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Abstract: This paper deals with an approximation of a first derivative of a signal using a dynamic
system of the first order. After formulating the problem, a proposition and a theorem are proven for a
possible approximation structure, which consists of a dynamic system. In particular, a proposition
based on a Lyapunov approach is proven to show the convergence of the approximation. The proven
theorem is a constructive one and shows directly the suboptimality condition in the presence of noise.
Based on these two results, an adaptive algorithm is conceived to calculate the derivative of a signal
with convergence in infinite time. Results are compared with an approximation of the derivative
using an adaptive Kalman filter (KF).
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1. Introduction

The derivative estimation of a measured signal has considerable importance in signal processing,
numerical analysis, control engineering, and failure diagnostics, among others [1]. Derivatives and
structures using derivatives of signals are often used in industrial applications, for example PD
controllers. These kinds of controllers are often used practically in different fields of application.

In applications, signals are corrupted by measurement and process noise, therefore a filtering
procedure needs to be implemented. A number of different approaches have been proposed based
on least-squares polynomial fitting or interpolation for off-line applications [1,2]. Another common
approach is based on high-gain observers [3–5]. These observers adjust the model by weighting the
observer output deviations from the output of the system to be controlled.

In [6], a sliding mode control (SMC) using an extended Kalman filter (EKF) as an observer for
stimulus-responsive polymer fibers as soft actuator was proposed. Because of the slow velocity of the
fiber, the EKF produces poor estimation results. Therefore, a derivative approximation structure is
proposed to estimate the velocity through the measurement of the position. This approach realized
the approximation of the derivative using also a high gain observer. The method presented in the
different applications cited above is a method that approximates the derivative in an infinite horizon
of time. In this sense, the proposed differentiator is an asymptotic estimator of the derivative. Several
researchers studied this problem by applying the SMC approach.

This paper emphasizes some mathematical aspects of an algorithm that was used in the past
for practical applications such as, for instance, in [7,8]. In particular, in [7] this algorithm is used in
designing a velocity observer. In [8], a similar algorithm is used to estimate parameter identification in
an application in which a synchronous motor is proposed.
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In recent years, real-time robust exact differentiation has become the main problem of
output-feedback high order of sliding mode (HOSM) control design. Even the most modern
differentiators [9] do not provide for exact differentiation with finite-time convergence and without
considering noise.

The derivatives may be calculated by successive implementation of a robust exact first-order
differentiator [10] with finite-time convergence but without considering noise, as in [11,12]. In [13],
an arbitrary-order finite-time-convergent exact robust differentiator is constructed based on the
HOSM technique.

In [10], the proposed differentiator provides the proportionality of the maximal differentiation
error to the square root of the maximal deviation of the measured input signal from the base signal.
Such an order of the differentiation error is shown to be the best possible when the only information
known of the base signal is an upper bound for Lipschitz’s constant of the derivative. According
to Theorem 2, the proposed algorithm to produce the optimal approximation needs to work the
knowledge of the maximal Lipschitz’s constant. More recently in [14], sliding mode (SM)-based
differentiation is shown to be exact for a large class of functions and robust with respect to noise. In this
case, Lipschitz’s constant must be known to apply the algorithm. Those methods, using the maximal
Lipschitz’s constant, perform an approximation in a finite horizon of time. In practical applications,
the presence of noise and faults does not allow a Lipschitz’s constant to be set. In fact, the noise is not
distinguishable from the input signal. In this sense, it appears impossible to apply these algorithms in
real applications.

This paper proposes an approximated derivative structure to be taken into account for such
types of applications, so that spikes, noise, and any other kind of undesired signals that occur
from the derivatives can be reduced. Thus, the problem of the approximation of the derivative
is formulated in the presence of white Gaussian noise and in a infinity horizon of time as in KF.
Therefore, the comparison is shown just with the performances of the approximation of the derivative
performed by an adaptive KF. After the problem formulation, this paper proves a proposition which
allows us to build this possible approximation of the derivative using a dynamic system.

The paper is structured as follows. In Section 2, the problem formulation and a possible solution
are proposed. How to approximate a derivative controller using an adaptive KF is presented in
Section 3. The results of the simulations are discussed in Section 4, and the conclusion closes the paper.

2. An Approximated Derivative Structure

Using the derivative structures, imprecision occurs. The imprecision is due to spikes generating
power dissipation. The idea is to find an approximated structure of general derivatives as they occur
in mathematical calculations, and which are often used also in technical problems as proportional
derivative controllers. The following formulation states the problem in a mathematical way.

Problem 1. Assume the following differential is given:

r(t) =
dy(t)

dt
. (1)

Function y(t) ∈ R is the function to be differentiated, where t ∈ R represents the time variable. The aim of
the proposed approach is to look for an approximating expression r̂(t) = r̂

(
y(t), kapp

)
, where kapp is a parameter,

such that:
lim

kapp→+∞
er(t) = r(t)− r̂(t) = 0, (2)

where r(t) represents the real derivative function.



Algorithms 2019, 12, 101 3 of 17

Proposition 1. Considering (1), then there exists a functionM > 0 such that if the following dynamic system
is considered:

dr̂(t)
dt

= −M
(

r̂(t)− dy(t)
dt

)
, (3)

where y(t) represents a twice differentiable real function and r̂(t) the approximated derivative function. If

dr̂(t)
dt

>
dr(t)

dt
∀t, (4)

and
M > 0 ∀t, (5)

then
lim

t→+∞
er(t) = 0. (6)

Proof. Considering the following approximate dynamic system:

dr̂(t)
dt

= −M
(

r̂(t)− dy(t)
dt

)
, (7)

whereM can be a function of y(t) or a parameter withM ∈ R, if

er(t) = r(t)− r̂(t), (8)

then
der(t)

dt
=

dr(t)
dt
− dr̂(t)

dt
. (9)

After inserting (7) into (9), it follows that

der(t)
dt

=
dr(t)

dt
+M

(
r̂(t)− dy(t)

dt

)
, (10)

if (1) is taken into consideration, then (10) becomes as follows:

der(t)
dt

+Mer(t) =
dr(t)

dt
. (11)

If the following Lyapunov function is considered:

V
(
er(t)

)
=

1
2

e2
r (t), (12)

and considering that:
dV
(
er(t)

)
dt

= er(t)
der(t)

dt
, (13)

according to (11), it is possible to write the following expression:

er(t) =
dr(t)

dt −
der(t)

dt
M , (14)

and thus from (13), it follows that:

dV
(
er(t)

)
dt

=

der(t)
dt

dr(t)
dt −

(
der(t)

dt

)2

M . (15)
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Considering (9) and multiplying by der(t)
dt , then

der(t)
dt

dr(t)
dt

=

(
dr(t)

dt

)2

− dr̂(t)
dt

dr(t)
dt

, (16)

and
der(t)

dt
dr(t)

dt
≤ −dr̂(t)

dt
dr(t)

dt
, (17)

if
dr̂(t)

dt
>

dr(t)
dt

∀t, (18)

as stated by the hypothesis in (4). Then

dr̂(t)
dt

dr(t)
dt

>

(
dr(t)

dt

)2

∀t, (19)

and thus
dr̂(t)

dt
dr(t)

dt
> 0 ∀t. (20)

Considering that
M > 0 ∀t, (21)

as stated by the hypothesis in (5), then:

dV
(
er(t)

)
dt

< 0 ∀t. (22)

Thus, (11) is uniformly asymptotically stable and (6) is proven.

Proposition 2. The dynamic system

dη(t)
dt

= −kappη(t)− k2
appy(t)

r̂(t) = η(t) + kappy(t), (23)

where function η(t) ∈ R, solves the problem defined in Problem 1.

A supplementary variable is defined as:

η(t) = r̂(t)−N (y(t)), (24)

where N (y(t)) is a function to be designed with N (y(t)) ∈ R. Let

Mdy(t)
dt

=
dN(y(t))

dt
=

dN(y(t))
dy(t)

dy(t)
dt

. (25)

If N (y(t)) = kappy(t), thenM = kapp. Then the asymptotical stability is always guaranteed for
kapp > 0 and the rate of convergence can also be specified by kapp > 0. From (24), the second part
of (23) follows:

r̂(t) = η(t) + kappy(t). (26)

Differentiating (26), it follows that

dη(t)
dt

=
dr̂(t)

dt
− kapp

dy(t)
dt

. (27)
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Considering (27) with dr̂(t)
dt = −kapp

(
r̂(t)− dy(t)

dt

)
from (7) withM = kapp combined with (26),

the first part of (23) follows:
dη(t)

dt
= −kappη(t)− k2

appy(t). (28)

If (23) is transformed by forward Euler, the following expression is obtained:

η(k) = (1− tskapp)η(k− 1)− tsk2
appy(k)

r̂(k) = η(k) + kappy(k), (29)

and is a discrete differential equation, where ts indicates the sampling time with t ∈ R, and r̂(k), η(k),
and y(k) are discrete variables with k ∈ N.

