A shortest path of adjacent points in the orthogonal region between any two points on a single
dimension with Euclidean distance C from each other, has a maximum length of C + 2aC.

Proof. Without loss of generality, let us assume that the start and end points are on the same horizontal
line. Then we can form a path which traverses from the start to end consisting of several path segments:

∑
a

pa + ∑
b

wb + ∑
c

gc.

Each pa are the lengths of horizontal path segments on same line as start and end, wb are the
lengths of horizontal path segments along encountered holes parallel to the line between start and
end, gc are the lengths of vertical path segments of encountered holes that are perpendicular to the
line between start and end. There are two gc for every wb as there is a gc connecting pa to wb and gc+1

connecting wb to pa+1. Due to holes being rectangular, the sum of ∑ pa + ∑ wb = C.
We will continue to show ∑ gc ≤ 2a ∑ wb. As a is the aspect ratio of the hole dimensions, then

for each hole length wb we can assume the longer length is the associated gc and gc+1, meaning that
at most these can be awi larger. Thus, since each wb has two associated gc, ∑ gc ≤ ∑ 2awb. As stated
above, ∑ pa + ∑ wb = C then, since ∑ wb ≤ C, ∑ gc ≤ 2aC, thus, ∑ pa + ∑ wb + ∑ gc ≤ C + 2aC.

Suppose that the perimeter, not including Crosses attempted, up to discovery of room Ri has Pi
traversable points. Each of these Pi points is traversed by all k agents. The total traversable points is Nit,
then orthogonal region up to room i has a total interior traversable points Ni such that Ni = Nit − Pi
where we remove the perimeter points from the total points in the area.

Lemma 4. Total perimeter work from all agents performed is O(kPi + Ni).

Proof. As the perimeter is traversed by all agents, k agents perform Pi movements to traverse all
points along the perimeter. During a Cross only the agent with the least perimeter total work will
gather work. Holes and walls discovered by an agent during a Cross are known by all other agents
when the crossing agent returns. Agents do not attempt to close a room if a previously discovered hole
or wall is located along that path. For this reason, there are two opportunities to traverse a position in
the room, horizontal and vertical crosses, and as such, 4 traversals over any position in both directions
of the Cross. Thus, the total amount of work performed during is kPi for perimeter movements and
4Ni for the attempted crosses.

From Lemma 3, there is a Cross with maximum Euclidean distance Crossmax corresponds to a
maximum path distance Cmax = Crossmax + 2aCrossmax, when moving around holes. Cmax is the
largest distance that any agent traverses during the traversal of its assigned Cross.

Lemma 5. Difference in perimeter work between any two agents is O(Cmax).

Proof. All agents perform the perimeter traversals, so the difference in work appears when crosses
are performed, as these are done by a single agent. Agents swap after completing a Cross if another
agent has less work to allow them to perform the next Cross. Let us assume that an agent could exceed
Cmax work compared to other agents. For two agents i and j with respective works Wi and Wj, if
Wi > Wj + Cmax then Wi > Wj before the Cross was taken, as agent i could gain at most Cmax new
work. This contradicts the algorithm as the agent with the lower work would perform a Cross. Hence,
all agents are bounded by a difference in work of Cmax.
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Lemma 6 (Perimeter Work). If Ni ≥ 4Cmaxk, the perimeter work of each individual agent is O(Pi + Ni/k).

Proof. From Lemma 4, we have that the total work is O(kPi + Ni) and Lemma 5 proves the max
difference between any two agents is O(Cmax). As agents are within Cmax work of one another, each
agent must have work at most (kPi + 4Ni)/k + Cmax = Pi + 4Ni/k + Cmax. With the assumption that
Ni ≥ 4Cmaxk, this can be simplified to Pi + 4Ni/k + (1/(4k))Ni which is O(Pi + Ni/k).

Lemma 7 (Perimeter Time). With total number of Corners Γ the total perimeter time is at most P + 6ΓCmax.

Proof. Each agent follows along the perimeter moving one position each time step, given P perimeter
points, takes P time to visit each perimeter position. At every Corner we have at most 3 directions
that a room can be generated with a maximum of Cmax distance to traverse. An agent must traverse
the closure in both directions, thus 6ΓCmax to traverse possible room closures for all Corners Γ. This
creates an upper bound on the total time to finish the perimeter scan portion P + 6ΓCmax.

5.2. Room Scan

We continue with the work analysis of the agents during room scan. In our algorithm, as the
perimeter scan progresses, new rooms are being discovered, and each room is explored separately in
room scan by the work performed by the Active agents and controlled by the Leader. For balancing
the work, the robots keep a separate count of the total work performed during room scan. The first
room discovered is a special case, as there are no previous rooms or room work. Hence, we start with
analyzing the work completed by each agent in the first room. From this point, we can now describe
the relationship between all agents work throughout each subsequent room exploration to explain
total work of all agents together and work performed by each agent individually after the completion
of each separate room. Finally, after the last room we can analyze the total work and work completed
by each agent at the end of the whole area exploration.

5.2.1. First Room Exploration

Consider the first closed room and suppose that it is of size Llong × Lshort, where the length of
Llong is at least as large as Lshort. Suppose also that there is a total of n traversable points in the room.
The aspect ratio of the holes in the room is a. Without loss of generality, we will assume that Llong is
horizontal, and Lshort is vertical. All agents currently have 0 initial work. Before, we proceed with the
work analysis, we need bound the longest shortest path in the room, which will be later used to bound
the difference on the works of different agents.

Lemma 8. The maximum shortest path between any two points in a room has length D = O(aLlong).

Proof. A shortest path between any arbitrary pair of points in the room can be formed by connecting
two subpaths h and v, the first is horizontal of length H, and the second is vertical of length V, to reach
the other point.

There can be a hole along the two subpaths. This creates key positions in the path pos0, pos1, pos2,
and pos3. pos0 is the starting point, and pos3 is the ending point. Assuming horizontal subpath taken
first, pos0 and pos1 are the start and end positions, respectively, of h and pos2 and pos3 are the start and
end positions of v. If pos1 6= pos2 then there is a path around a hole that goes from pos1.x to pos2.x and
pos1.y to pos2.y. This hole is only traversed along two dimensions, one horizontal and one vertical,
with lengths l1 and l2, respectively. Therefore, l1 + l2 ≤ 2Llong.

From Lemma 3, H ≤ (2a + 1)Llong and V ≤ (2a + 1)Lshort. Thus, the total length of the path at
most (2a + 1)Llong + (2a + 1)Lshort + l1 + l2 ≤ (4a + 4)Llong.

Lemma 9. In a room with n points the total work by all agents is O(n).
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Proof. Let us take the case that there is a single agent with no specific work threshold to returning
to the meeting point in the room. From Algorithm 4, the agent takes the original area, moves to the
middle of the long dimension and performs a split traversing unexplored positions along this traversal.
After exploration Area0, the total room, generates a stack of connected areas Area1, Area2, . . . , Areai
such that there is a path of previously explored points on the split that connects each pair of Areaj and
Areaj+1. When Areaj is popped off it can either make sub areas Areaj1 , . . . , Areaji that are connected
through the split of Areaj and Areaji connect to Areaj+1 through the previous split or the agent moves
to Areaj+1 along the split of Area0. Through this recursive process, the agent traverses split positions
at most 4 times (down and up both halves). Every point with Area0 will be part a split in one of
the recursive steps. Therefore, the whole recursive process is generating 4n total traversals of the
total Area0.

Now let us add multiple agents that balance their work, but without acting concurrently, i.e., when
the work threshold is reached an agent swaps its stack of work with another agent to balance its work.
With a threshold, agents are now able to leave and return to an Areaj if they have completed enough
work to return to the Leader and another agent returns in their place. From Lemma 8, the threshold
2D newly explored points. In this, 2D newly explored points pays for 2D already explored points
when going to the origin and swap the stacks. Since in the worst case an agent may return at most
n/2D times to the origin, the total work with the threshold is at most 4n + (n/2D)2D ≤ 4n + n ≤ 5n.

Finally, we view the complete algorithm with multiple agents that can also share the work when
the threshold is reached, i.e., the agents perform parallel exploration. With agents splitting their work
with another agent, according to Algorithm 4 one agent had work Area1, Area2, . . . , Areai and reached
the threshold. Upon returning, it shares half the work, some area Areaj, such that the first agent
contains Area1, Area2, . . . , Areaj and the second agent contains Areaj+1, . . . , Areai. With this addition,
agents can perform work in parallel, gaining the ability to share work but requiring another D each
time sharing happens to account for the new agent to traverse to its given area. Therefore, total work
becomes at most 4n + (n/2D)3D = 4n + 3n/2 ≤ 6n.

Lemma 10. At the end of the room scan of a room with n points, given the initial work of all agents is 0, one of
the two holds:

i. If n < 2Dk, the difference in work between any two agents is 4D, or otherwise,
ii. the ratio of the work between any two agents is bounded by 8.

Proof. For case i, as agents return to meet after 2D work, where n < 2Dk, then there are not enough
traversable points for all agents to get work. This will lead to some out of k agents completing 4D
work and other agents not completing any work.

For case ii, n ≥ 2Dk, such that all agents were given a chance to be Active. The Leader maintains
a ratio 4 of work between all agents and a ratio 3 between all other agents and the Leader. As two
agents may approach the ratio 4 and the lower one could complete work just after the one with
greater work has completed, then the agent with greater work will double their current work before
returning being at most ratio 8 more work than this agent. After returning this agent will be set to
Inactive and swapped with the lower total work agent. As the Leader has global knowledge of the
work of all agents, after they share information, the Leader can maintain the ratio 8 of work between
all agents.

Theorem 1. At the end of the room scan with n points, each agent performs O(n/k) work when n ≥ 2Dk.

Proof. From Lemma 9, let the total work be W = c1n, for some constant c1 > 0. From case (ii) of
Lemma 10, the ratio of the work between any two agents is at most 8. Therefore, since there is an agent
that has work at most c1n/k, each agent’s work does not exceed 8c1n/k = O(n/k).
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5.2.2. Room Exploration

Let R1, R2, . . . , Rr be the sequence of rooms that are visited in the algorithm. For each room Ri,
let Di be the maximum shortest path distance between any pair of points in Ri, and let ni be the total
number of traversable points in the room. For each room, the total number of previously explored
points in the previously explored rooms are taken into account when determining the difference
in work between agents. As with perimeter scan, we will use Dmax = maxi Di. We will show that
when the sum of work in all rooms explored exceeds kDmax, a ratio 8 between the works of the
agents is maintained. We define Ni as the sum of all the traversable points in all the rooms up to Ri,
i.e., Ni = ∑i

j=1 nj. After the completion of the room Ri, each agent k has an associated work wi
k.

We extend Lemma 10, to the more general case where agents have prior work.

Lemma 11. If before the scan of room Ri, i > 1, the work of any two agents g and h differ in work |wi−1
g −

wi−1
h | ≤ 4Dmax, then at the end of the room scan of Ri then the difference is maintained or a ratio 8 is achieved.

Proof. Initially, only one agent gets Active in Ri, suppose g. It must be that the work of g before
Ri, wi−1

g , is at most the work of every other agent h. In its traversal, g gains at most 4Di ≤ 4Dmax

additional work. Therefore, |(wi−1
g + 4Di)− wi−1

h | ≤ |(w
i−1
g + 4Dmax)− wi−1

h | ≤ 4Dmax. Thus, since
our algorithm always picks an agent with the lowest work, as long as a single agent is scanning the
room Ri, the maximum work difference of 4Dmax is preserved.

Now, that the algorithm sends two or more agents for scanning. The agents that are selected by
the Leader to scan the room must start with a ratio of work 4 within each other. These selected agents
have also the lowest work at the time of their activation, with respect to all agents k, and each agent
must have minimum total work of Di. At any time during their scan, the Active agents accumulate
new work, but each agent at most doubles its work (according to our algorithm). Therefore, the ratio
of work among those Active agents does not exceed 8.

Between Active and Inactive agents, the difference of work is decreasing until the time when
Inactive agents get less work than the Active, and the Inactive become Active themselves. Until
that happens the difference of work between Active and Inactive is 4Dmax. After that, the ratio 8 is
also maintained between Active and Inactive agents. Even if all agents get Active, then they have
a ratio 4 among them when they start scanning and will maintain a ratio 8 upon returning if one
becomes Inactive due to the completion of their area. Therefore, in all cases, if multiple agents start
scanning either the work difference is bounded by 4Dmax or a ratio 8 between the works of the agents
is maintained.

Lemma 12. If before the scan of room Ri, i > 1, the work of any two agents g and h have a difference in their
ratio of work 1/8 ≤ wi−1

g /wi−1
h ≤ 8, then at the end of the room scan of Ri then ratio 8 is maintained or regress

to difference of 4Dmax.

Proof. Similar to the proof of Lemma 11, at the beginning only one agent scans Ri, say agent g, which
gains at most 4Di work. Any other agent h must have work wi−1

h ≥ wi−1
g . If wi−1

h < Di/4, then,
the ratio 8 between these two agents is not preserved, but there is a maximum difference of 4Dmax in
their works.

If more than one agent becomes Active for scanning, then similar to the proof of Lemma 11, the
work ratio of 8 is maintained or the difference of works is bounded by 4Dmax.

Lemma 13. At the end of scanning room Ri for any two agents it holds that either |wi
g − wi

h| ≤ 4Dmax or
1/8 ≤ wi

g/wi
h ≤ 8.

Proof. We will use induction. For the base case, i = 1, the claim holds immediately as initially no
agent has any work so all are within 4Dmax and ratio 8. Suppose the claim holds up to the scanning
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of room Ri−1. By induction hypothesis, for any two agents g and h, |wi−1
g − wi−1

h | ≤ 4Dmax or
1/8 ≤ wi−1

g /wi−1
h ≤ 8.

If |wi−1
g − wi−1

h | ≤ 4Dmax, then from Lemma 11, at the end of the scanning of Ri the difference
of the works between two agents is either bounded 4Dmax or the ratio of their works is at most 8.
Similarly, if 1/8 ≤ wi−1

g /wi−1
h ≤ 8, then from Lemma 12, the work difference is bounded by 4Dmax or

the ratio of their works is at most 8.
Therefore, in all cases it holds |wi

g − wi
h| ≤ 4Dmax or 1/8 ≤ wi

g/wi
h ≤ 8, as needed.

Lemma 14 (Room Work). Upon the completion of each room Ni the total work done up to that point is O(Ni).

Proof. From above, Ni = ∑i
j=1 nj, and from Lemma 9, the work done in a room is O(nj), more

specifically at most 6n. The sum of work for all rooms becomes at most 6n1 + 6n2 + . . . + 6ni = 6Ni
which is O(Ni).

Lemma 15. Each agent performs O(Ni/k) work when Ni ≥ 2Dmaxk.

Proof. From Lemma 14 the total work from all the agents combined is O(Ni), say c1Ni for some
constant c1. Therefore, some agent has performed work at most c1Ni/k. From Lemma 13, for any two
agents g and h we have, |wi

g − wi
h| ≤ 4Dmax or 1/8 ≤ wi

g/wi
h ≤ 8. Suppose that g has the maximum

total work, and h has the minimum total work, among all k agents.
If |wi

g − wi
h| ≤ 4Dmax, then agent has g has no more work than c1Ni/k + 4Dmax ≤ c1Ni/k +

2Ni/k = O(Ni/k). If 1/8 ≤ wi
g/wi

h ≤ 8, then agent g has no more work than 8c1Ni/k = O(Ni/k).
Hence, in any case each agent’s work is O(Ni/k).

To perform analysis of the time complexity of room scan, we examine the total time given the
orthogonal area contains no holes. (Logarithms are base 2.)

Lemma 16 (Room Time). Assuming no holes, upon the completion of each room Ri the maximum total time
up to that point is ∑r

i=1((6ni − 4Di log k)/(k− 1) + 4Di log k) + 4Dmaxk.

Proof. At the start of room scan, we have an initial swapping of work until every agent reach 4Dmax

work, creating a total time of at most 4Dmaxk for each agent to swap to be Active. After this point,
at the beginning of each room, as we perform slow start, the agents share work doubling the number
of Active agents each 4Di time steps taking a total of 4Di log k time for all agents to become Active.
As there are no holes, the algorithm generates rectangular areas initially and all agents get an equal
portion of the area. Now that all agents are Active, and given that the work performed in a room is 6ni
(Lemma 9) we subtract the amount of work that has been performed during the sharing process and
divide by the number of Active agents, k− 1 as one agent is Leader, achieving the maximum total time
for room completion ∑r

i=1((6ni − 4Di log k)/(k− 1) + 4Di log k) + 4Dmaxk.

5.3. Combination of Work

In this section, we will combine Lemmas 4 and 14 to get the total work for all movements in the
algorithm. We will also combine the total amount of work completed by an agent to get the total work
done by each agent using Lemmas 6 and 15.

For the combination of these Lemmas and to use Lemma 15 for work of agents in room scan
we assume Ni ≥ 2Dmaxk. As Cmax is along a single dimension and Dmax is along two dimensions,
Dmax ≥ 2Cmax. From Lemma 4, we get that the total work during the perimeter is O(kPi + Ni),
and from Lemma 14 we get that the total work during all room scans combined is O(Ni). Therefore,

Corollary 2. The total work done by all agents at the end of scanning room Ri is O(kPi + Ni).
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From Lemma 6 agents perform work O(Pi + Ni/k) and from Lemma 15 each agent performs
work O(Ni/k). Therefore,

Corollary 3. At the end of scanning room Ri, each agent performs work O(Pi + Ni/k).

Theorem 2 (Work Balancing). If Pi = (Ni/k), then at the end of scanning room Ri, the total work of all
agents is O(Ni) and the work of each agent is O(Ni/k).

Proof. Since from Corollary 2 the total work is O(kPi + Ni), if Pi ≤ c1(Ni/k) for some constant c1,
then O(kPi + Ni) = O(Ni). From Corollary 3, the total work performed by each individual agent is
O(Pi + Ni/k), with the above value of Pi this is O(Ni/k).

5.4. Combination of Time

Given the Lemmas 7 and 16 we will show the total time to complete the exploration.

Corollary 4. The total time to complete exploration at the end of room scan is P + 6ΓCmax + 4Dmaxk +
∑r

i=1((6ni − 4Di log k)/(k− 1) + 4Di log k).

Given this total time to complete the exploration we have certain areas in which the total time
is Θ(N/k). Any exploration cannot do better than Ω(N/k) as this is all agent would be actively
exploring during the entire exploration. For our exploration, we define a large room i is such that
4Di log k is of order (6ni − 4Di log k)/(k− 1).

Corollary 5 (Parallel Exploration). When in an orthogonal area is made up of a majority of large
rooms, and the terms P, 6ΓCmax, and 4Dmaxk are O(N/k), then time complexity is of Θ(N/k), which is
asymptotically optimal.

6. Conclusions

This paper proposes multiple algorithms, to perform exploration and a slow start, for multiple
agent to perform parallel exploration with a limited communication range. Through the introduction of
unknown holes in the area the room exploration algorithm of Leader with slow start was developed to
minimize the cost of returning to the Leader while maintaining near equal work. Through exponential
back-off with a reset to communicate with the Leader, communication costs are decreased as well as
the cost of returning to communicate. With our algorithms, we achieve an overall performance of
O(N/k) agent work in asymptotically optimal time Θ(N/k).

Our future work is to implement the algorithms on several agents. We also plan to explore the
algorithm with agent failure. Lastly, it is our goal to remove the orthogonal region and rectangular
hole constraints to develop algorithms that enable the agents to explore concave polygons.
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