
algorithms

Article

Direct Superbubble Detection

Fabian Gärtner 1,2,* and Peter F. Stadler 1,2,3,4,5,6,7

1 Competence Center for Scalable Data Services and Solutions Dresden/Leipzig, Universität Leipzig,
Augustusplatz 12, D-04107 Leipzig, Germany; studla@bioinf.uni-leipzig.de

2 Bioinformatics Group, Department of Computer Science, Universität Leipzig, Härtelstraße 16–18,
D-04107 Leipzig, Germany

3 Interdisciplinary Center for Bioinformatics, German Centre for Integrative Biodiversity Research (iDiv)
Halle-Jena-Leipzig, and Leipzig Research Center for Civilization Diseases, University Leipzig,
D-04107 Leipzig, Germany

4 Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, D-04103 Leipzig, Germany
5 Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Wien, Austria
6 Facultad de Ciencias, Universidad National de Colombia, Sede Bogotá, Colombia
7 Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM 87501, USA
* Correspondence: fabian@bioinf.uni-leipzig.de

Received: 7 March 2019; Accepted: 12 April 2019; Published: 17 April 2019
����������
�������

Abstract: Superbubbles are a class of induced subgraphs in digraphs that play an essential role in
assembly algorithms for high-throughput sequencing data. They are connected with the remainder of the
host digraph by a single entrance and a single exit vertex. Linear-time algorithms for the enumeration
superbubbles recently have become available. Current approaches require the decomposition of the input
digraph into strongly-connected components, which are then analyzed separately. In principle, a single
depth-first search could be used, provided one can guarantee that the root of the depth-first search
(DFS)-tree is not itself located in the interior or the exit point of a superbubble. Here, we describe
a linear-time algorithm to determine suitable roots for a DFS-forest that is guaranteed to identify
the superbubbles in a digraph correctly. In addition to the advantages of a more straightforward
implementation, we observe a nearly three-fold gain in performance on real-world datasets. We present
a reference implementation of the new algorithm that accepts many commonly-used input formats for
digraphs. It is available as open source from github.

Keywords: superbubble; depth-first search; cycles; linear time algorithm

1. Introduction

Bubble structures in a digraph have become the focus of an increasing body of research because of
their role in genome assembly and related topics; see, e.g., [1] and the references therein. Onodera et al. [2]
proposed superbubbles as an important class of subgraphs in the de Bruijn and overlap digraphs arising
in the context of the assembly of high-throughput sequencing data [3,4]. The algorithm identifying all
superbubbles in a digraph G with vertex set V and edge set |E| had a running time O(|V|(|V|+ |E|)) [2].
An improvement to O(|E| log |E|) was described in [5]. A linear time algorithm for an acyclic subgraph
together with the construction of auxiliary digraphs along the lines of [5] provided a solution in
O(|E|+ |V|), i.e., linear, overall time [6]. An alternative linear-time algorithm [7] achieves a substantial
speedup and does not require sophisticated data structures. All these approaches rely on the decomposition

Algorithms 2019, 12, 81; doi:10.3390/a12040081 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0003-1128-3408
https://orcid.org/0000-0002-5016-5191
http://dx.doi.org/10.3390/a12040081
http://www.mdpi.com/journal/algorithms
https://www.mdpi.com/1999-4893/12/4/81?type=check_update&version=2

Algorithms 2019, 12, 81 2 of 24

of G into its strongly-connected components and require the construction of intermediate auxiliary
digraphs. Here, we show that the subdivision of the problem, as well as the construction of auxiliary
digraphs, can be avoided. This additional simplification yields a further performance gain.

2. Theory

2.1. Oriented Trees and DFS-trees

A directed graph (digraph) G consists of a vertex set V = V(G) and a set E = E(G) of directed edges
such that (u, v) ∈ E(G) implies u, v ∈ V(G). H is a sub-digraph of G if V(H) ⊆ V(G) and E(H) ⊆ E(G).
G[W] is the subgraph induced by W if V(G[W]) = W ⊆ V(G) and (u, v) ∈ E(G[W]) if and only if
(u, v) ∈ E(G) and u, v ∈W.

An oriented tree T is a connected digraph in which there is a single vertex, called the root with indegree
zero, and every other vertex has in-degree one. The vertices with out-degree zero are the leaves. Given an
edge (u, v) ∈ E(T), we say u is the parent of v, in symbols u = par(v), while v is a child of u. By definition,
there is a unique directed path pT(v) from r to v ∈ V(T). The ancestor partial order � on V(T) is defined
by u ≺ v if and only if v is on the path pT(u). The least common ancestor (lca) of two vertices x, y ∈ V(T) is
the ≺-minimal vertex in pT(x) ∩ pT(v). The subtree T(v) rooted in v is the subgraph of T induced by the
vertex set {v′ ∈ V|v′ � v}, i.e., those that are reachable along the directed path that contain v.

We assume that G is endowed with an arbitrary order of out-neighbors for each v ∈ V(T). We say that
T(u) is a prior subtree of T(v) when u and v are both children of a common parent w = par(u) = par(v)
and u comes before v in the local ordering of the out-neighborhood of v. Now, consider two vertices u and
v such that u and v are incomparable w.r.t. to the ancestor order and set w = lca(u, v). Note that u, v, and
w are pairwise distinct. Let x and y be the children of w such that u ∈ T(x) and y ∈ T(y). Then, we say
that u is prior to v, in symbols u / v, if T(x) is a prior subtree of T(y), i.e., x comes before y in the local
ordering of the out-neighborhood of w. The relation / is a partial order known as the sibling partial order
of T. The ancestor and the sibling orders are orthogonal, i.e., for any pair of vertices, exactly one of the
relations x = y, x ≺ y, y ≺ x, x / y, or y / x is true.

It is well known that the two fundamental traversal orders of trees are obtained as the two natural
compositions of the ancestor and the sibling partial orders. Denote by ρ and π the order in which vertices
are reported in preorder and postorder traversal, respectively. We have:

ρ(x) < ρ(y) iff x / y or y ≺ x

π(x) < π(y) iff x / y or x ≺ y
(1)

It follows immediately that preorder and postorder together determine the ancestor and sibling order:

x / y iff ρ(x) < ρ(y) and π(x) < π(y)

x ≺ y iff ρ(x) > ρ(y) and π(x) < π(y)
(2)

Let G be a digraph. For every vertex r ∈ V(G), denote by V[r] ⊆ V(G) the subset of vertices that
are reachable from r, i.e., for which there is a directed path from r to x ∈ V[r]. These paths can be chosen
such that every x ∈ V[r] is reachable from r along a unique path, and hence, there is an oriented tree T
with V(T) = V[r] that is a subgraph of G. An oriented tree T with root r is a search tree on G if there is no
directed edge (x, y) ∈ E(G) with x ∈ V(T) and y /∈ V(T). An ordered tree T is a search tree if and only
V(T) = V[r] because a vertex y ∈ V(G) \V(T) by definition cannot be reached from anywhere in V(T),
and thus also not from the root, while every y ∈ V(T) is by definition reachable from the root r.

Algorithms 2019, 12, 81 3 of 24

Depth-first search (DFS) traverses a digraph G in the following manner: (i) pick a root r ∈ V(G);
(ii) recursively, at v ∈ V(G), proceed to the / smallest, previously-unvisited out-neighbor of v; (iii) if v has
no more unvisited out-neighbors, return to is “parent”, i.e., the vertex par(v) from which v was initially
reached [8]. Clearly, DFS generates a rooted tree T with directed edges (par(v), v), which are known as
the DFS-tree.

Lemma 1. Let T be the ordered subtree generated by DFS on a digraph G, and let (u, v) ∈ E(G) with u ∈ V(T).
Then, v ∈ V(T) and either v ≺ u (including (u, v) ∈ E(T)), u ≺ v, or v / u. In particular, T is a search tree on G.

Proof. Consider a DFS reaching u. The search steps up to par(u) only after exhausting all out-neighbors
of u; hence, any edge (u, v) either has been visited before by the DFS process or, otherwise, it is included
as an edge as DFS steps down to the subtree of u rooted in v. If v has been accessed before, then v is either
an ancestor or descendant of u or u and v are incomparable w.r.t. ≺. In the latter case, there are distinct
children x and y of lca(u, v) such that u ∈ T(x) and v ∈ T(y). In a DFS, T(y) is traversed before T(x) if y
comes before x in the out-neighbor order of lca(u, v), and thus, v / u.

By the construction of DFS, x ∈ V(T) is reachable from the root r along a path in G; hence,
V(T) ⊆ V[r]. Suppose there is x ∈ V[r] \ V(T). Along a path p from r to x, let x′ be the first vertex
not reachable from V(T), i.e., there is an edge (u, x′) ∈ E(G) with u ∈ V(T) and x′ /∈ V(T), contradicting
the first assertion of the lemma.

The DFS process proceeds on V[r] in such a way that the preorder ρ of the DFS-tree T rooted at r
records the order in which the vertices are discovered, while the postorder π describes the order in which
vertices are completed, i.e., “left”, by ascending back to their parent. To see this, denote by ρ′ and π′ the
order in which vertices are discovered and completed by DFS started at r. By construction, DFS accesses
the out-neighbors of v in / order of the children of v and completes the traversal of a subtree rooted at
a child v′ of v before proceeding to the subtree of another child. Thus, if u and v are incomparable w.r.t. ≺
in T, then ρ′(u) < ρ′(v) and π′(u) < π′(v) if and only if u / v in the sibling order. It also follows directly
from the definition of DFS that we have ρ′(u) < ρ′(v) if v ≺ u and π′(u) < π′(v) if u ≺ v. Hence, ρ′ and
π′ indeed coincide with the preorder ρ and the postorder π for the traversal of DFS tree T. DFS on a graph
G is therefore completely described by the oriented DFS tree T, i.e., the sibling and ancestor order on V[r],
and coincides with DFS on T itself.

Hence, the condition that v has been accessed before u can expressed simply as ρ(v) < ρ(u). If u and v
are comparable on T, their relative order is determined by Equation (2). We therefore obtain the following
simple characterization of DFS-trees:

Corollary 1. A search tree T with postorder ρ on G is a DFS-tree if and only if an edge (u, v) ∈ E(G[V(T)])
is either (i) a tree edge, (ii) an edge connecting two non-adjacent comparable vertices in T, or (iii) ρ(v) < ρ(u)
whenever u and v are incomparable w.r.t. ≺ in T.

As a consequence, we have the following classification of edges w.r.t. a DFS-tree. (u, v) ∈ E(G[V(T)])
is a:

(i) tree edge iff (u, v) ∈ E(T);
(ii) forward edge iff (u, v) /∈ E(T) and v ≺ u, i.e., π(v) < π(u) and ρ(v) > ρ(u);
(iii) back edge iff u � v, i.e., π(v) ≥ π(u) and ρ(v) ≤ ρ(u);
(iv) cross edge iff u / v, i.e., π(v) < π(u) and ρ(v) < ρ(u).

Algorithms 2019, 12, 81 4 of 24

2.2. Weak Superbubbloids

Superbubbles [2] are a complex generalization of “bubbles”. Comprising two or more isolated paths
connecting a source s to a target t, bubbles are the simplest obstacle in sequence assembly problems [9].
We use here the terminology of [7]:

Definition 1. Let G be a digraph, and let (s, t) be an ordered pair of distinct vertices. Denote by Ust the set of
vertices reachable from s without passing through t, and write U+

ts for the set of vertices from which t is reachable
without passing through s. Then, the subgraph G[Ust] induced by Ust is a superbubbloid in G if the following
three conditions are satisfied:

(S1) t ∈ Ust, i.e., t is reachable from s (reachability condition).
(S2) Ust = U+

ts (matching condition).
(S3) G[Ust] is acyclic (acyclicity condition).

We call s, t, and Ust \ {s, t} the entrance, exit, and interior of the superbubbloid. We denote the induced subgraph
G[Ust] by 〈s, t〉 if it is a superbubbloid with entrance s and exit t.

The reachability and matching conditions can equivalently be expressed in the following form,
which usually is more convenient to use:

Lemma 2 ([7]). Let G be a digraph, U ⊂ V(G), and s, t ∈ U. Then, U equals the set Ust of Definition 1
and satisfies (S1) and (S2) if and only if the following conditions (S.i)–(S.iv) are satisfied. Moreover, U forms
a superbubbloid with entrance s and exit t if and only if (S.i)–(S.vi) are satisfied:

(S.i) Every u ∈ U is reachable from s.
(S.ii) t is reachable from every u ∈ U.

(S.iii) If u ∈ U and w /∈ U, then every w→ u path contains s.
(S.iv) If u ∈ U and w /∈ U, then every u→ w path contains t.
(S.v) If (u, v) is an edge in G[U], then every v→ u path in G contains both t and s.

(S.vi) G does not contain the edge (t, s).

If only (S.i)–(S.v) holds, the 〈s, t〉 is a weak superbubbloid.
A (weak) superbubble is a (weak) superbubbloid that is minimal in the following sense:

Definition 2. A (weak) superbubbloid 〈s, t〉 is a (weak) superbubble if there is no s′ ∈ Ust \ {s} such that 〈s′, t〉 is
a (weak) superbubbloid.

Weak superbubbles differ from superbubbles only by (S.vi), which can be checked in constant time
for each candidate (weak) superbubble. The effort to recognize superbubbles and weak superbubbles is
therefore essentially the same.

The following observation, which summarizes and slightly generalizes our previous analysis [7],
forms the basis of the present contribution. As in previous work on the topic [5–7], DFS-trees are
a key ingredient.

Lemma 3. Let G be a digraph and Ust the vertex set of a weak superbubbloid 〈s, t〉 in G, and suppose r is not an
interior vertex or the exit of 〈s, t〉. Then, either V[r] ∩Ust = ∅ or Ust ⊆ V[r].

Proof. (i) Every digraph can be decomposed into strongly-connected components and acyclic
components. If x ∈ V[r], then every vertex reachable from x is also contained in V[r]. Thus, in particular,

Algorithms 2019, 12, 81 5 of 24

every strongly-connected component of G is either contained in V[r] or disjoint from V[r]. Sung’s theorem
([5] and [7] (Thm.1)) ensures that every superbubbloid is either contained in a strongly- connected
component C or an acyclic component A of G. Now, suppose V[r] ∩Ust 6= ∅, and let x ∈ Ust be the first
vertex of the DFS in 〈s, t〉. By definition (of weak superbubbloids) x = s, since no other vertex in Ust is
reachable from outside Ust, and the DFS assumption does not start at an interior vertex or the exit of
〈s, t〉. The reachability axiom (S.ii) ensures that every u ∈ Ust is reached by the DFS whenever s ∈ V(G),
i.e., Ust ∈ V[r].

Lemma 3 is a variant of the key theorem of [5].

Corollary 2. Let G = (V, E) be a digraph and Ust the vertex set of a weak superbubbloid 〈s, t〉 in G.
Let r1, r2, . . . , rk ∈ V be such that none of the ri are an interior or an exit vertex of 〈s, t〉. Set Wj :=

⋃j
i=1 V[ri] and

V′[rj] = V[rj] \Wj−1. Then, either Ust ∩V′[rj] = ∅ or Ust ⊆ V′[rj].

Proof. By Lemma 3, Ust is either contained in the intersection of two or more reachable sets V[ri] or is
disjoint from it. As an immediate consequence, it is also either contained in the difference of two reachable
sets or disjoint from it.

Lemma 4. Let G be a digraph; let Ust be the vertex set of a weak superbubbloid 〈s, t〉 in G; let T be a DFS-tree on G
with root r /∈ Ust \ {s}; and let π be the postorder w.r.t. T. Then:

(i) The induced subgraph G[Ust] contains no back edges w.r.t. T, except possibly (t, s).
(ii) If Ust ⊆ V(T), then {π(u)|u ∈ Ust} = [π(t), π(s)] is an interval w.r.t. to π.

Proof. (i) The statement is trivial if 〈s, t〉 is not contained in T. If 〈s, t〉 resides in an acyclic part A of
G, there are no back edges because A cannot contain back edges by acyclicity. If 〈s, t〉 is contained in
a strongly-connected component C, the proof of Lemma 9 of [7] also implies Assertion (i) because the
DFS-tree T, in particular, contains a DFS-tree of C as a subtree and back edges in G can only be located
within a strongly-connected component.

(ii) Since the DFS generating T enters 〈s, t〉 through s and leaves it through t, the preorder ρ satisfies
ρ(s) < ρ(t). Since t is reachable from every u ∈ Ust, we conclude that any DFS reaches t before completing
any u ∈ Ust; hence, t precedes any other u ∈ Ust in postorder, i.e., π(u) > π(t). Since u ∈ Ust is not
reachable without passing through s, every other vertex in u ∈ Ust precedes s in postorder, i.e., π(s) > π(u).
Now, suppose there is some w /∈ Ust with π(s) > π(w) > π(t). Then, w must be reachable from s along
a directed path that does not pass through t, a contradiction to the definition of weak superbubbloids.
Hence, the vertices of a superbubbloid form an interval in postorder of the DFS-tree T.

Statement (ii) rephrases the key result of [6], although we do not need to assume that G is
an acyclic digraph. Conceptually, Lemma 4 suggests that it might not be necessary to first identify
the strongly-connected components of G [5] or the construct acyclic auxiliary digraphs [6] in order to find
all weak superbubbles. Lemma 2 then ensures that a single DFS-forest is sufficient.

2.3. Superbubble Detection

We next show how to retrieve all weak superbubbles of a digraph G that are located within the induced
subgraph G[V[r]] of G. To this end, we use a slightly modified version of the algorithm DAGsuperbubble
described in [7]. It was originally designed to operate on acyclic auxiliary graphs with a single source.
Thus, it could be assumed that a DFS-tree rooted on this source reached all vertices. Here, we intend
to apply it to the unmodified input graph, which is neither acyclic, nor guaranteed to have a single

Algorithms 2019, 12, 81 6 of 24

source. It, therefore, needs to be modified to deal appropriately with back edges within the DFS-tree and
the existence of vertices outside the DFS-tree. To this end, vertices in V[r] that cannot be contained in
a superbubble have to be identified. By Lemma 4, there are two possible obstructions for a vertex u: (i) u
has an edge that is a back edge in the DFS-tree; (ii) u is incident to an edge (x, u) or (u, x) where x /∈ V[r].

The basic idea of DAGsuperbubble is to identify minimal intervals in reverse postorder
π̄ := |V[r]| − π(v)− 1 of the DFS-tree T that satisfy conditions equivalent to membership in
a superbubbloid. These conditions are expressed in terms of a pair of helper functions with the help
of reverse postorder π̄(v) on T. As in [7], OutParent(v) denotes the first vertex (w.r.t. reverse postorder
π̄) in T from which v can be reached. Similarly, OutChild(v) is the last child vertex reachable from v.

OutParent(v) :=

−1 if no (u, v) ∈ E(G) exists

−1 if (u, v) ∈ E(G) ∧ u 6∈ V[r]

−1 if a back edge (u, v) ∈ E(G)

min({π̄(u)|(u, v) ∈ E(G)}) otherwise

OutChild(v) :=

∞ if no (v, u) ∈ E(G) exists

∞ if (v, u) ∈ E(G) ∧ u 6∈ V[r]

∞ if there is a back edge (v, u) ∈ E(G)

max({π̄(u)|(v, u) ∈ E(G)}) otherwise

(3)

These functions are extended to intervals on π̄ as follows:

OutParent([i, j]) := min{OutParent(v) | v ∈ V[r] ∧ i ≤ π̄(v) ≤ j}
OutChild([i, j]) := max{OutChild(v) | v ∈ V[r] ∧ i ≤ π̄(v) ≤ j}

(4)

In [7], we derived a characterization of weak superbubbloids in terms of OutParent([i, j]) and
OutChild([i, j]) for the case of acyclic digraphs. Here, we generalize this condition to general graph using
the modified definition of OutParent(v) and OutChild(v). The difference is that the situation that back
edges and edges connecting to the outside of the DFS-tree are considered. In either case, the corresponding
vertices are marked by −1 or ∞, respectively, to indicate that they cannot be part of superbubbloids.

Theorem 1. Let G be a digraph; let T be a DFS-tree on G with a root r that is not an interior vertex or exit of a weak
superbubbloid; and denote by π̄ the reverse postorder on T. Then, 〈s, t〉 is a weak superbubbloid in G whose vertex
set Ust satisfies Ust ∩V[r] 6= ∅ if and only if the following conditions are satisfied:

(F1) OutParent([π̄(s) + 1, π̄(t)]) = π̄(s) (predecessor property)
(F2) OutChild([π̄(s), π̄(t)− 1]) = π̄(t) (successor property)

Proof. It was shown in [7] (theorem 2) that the statement is true for acyclic digraphs. We first note that
by Lemma 3, every weak superbubbloid intersecting V[r] is contained in V[r], i.e., in V(T). For the
purpose of the proof, consider the auxiliary graph Ĝ[V(T)] with edge set E(Ĝ[V(T)]) = E(G[V(T)]) \ {e |
e is a back edge w.r.t. T}. By construction, Ĝ[V(T)] is acyclic, and every vertex is in T. Thus, every
superbubbloid 〈s, t〉 (with vertex set Ust) in Ĝ[V(T)] is characterized by Conditions (F1) and (F2). It is,
furthermore, a weak superbubbloid in G if and only if the following conditions hold:

(i) For every u ∈ Ust \ {s}, there is no edge (x, u) ∈ E(G) such that x /∈ Ust;
(ii) For every v ∈ Ust \ {t}, there is no edge (v, x) ∈ E(G) such that x /∈ Ust; and

(iii) G[Ust] without the edge (t, s) ∈ E(G) acyclic.

Algorithms 2019, 12, 81 7 of 24

Only edges not contained in Ĝ[V(T)] need to be considered for Conditions (i) and (ii), because no
such edges exist within Ĝ[V(T)] due to the assumption that 〈s, t〉 is a weak superbubbloid in Ĝ[V(T)].
For (iii), only the back edges are of interest. By definition, a back edge creates a cycle in Ĝ[V(T)]. A back
edge (v′, u′) with u′ ∈ Ust would violate (iii) when v′ ∈ Ust or (i) if v′ /∈ Ust. Analogously, if v′ ∈ Ust and
u′ /∈ Ust, then (ii) is violated. Thus, a weak superbubbloid cannot contain the head or tail of a back edge.
Only for Condition (i), we also need to consider the case that x /∈ V(T).

(F1) can be satisfied only if OutParent(u) > −1 for every u ∈ Ust \ {s}. Analogously, (F2) can
only be true if OutChild(u) < ∞ for all u ∈ Ust \ {t}. Hence, it suffices to rule out false positive weak
superbubbloids in G by ensuring that every vertex u that violates one of the three conditions also violates
(F1) or (F2). This is achieved by setting OutParent(u) = −1 for a vertex u if there is an edge (x, u) such
that x /∈ V(T) or (x, u) is a back edge; analogously, we set OutChild(v) = ∞ for all v with an incident
edge (v, x) such that x /∈ V(T) or (v, x) is a back edge. Equation (3) implements exactly these conditions.
Thus, only weak superbubbloids fulfill (F1) and (F2).

Conversely, it suffices to note that by Lemma 4(ii), every weak superbubbloid forms a contiguous
interval w.r.t. the postorder π of T and, thus, also w.r.t. the reverse postorder π̄ of T.

We denote by Superbubble the algorithm DAGsuperbubble with the modified functions OutParent(.)
and OutChild(.) as described above. By construction, Superbubble identifies minimal intervals of π̄

that satisfy (F1) and (F2); see Figure 1 for an illustration and [7] for full details. Since the modification
of OutParent(.) and OutChild(.) only amounts to setting additional entries to −1 or ∞, respectively,
the performance remains unaffected. According to Theorem 1, the minimal intervals satisfying (F1) and (F2)
are exactly the minimal weak superbubbloids and, thus, by definition, the weak superbubbles. Therefore,
we have:

Corollary 3. Let G be a digraph, and let T be a DFS-tree on G with a root r that is not an interior vertex or exit of
a weak superbubble. Then, Superbubble correctly identifies exactly the weak superbubbles 〈s, t〉 in G whose vertex
set satisfies Ust ∩V[r] 6= ∅.

It is straightforward to extend this result to a DFS-forest that covers V(G) entirely: This forest is
constructed by first constructing T1 with root r1 covering V[r1]. Then, T2 is constructed from a root r2

searching on V(G) \V[r1], and so on; see Lemma 2. This amounts to constructing an auxiliary graph G′

from G by adding an artificial root r0 and out-edges (r0, r1), (r0, r2),. . . , (r0, rk), and defining the sibling
order of the roots as r1 / r2 / · · · / rk. The DFS-forest F(r1, . . . , rk) with given roots r1, r2,. . . , rk on G is
then equivalent to the DFS-tree T′ rooted at r0 on G′ if we define the reverse postorder of T′ such that
π̄(r0) = 0. We note, furthermore, that sibling order, i.e., the order in which the roots are used to seed DFS,
is arbitrary.

Corollary 4. Let G be a digraph, and let F be a DFS-forest on G comprising DFS-trees Ti with roots ri, 1 ≤ i ≤ k,
none of which is an interior vertex or exit of a weak superbubble. Let π̄ be the reverse postorder on F, obtained
by concatenating the reverse postorders on the constituent DFS-trees. Then, Superbubble correctly identifies
exactly the weak superbubbles 〈s, t〉 in G. Furthermore, given the roots ri, Superbubble has a running time of
O(|E|+ |V|).

Proof. Correctness follows immediately from Corollary 3, the construction of T′ on the auxiliary digraph
G′, and Lemma 2. During the DFS, each out-edge is considered exactly once, and each vertex is
traversed twice. The number k of required roots is limited by |V|. For each vertex v, checking whether

Algorithms 2019, 12, 81 8 of 24

OutParent(v) = −1 or OutChild(v) = ∞ requires checking all neighbors only; hence, the total effort is
no more than O(|E|+ |V|). The linear time complexity of DAGsuperbubble, finally, is proven in [7].

Figure 1. Illustration of the algorithm Superbubble on a digraph G with cycles. The top panel shows the
input digraph. The DFS-tree T is rooted at one and covers V[r] = V(G) \ {15}. The table below gives the
values of OutParent and OutChild as a function of the reverse postorder π̄ of T. In the final line, matching
pairs of parentheses indicate entrances and exits of the weak superbubbles in V[r]. This corresponds to the
intervals that fulfill (F1) and (F2).

It is important to note the correctness of Superbubble, Corollary 3, crucially depends on the correct
choice of the root r of the DFS-tree. The remaining problem thus is to find a suitable sequence of roots r1,
r2,. . . , rk.

Definition 3. A vertex r ∈ V is a legitimate root if for every weak superbubble 〈s, t〉 in G with vertex set Ust,
we have either Ust ⊆ V[r] and t ≺ s (in the ancestor order of a search tree with root r), or Ust ∩V[r] = ∅.

We can summarize the discussion in the following form:

Corollary 5. The algorithm Superbubble detects all weak superbubbles in G if and only if there is a set
{r1, r2, . . . , rk} of legitimate roots such that the DFS-forest F(r1, r2, . . . , rk) covers V(G).

Corollary 6. A vertex r ∈ V is a legitimate root if and only if r is neither an interior nor an exit of
a weak superbubble.

Proof. By Corollary 4, a root is legitimate if it is not the exit or an interior vertex of a weak superbubble.
Conversely, if r is an interior vertex or the exit of 〈s, t〉, then a DFS-tree rooted in r reaches the entrance
s either not at all or there is not search tree with root r such that t ≺ s, since by definition of a weak
superbubble, the exit t is found before s along every path from r to s.

Lemma 5. Let G be a digraph and v ∈ V(G) a source, i.e., a vertex with in-degree zero. Then, v is a legitimate root.

Algorithms 2019, 12, 81 9 of 24

Proof. Since v is not reachable from any other vertex, it is only reachable by DFS if the traversal starts
in v. By the same argument, v is neither an interior vertex, nor the exit of a weak superbubble and,
thus, is a legitimate root.

Unfortunately, there is no guarantee that a digraph G has source vertices, and even if they exist, not
every vertex of G is necessarily reachable from them. The task is, therefore, to identify legitimate roots
located within strongly-connected components.

2.4. Cycles, C
 -Covers, and C

 -Cuts

Definition 4. Let G be a digraph. A set C = {c1, . . . , ck} ⊆ V(G) is a cycle in G if k = |C| and E(C) :=
{(c1, c2), . . . , (ck−1, ck), (ck, c1)} ⊂ E(G). A pair of vertices ci, cj ∈ C determines a cycle interval:

C(ci, cj) :=

{
ci+1, . . . , cj−1 if i < j

ci+1, . . . , ck ∪ c1, . . . , cj−1 otherwise

By definition, the vertices ci are pairwise distinct and indexed consecutively along C. Importantly,
cycle intervals contain only the interior of the unique path in C connecting the defining endpoints ci
and cj. Thus, C(c1, c2) = ∅ if (c1, c2) ∈ E(C) and C(v, v) = C \ {v} for all v ∈ C. The C-distance of
two vertices ci and cj along a cycle C is the length of the directed path, i.e., the number of edges, from ci to
cj. More explicitly,

dC(ci, cj) :=

{
j− i if i < j

j− i + k if i ