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Abstract: This paper presents a new algorithm based on the theory of mutual information and
information geometry. This algorithm places emphasis on adaptive mutual information estimation
and maximum likelihood estimation. With the theory of information geometry, we adjust the mutual
information along the geodesic line. Finally, we evaluate our proposal using empirical datasets that
are dedicated for classification and regression. The results show that our algorithm contributes to a
significant improvement over existing methods.
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1. Introduction

An artificial neural network is a framework for many different machine learning algorithms to
work together and process complex data inputs; it is vaguely inspired by biological neural networks
that constitute animal brains [1]. Neural networks have been widely used in many application areas,
such as systems identification [2], signal processing [3,4], and so on. Furthermore, several variants of
neural networks have been derived from the context of applications. The convolutional neural network
is one of the most popular variants. It is composed of one or more convolutional layers with fully
connected layers and pooling layers [5]. In addition, the deep belief network (DBN) is considered to be
a composition of simple learning modules that make up each layer [6]. Several restricted Boltzmann
machines [7] are stacked and trained greedily to form the DBN. In 2013, Grossberg proposed a recurrent
neural network, which is a class of artificial neural network in which connections between nodes form
a directed graph along a sequence [8]. The output layer can obtain information from past and future
states simultaneously.

However, improving the performance of a neural network remains an open question. From the
viewpoint of information theory, mutual information is used to optimize neural networks. In the
method of the ensemble, two neural networks are forced to convey different information about some
features of their input by minimizing the mutual information between the variables extracted by the
two neural networks [9]. In this method, mutual information is used to measure the correlation between
two hidden neurons. In 2010, an adaptive merging and splitting algorithm (AMSA) pruned hidden
neurons by merging correlated hidden neurons and added hidden neurons by splitting existing hidden
neurons [10]. In this method, the mutual information is used to measure the correlation between the
two hidden neurons. In 2015, Berglund et al. proposed measuring the usefulness of hidden units
in Boltzmann machines with mutual information [11]. However, the measure is not suitable as the
sole criterion for model selection. In addition, the measure that was shown to correlate well with
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the entropy does not agree with the well-known and observed phenomenon that sparse features that
have in general low entropy are good for many machine learning tasks, including classification. By a
new objective function, a neural network with maximum mutual information training is proposed to
solve the problem of two-class classification [12]. It focuses on maximizing the difference between the
estimated possibility of the two classes. However, when the two classes are completely separable, the
algorithm cannot outperform the traditional algorithm of maximum likelihood estimation. To address
the problems above, we introduce the theory of information geometry into neural networks.

Information geometry is a branch of mathematics that applies the theory of Riemannian manifolds
to the field of probability theory [13]. By the Fisher information [14], the probability distributions
for a statistical model are treated as the points of a Riemannian manifold. This approach focuses
on studying the geometrical structures of parameter spaces of distributions. Information geometry
has found various applications in many fields, such as control theory [15], signal processing [16], the
expectation–maximization algorithm [17], and many others [18,19]. In addition, information geometry
is used to study neural networks. In 1991, Amari [20] studied the dualistic geometry of the manifold of
higher-order neurons. Furthermore, the natural gradient works efficiently in the learning of neural
networks [21]. The natural gradient learning method can overcome some disadvantages in the learning
process of the networks effectively, such as the slow learning speed and the existence of plateaus.
In 2005, a novel information geometric-based variable selection criterion for multilayer perceptron
networks was described [22]. It is based on projections of the Riemannian manifold as defined by a
multilayer perceptron network on submanifolds with reduced input dimension.

In this paper, we propose a new algorithm based on the theory of mutual information and
information geometry. We study the information covered by a whole neural network quantitatively
via mutual information. In the proposed method, the learning of the neural network attempts to
keep as much information as possible while maximizing the likelihood. Then, with the theory of
information geometry, the optimization of the mutual information turns into minimizing the difference
information between the estimated distribution and the original distribution. The distributions are
mapping to points on a manifold. The Fisher distance is a proper measurement of the path between the
points. Then, we obtain a unique solution of the mutual information by minimizing the Fisher distance
between the estimated distribution and the original distribution along the shortest path (geodesic line).

2. Materials and Methods

Let us consider a neural network with one input layer, one output layer, and one hidden layer.
The weights for the input are denoted by w. The weights for the hidden neurons are v. Here, x is the
input, while ỹ is the actual output, and z is the activation of the hidden neurons. The concatenation of
the output and hidden neurons is represented as a vector r = [ỹ, z]. Figure 1 illustrates the architecture
of the neural network.
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The neural network is a static and usually nonlinear model

p(r|x) = p(ỹ, z|x, u) = p(ỹ|z, v)p(z|x, w) (1)

where the parameters of the neural network are denoted by u = [w, v].
The mutual information (MI) [23] of two random variables quantifies the “amount of information”

obtained about one random variable, through the other random variable. In the proposed algorithm,
we treat the input x and the combination of the output and hidden neurons r as two random variables.
Correspondingly, the MI quantifies the “amount of information” obtained by the output and hidden
variable from the input. The learning of the neural network attempts to keep as much information as
possible while maximizing the likelihood. We define a novel objective function as

J = Ex[(ỹ− y)2] + λI(x; r) (2)

where y is the desired output (i.e., the true value of the label). The first item is the objective function of
traditional backpropagation neural networks, while the second item is the MI of x and r. With the first
item, we maximize the likelihood similar to what traditional neural networks do. With the second
item, the proposed method helps the neural networks to keep information from the input. Here, λ is a
constant determined by experience.

Many methods exist for minimizing the first item, such as conjugate gradient [24]. Therefore, we
just discuss how to work with the second item in this paper. By the definition of MI and Kullback–Leibler
divergence (KLD) [25], the mutual information of x and r is

I(x; r) =
∫

x∈X

∫
r∈R

p(x, r) log p(x,r)
p(x)p(r)drdx

=
∫

x∈X
p(x)

∫
r∈R

p(r|x) log p(x,r)
p(x)p(r)drdx

=
∫

x∈X
p(x)

∫
r∈R

p(r|x) log p(r|x)
p(r) drdx

=
∫

x∈X
p(x)KLD(p(r|x)||p(r))dx

(3)

where X is the value domain of x, while R is the value domain of r.
In general, the density p(x) is assumed to be unknown. Therefore, we make a finite-sample

approximation, since we work with a finite dataset. The size of the set is N. Then, the mutual
information in (3) is calculated as

I(x; r) =
1
N

N∑
i=1

KLD(p(r|xi)||p(r)) (4)

where xi is the ith input data.
In addition, we have

KLD(p(r|xi)||p(r)) =
s

ỹ∈Y,z∈Z
p(ỹ|z, v)p(z|xi, w) log p(ỹ|z,v)p(z|xi,w)

p(ỹ|z)p(z) dỹdz

=
∫

z∈Z
p(z|xi, w) log p(z|xi,w)

p(z)

 ∫
ỹ∈Y

p(ỹ|z, v)dỹ

dz +
s

ỹ∈Y,z∈Z
p(ỹ|z, v)p(z|xi, w) log p(ỹ|z,v)

p(ỹ|z) dỹdz

=
∫

z∈Z
p(z|xi, w) log p(z|xi,w)

p(z) dz + Ez

 ∫
ỹ∈Y

p(ỹ|z, v) log p(ỹ|z,v)
p(ỹ|z) dỹ


= KLD(p(z|xi, w)||p(z)) + Ez[KLD(p(ỹ|z, v)||p(ỹ|z))]

= KLD(p(z|xi, w)||p(z)) + 1
N

N∑
i=1

KLD(p(ỹ|zi, v)||p(ỹ|zi))

= KLD(p(z|xi, w)||p(z))

(5)
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where zi is the value of the vector of hidden neurons when the input is xi, while Z is the value domain
of z, and p(ỹ|zi, v) = p(ỹ|zi) so that KLD(p(ỹ|zi, v)||p(ỹ|zi)) = 0.

The original distribution p(z) can be derived from a finite-sample approximation, which gives us
the following:

p(z) = 1
N [p(z|x1, w) + p(z|x2, w) + . . .+ p(z|xN, w)] = 1

N

N∑
i=1

p(z|xi, w) (6)

Next, we will show an effective way to calculate the KLD in (5) with the theory of
information geometry.

Any function that can be written in the following form is from the exponential family [26]:

p(x|θ) = exp(x·θ−ϕ(θ)) (7)

where ϕ is a function of θ.
Without loss of generality, the probability of the activation of each hidden unit can be approximated

with a function from the exponential family [27]. Here, z j represents the jth hidden unit; then,

p(z j
|xi, w) = p(z j

|θ j) = exp(z j
·θ j
−ϕ j(θ j)) (8)

where θ j is a function of x·w j (i.e., the linear weighted input of z j), while w j is the jth column of w, for
j ∈ {1, 2, . . . , l}, and l is the size of the hidden layer. Additionally, ϕ j is a function of θ j. Considering
that the activations of the hidden neurons are independent, the probability of z is calculated as

p(z|xi, w) = p(z|θ) =
l∏

j=1
p(z j
|θ j) =

l∏
j=1

exp(z j
·θ j
−ϕ j(θ j)) = exp(

l∑
j=1

z j
·θ j
−

l∑
j=1

ϕ j(θ j)) = exp(z·θ−ϕ(θ)) (9)

Thus, p(z|θ) is from the exponential family, while θ is a function of the linear input x·w of z. In
addition, ϕ is a function of θ.

A classic parametric space for this family of probability density functions (PDFs) is

H =
{
η =

∂ϕ(θ)
∂θ

}
(10)

For the distributions in the exponential family, there are two dual coordinate systems θ and η on
the manifold (which is defined as a topological space that locally resembles Euclidean space near each
point) of the parameters [28]. Here, η is given by

η =
∂ϕ(θ)

∂θ
= E(z) (11)

With (9) and (11), we calculate the ηi for each zi. From (6), it is evident that the p(z) is the mean of
the conditional probability over each input xi. Thus, with (11), the parameters in the density in (6) are
approximated by

η =
1
N

N∑
i=1

ηi (12)

For the distribution in the exponential family, we have

ψ(η) =
∫

p(z|η) log p(z|η)dr (13)

For distribution with n parameters, the Fisher distance between two points θ′ and θ∗ in the
half-plane H reflects the dissimilarity between the associated PDF’s. It is defined as the minimal
integral [29]

dF(θ′,θ∗) := min
θ(t)

∫ θ∗
θ′

(

√
( dθ

dt )
T

G(θ)( dθ
dt ))dt (14)
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where θ(t) represents a curve that is parameterized by t, while G(θ) is the Fisher information matrix
which is defined as

G(θ) = [gab(θ)] (15)

gab(θ) = E
[
∂ log p(z|θ)

∂θa

∂ log p(z|θ)
∂θb

]
(16)

where a ∈ {1, 2, . . . , n} and b ∈ {1, 2, . . . , n} are the indexes of the elements in G.
The curve that satisfies the minimization condition in (14) is called a geodesic line.

Theorem 1 [30]. For the distributions in the exponential family, the Fisher distance is the Kullback–Leibler
divergence given by

KLD(p(z|θ′)||p(z|η∗)) = ϕ(θ′) +ψ(η∗) − θ′·η∗ (17)

With (11) to (13), we obtain a dual description for p(z), as follows:

η = ∇ϕ(θ) (18)

ψ(η) =
∫

p(z|η) log p(z|η)dr (19)

Let θ′ = θ and η∗ = η in (14). With (5), we have

KLD(p(r||xi)||p(r)) = KLD(p(z|θ)||p(z)) = ϕ(θ) +ψ(η) − θ·η (20)

Then, we substitute (20) into (3) to obtain the second item in (2). By the definition of the Fisher
distance (14) and Theorem 1, we know that minimizing the second item in (2) is equivalent to
minimizing the Fisher distance between the estimated distribution p(r|xi) and the original distribution
p(r) along the shortest path (geodesic line). To describe the geodesic line using local coordinates, we
must solve the geodesic equations given by the Euler–Lagrange equations, as follows:

d2θk
dt2 +

n∑
a=1

n∑
b=1

( 1
2

n∑
a=1

gkl(
∂gal
∂θb

+
∂gbl
∂θa
−
∂gab
∂θl

)) dθa
dt

dθb
dt = 0,∀a, b, k, l ∈ {1, . . . , n} (21)

where θ = (θ1,θ2, . . . ,θn)
′. By solving (21), one obtains a unique solution for the mutual information

by minimizing the Fisher distance along the shortest path (geodesic line). In practice, we replace this
step by the neural gradient descent [31], which makes the parameters in the second item in (2) update
along the geodesic line. Here, the direction of the updating of the parameters is

∇̂θ = G−1(θ)∇I(x; r) (22)

where ∇ is the common gradient.

3. Results

The proposed algorithm is used to improve a shallow neural network (NN) and a DBN [31].
The architectures of the networks are determined by the method in [32]. We use three popular
datasets, namely, Iris, Poker Hand, and Forest Fires, from the UCI Machine Learning Repository
(http://archive.ics.uci.edu/ml/datasets.html). With these datasets, we design several experiments to
solve typical problems in machine learning, such as problems that involve classification and regression.

3.1. Classification

In machine learning, classification is the problem of classifying instances into one of two or more
classes. For this issue, accuracy is defined as the accuracy rate of the classification.

We designed neural networks as classifiers to solve the classification problems from two datasets,
Iris and Poker Hand. For each of these datasets, 50% of the training samples are used for learning.

http://archive.ics.uci.edu/ml/datasets. html
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In these samples, the percent of labeled training samples α samples ranges from 10% to 50%. In the
remainder of the dataset, 10% of the samples are randomly selected as test data. The constant λ is set
to −0.1.

The test accuracy on the Iris dataset for NN, DBN, AMSA, MI-NN, and MI-DBN (“MI-“ denotes
the proposed methods) can be seen in Figure 2. The network structures used in this experiment are
4-3-3 and 4-6-7-3, which correspond to the shallow networks (i.e., NN and MI-NN) and the deep
networks (i.e., DBN, AMSA, and MI-DBN), respectively. The activation and output function is sigmoid.
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The test accuracies on the Poker Hand dataset for NN, DBN, AMSA, MI-NN, and MI-DBN (“MI-“
denotes the proposed methods) can be seen in Figure 3. The network structures used in this experiment
are 85-47-10 and 85-67-48-10, which correspond to the shallow networks (i.e., NN and MI-NN) and the
other networks (i.e., DBN, AMSA, and MI-DBN), respectively. The activation and output function
is sigmoid.Algorithms 2019, 12, x FOR PEER REVIEW 7 of 11 
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It can be seen that the proposed algorithm outperforms the previous methods on both datasets
successfully, although a sole exception is that the MI-NN is slightly worse than AMSA with Iris
when α = 10%. This finding means that the proposed algorithm can be applied to the problem of
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classification. In addition, the proposed algorithm improves the traditional algorithms constantly, when
the percent of labeled training samples changes. To study the correlation between the performance
and α, we illustrate the difference between the two methods with varied α in Figure 4. According to
Figure 4, there is a positive correlation between the improvement brought by the proposed method
and the value of α. The reason is that more label data leads the proposed method to absorb more useful
information for classification. In contrast, this aspect does not hold true for the other algorithms.
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3.2. Regression

In machine learning, regression is a set of statistical processes for estimating the relationships
among the variables. In this approach, the accuracy is the error rate of regression substituted by 1.

We design neural networks as regression functions to solve the regression problems in the Forest
Fires dataset. For the dataset, 50% of the training samples are used for learning. In these samples, the
percent of the labeled training samples α ranges from 10% to 50%. In the remainder of the dataset, 10%
of the samples are randomly selected as test data. The constant λ is set to –0.1.

The test accuracy on the Forest Fires dataset for NN, DBN, AMSA, MI-NN, and MI-DBN
(“MI-“denotes the proposed methods) can be seen in Figure 5. The network structures used in this
experiment are 13-15-1 and 13-15-17-1, which correspond to shallow networks (i.e., NN and MI-NN)
and deep networks (i.e., DBN, AMSA, and MI-DBN), respectively. The activation function is sigmoid,
and the output function is linear.
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We can see that the proposed algorithm outperforms the previous methods on the dataset
successfully. This finding means that the proposed algorithm can be applied to the problem of
regression. In addition, the proposed algorithm improves the traditional algorithms constantly, when
the percent of labeled training samples changes. To study the correlation between the performance
and α, we illustrate the difference between the two methods with varied α in Figure 6. According to
Figure 6, there is a positive correlation between the improvement brought by the proposed method and
the value of α. The reason is that more labeled data leads the proposed method to absorb more useful
information for its classification. In contrast, this aspect does not hold true for the other algorithms.
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Figure 6. Improvements over previous methods.

4. Conclusions

The proposed algorithm for training neural networks is based on information theory and
information geometry. The novel objective function is minimized with the theory of information
geometry. The experiments show that the proposed method has better accuracy compared with the
existing algorithms.
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