Figure 1 presents a graphical representation of the proposed algorithm structure with the discrete
input signal y(k), the recursive calculator for the parameter a2 of the linear least squares method (LSM)
and the differential estimator with the discrete approximated derivative function r̂(k).

y(t)
=kapp

1 − a2

ts

y(k)
LSM

(k)r ̂ 

Recursive Calculator

for Parameter

D
iscretization

Differential Estimator

η(k) = (1 − )η(k − 1) − y(k)tskapp tsk
2
app

kapp

(k) = η(k) + y(k)r ̂  kappa2

Figure 1. Graphical representation of the algorithm structure and its components. LSM: linear least
squares method

Transforming the equations represented by (29) with Z-transform, the following forms
are obtained:

H(z) = −tsk2
appz−1Y(z) +

(
1− tskapp

)
z−1H(z),

R̂(z) = H(z) + kappY(z), (30)

which yields to

R̂(z) =
kapp

(
1− z−1)Y(z)

1−
(
1− tskapp

)
z−1 . (31)

As described earlier, the objective of a minimum variance approach is to minimize the variation
of an output of a system with respect to a desired output signal in the presence of noise. The following
theorem gives a result to determine a suboptimal kapp to achieve a defined suboptimality.

Theorem 1. Considering
er(t) = r(t)− r̂(t), (32)

and according to the forward Euler discretization by Z-transform of (1), it follows that

R(z) =
z−1 − 1

ts
Y(z). (33)

Then it is possible to find a unique value of parameter kapp = 1−a2
ts

of (31), which guarantees a suboptimal
minimum of er(t) at each k, where a2 is a parameter to be calculated recursively using the linear least squares
method (LSM).

Proof. Assuming the following model:

er(k) = a1er(k− 1) + a2er(k− 2) + b1r(k− 1) + b2r(k− 2) + n(k) + c1n(k− 1) + c2n(k− 2), (34)
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where coefficients a1, a2, b1, b2, and c1, c2 belong to R and need to be estimated, n(k) denotes the white
noise. At the next sample, (34) becomes:

er(k + 1) = a1er(k) + a2er(k− 1) + b1r(k) + b2r(k− 1) + n(k + 1) + c1n(k) + c2n(k− 1). (35)

The prediction at time k is:

êr(k + 1/k) = a1er(k) + a2er(k− 1) + b1r(k) + b2r(k− 1) + c1n(k) + c2n(k− 1). (36)

Considering that

J = E{e2
r (k + 1/k)} = E{[êr(k + 1/k) + n(k + 1)]2}

and assuming that the noise is not correlated to signal er(k), it follows that

E{[êr(k + 1/k) + n(k + 1)]2} = E{[êr(k + 1/k)]2}+ E{[n(k + 1)]2} = E{[êr(k + 1/k)]2}+ σ2
n , (37)

where σ2
n is defined as the variance of the white noise. The goal is to find r̂(k) such that:

êr(k + 1/k) = 0. (38)

It is possible to write (34) as:

n(k) = er(k)− a1er(k− 1)− a2er(k− 2)− b1r(k− 1)− b2r(k− 2)− c1n(k− 1)− c2n(k− 2). (39)

Considering the effect of the noise as follows:

c1n(k− 1) + c2n(k− 2) ≈ c1n(k− 1), (40)

and transforming (39) using Z-transform, then

N(z) = Er(z)− a1z−1Er(z)− a2z−2Er(z)− b1z−1R(z)− b2z−2R(z)− c1z−1N(z), (41)

and

N(z) =
(1− a1z−1 − a2z−2)Er(z)

1 + c1z−1
−(b1z−1 + b2z−2)R(z)

1 + c1z−1 , (42)

where z ∈ C and represents the well-known complex variable. The approximation in (40) is equivalent
to considering the following assumption:

‖c2‖ << ‖c1‖. (43)

In other words, the assumption stated in (43) means that the noise model of (39) is assumed to
be a model of the first order. Considering the Z-transform of (36) with c1n(k − 1) + c2n(k − 2) ≈
c1n(k− 1), then

zÊr(z) = a1Er(z) + a2z−1Er(z) + b1R(z) + b2z−1R(z) + c1N(z). (44)

Considering that

N(z) =
(1− a1z−1 − a2z−2)Er(z)

1 + c1z−1
−(b1z−1 + b2z−2)R(z)

1 + c1z−1 (45)
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and inserting (45) into (44), it follows that

zÊr(z) = a1Er(z) + a2z−1Er(z) + b1R(z) + b2z−1R(z)

+ c1

( (1− a1z−1 − a2z−2)Er(z)
1 + c1z−1

−(b1z−1 + b2z−2)R(z)
1 + c1z−1

)
. (46)

According to (38), then Êr(z) = 0, and through some calculations the following expression
is obtained:

c1Er(z) = a1Er(z) + c1a1z−1Er(z) + a2z−1Er(z) + c1a2z−2Er(z) + b1R(z) + c1b1z−1R(z)

+ b2z−1R(z) + c1b2z−2R(z) + c1(1− a1z−1 − a2z−2)Er(z)− c1(b1z−1 + b2z−2)R(z). (47)

From (47), it follows that

R(z) = − (a1 + c1 + a2z−1)Er(z)
b1 + b2

. (48)

Considering that
Er(z) = R(z)− R̂(z), (49)

then relation (48) becomes

R(z) = − (a1 + c1 + a2z−1)(R(z)− R̂(z))
b1 + b2

, (50)

and thus the derivative approximation according to the forward method is

R(z) =
z−1 − 1

ts
Y(z). (51)

It follows that

− 1− z−1

ts
Y(z) = −

(
a1 + c1 + a2z−1)((1− z−1)t−1

s Y(z)− R̂(z)
)

b1 + b2
, (52)

thus
− (1− z−1)

(
(b1 + b2)t−1

s + (a1 + c1 + a2z−1)t−1
s
)
Y(z) =

(
a1 + c1 + a2z−1)R̂(z), (53)

and finally,

R̂(z) = −
(
1− z−1)

(
(b1 + b2)t−1

s + (a1 + c1 + a2z−1)t−1
s

)
Y(z)

a1 + c1 + a2z−1 , (54)

which can be written as

R̂(z) =
(
1− z−1)

(
(b1 + b2)t−1

s + (a1 + c1 + a2z−1)t−1
s

)
Y(z)

−a1 − c1 − a2z−1 . (55)

Recalling (31),

R̂(z) =
kapp

(
1− z−1)Y(z)

1−
(
1− tskapp

)
z−1 , (56)

and comparing (54) with (56), the denominator constraints are

− c1 − a1 = 0 (57)

and
a2 =

(
1− tskapp

)
, (58)
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together with

kapp =

(
1− a2

ts

)
. (59)

Parameter a2 can be calculated by LSM.
The numerator constraint is the following:

(b1 + b2)t−1
s + (a1 + c1 + a2z−1)t−1

s = kapp.

Considering the conditions of the denominator, we obtain

(b1 + b2)t−1
s + (−1 +

(
1− tskapp

)
z−1)t−1

s = kapp.

This yields
b1 + b2 = kappts + 1−

(
1− tskapp

)
z−1.

kapp being, in our context, a function of time kapp = kapp(t), it is possible to write in Z-domain
as follows:

b1(z) + b2(z) = kapp(z)ts + 1−
(
1− tskapp(z)

)
z−1,

and thus consider the back Z-transform

b1(k) + b2(k) = kapp(k)ts + 1−
(
1− tskapp(k− 1)

)
.

If ts is small enough, kapp(k) ≈ kapp(k− 1). This implies

b1(k) + b2(k) = 0. (60)

Remark 1. Conditions (57), (59), and (60) guarantee that signal r̂(t) equals y(t). Nevertheless, obtaining the
rejection of the noise coefficients b1, b2, and c1 should be adaptively calculated using LSM. In our tests, in order
to reduce the calculation load, the following conditions are considered: c1 = b1 = b2 = 0.

3. Using an Adaptive Kalman Filter to Approximate a Derivative Controller

Assuming that the polynomial that approximates the derivative of the signal is of the first order
as follows:

ŷ(t) = p0 + p1t, (61)

in which ŷ(t) represents the polynomial approximation of the signal y(t). The following adaptive
Kalman filter (KF) can be implemented in which at each sampling time, constant parameters p0 and p1

should be calculated. The following state representation is obtained:[
˙̂y(t)
˙̂r(t)

]
=

[
0 1
0 0

] [
ŷ(t)
r̂(t)

]
. (62)

It should be noted that ˙̂y(t) = r̂(t) represents the approximation of the derivative of the signal
as proposed in Proposition 1. In this sense, according to the following general notation, x(t) ∈ R2,
u(t) ∈ R, and y(t) ∈ R, then: {

ẋ(t) = Ax(t)
y(t) = Hx(t),

(63)
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where

ẋ(t) =

[
˙̂y(t)
˙̂r(t)

]
and A =

[
0 1
0 0

]
, (64)

and H = [1 0]. Considering the discretization of system (63), the following discrete system is obtained:{
ẋ(k/k− 1) = Adx(k− 1/k− 1) + Qw

y(k/k) = Hx(k/k) + ζ,
(65)

where Qw is the process noise covariance matrix, and ζ is the measurement noise covariance.
The discrete forms of matrix A of (64) are represented by Ad, respectively. If the forward Euler
method with the sampling time ts is applied, the following matrices are obtained:

Ad =

[
1 ts

0 1

]
. (66)

The a priori predicted state is

x(k/k− 1) = Adx(k− 1/k− 1), (67)

and the a priori predicted covariance matrix is

P(k/k− 1) = AdP(k− 1/k− 1)AT
d + Qw. (68)

The following equations state the correction (a posteriori prediction) of the adaptive KF:

K(k) = P(k/k− 1)HT(HP(k/k− 1)HT + ζ
)−1,

x(k/k) = x(k/k− 1) + K(k)
(
y(k)−Hx(k/k− 1)

)
,

P(k/k) = P(k/k− 1)−K(k)HP(k/k− 1), (69)

where K(k) is the Kalman gain.

Remark 2. It should be noted that matrix Qw (process covariance noise) consists of the following structure:

Qw =

[
0 0
0 R2,2

]
, (70)

in which R2,2 states a squared variance. The reason for this structure is that the first equation corresponding to
matrix A of (64) is a definition of the velocity, and in this sense, no uncertainty should be set. The second equation
is an equation which considers a comfortable condition, but of course it is not true. In this case, an uncertainty
variable must be set. According to our experience, a very wide system needs a very wide uncertainty variable to
be set.

Remark 3. Parameter R2,2 is adapted by directly using the definition of the covariance as follows:

R2,2 = (ea(N)−mean(ea(1 : N)))2,

in which a mean value with the last N values of error ea(k) are calculated.

4. Results and Discussion

The following section presents the results using a derivative realized through the adaptive
KF and the proposed algorithm. The results are compared with the exact mathematical derivative.
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In order to reduce the calculation load in the case study, the following conditions were considered:
c1 = b1 = b2 = 0. This approach allows us to also compare the results with a polynomial adaptive
KF method.

Figure 2 shows an ideal measured position y(t) signal. Therefore neither noise nor faults are
present in the measured data. Figure 3 shows the approximated derivative of the measured sine
function, and the result of this is shown in detail in Figure 4. With this graphical representation of the
result, it is visible that the adaptive KF, compared with the proposed algorithm structure, shows a
better performance.

Figure 2. Graphical representation of the position y(t).

Figure 3. Graphical representation of the resulting velocity and its estimations from Figure 2.
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Figure 4. Detailed representation of Figure 3 and its estimations.

Figure 5 shows the position signal used, ynoise(t), in which noise in superposition is added,
and the graphical representation of the resulting velocity is shown in Figure 6. The signal used,
ynoise(t), is represented in Figure 7 together with a fault in its measurement. Figure 8 shows the
approximation derivative of the measured signal, and details of this result are shown in Figure 9.
Also in the case of the presence of faults and using a more appropriate adaption of the adaptive KF,
the two methods offer similar results.

Figure 5. Graphical representation of the position y(t) with noise.
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Figure 6. Detailed representation of Figure 5 and its estimations.

Figure 7. Graphical representation of the position y(t) with noise and faults.

Table 1 presents the results of different input signals and the estimation errors of both adaptive
estimators based on the Euclidean norm.

The adaptive derivative estimator shows worse results with respect to the results obtained by the
derivative obtained through the adaptive KF in the case of missing noise and faults.
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Figure 8. Graphical representation of the resulting velocity from Figure 7 and its estimations with noise
and faults.

Figure 9. Detailed representation of Figure 7 with its estimations.

In case of the presence of noise and using a more appropriate adaption of the adaptive KF, the two
methods offer similar results. The proposed algorithm structure shows better results in the presence
of faults.

Figure 10 shows that a part of a chirp input signal starts from a frequency of 200 Hz and in 0.3 s
reaches to 2 kHz. Because of the presence of the derivative, the signal to be approximated changes its
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amplitude linearly as a function of the frequency over time. The low-frequency part of the chirp input
signal is presented in Figure 11, and the high-frequency part is shown in Figure 12. It also shows the
resulting tracking of the polynomial adaptive KF and the proposed algorithm structure.

Figure 10. Graphical representation of chirp input signal with a starting frequency of 200 Hz.

Figure 11. Detailed representation of the low-frequency part of the chirp input signal and its estimations
from Figure 10.
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Figure 12. Detailed representation of the high-frequency part of the chirp input signal and its
estimations from Figure 10.

Table 1. Overview of the estimation errors of different input signals y(t) using the Euclidean norm.

Input Signal Adaptive Kalman Filter Adaptive Derivative Estimator

sin2(t) 4.04 ×10−3 13.79
sin2(t) with noise 12.06 13.95

sin2(t) with noise & sin(t) 32.34 32.12
sin2(t) with noise & sin(t) & fault 159.0 34.73

sin3(t) 1.4 ×10−3 4.29
sin3(t) with noise 12.05 4.41

sin3(t) with noise & sin(t) 32.34 22.98
sin3(t) with noise & sin(t) & fault 159.0 27.10

A fault is defined as an abrupt change in the amplitude over time, and in this sense is characterized
by a high amplitude and high frequencies. In this context, it is clear that the proposed algorithm can
better localize the faults because it is tuned through the choice of ts on the desired signal.

The proposed algorithm structure does not need to be tuned or, in other words, is tuned using the
sample time, which in general is fixed in terms of upper bound by the Shannon Theorem. Now kapp

represents the time constant of our approximating derivative, which is calculated adaptively through
the least squares method. The simulation shows that once the KF is tuned, this shows better results at
high frequencies with respect to the algorithm structure, but in the range of the frequency in which ts

is consistently chosen, the proposed algorithm shows similar results as those offered by KF.

5. Conclusions

This paper deals with an approximation of a first derivative of a input signal using a dynamic
system of the first order to avoid spikes and noise. It presents an adaptive derivative estimator
for fault-detection using a suboptimal dynamic system in detail. After formulating the problem,
a proposition and a theorem were proven for a possible approximation structure, which consists
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of a dynamic system. In particular, a proposition based on a Lyapunov approach was proven to
show the convergence of the approximation. The proven theorem is constructive and directly shows
the suboptimality condition in the presence of noise. A comparison of simulation results with the
derivative realized using an adaptive KF and with the exact mathematical derivative were presented.
It was shown that the proposed adaptive suboptimal auto-tuning algorithm structure does not depend
on the setting of the parameters. Based on these results, an adaptive algorithm was conceived to
calculate the derivative of an input signal with convergence in infinite time. The proposed algorithm
showed worse results with respect to the results obtained by the derivative obtained through the
adaptive KF in the case without noise and faults. In case of the presence of noise and using a more
appropriate version of the adaptive KF, the two methods offer similar results. In the presence of faults,
the proposed algorithm structure showed better results.
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Nomenclature

a2 Adaptive least square parameter
x(t) State vector of Kalman filter
er(t) Derivative error
k Discrete variable
K(k) Kalman gain
kapp Parameter
n(t) Noise signal
N(z) Z-transformed noise signal
Qw Process noise covariance matrix
r(t) Derivative function
r̂(t) Approximated derivative function
R(z) Z-transformed derivative function
r̂(t) Approximated derivative function
Y(z) Z-transformed signal to be derivated with or without noise
y(t) Signal to be derivated
ŷ(t) Polynomial expression of the signal
ynoise(t) Position signal with noise
ts Sampling time
ζ Measurement noise covariance matrix
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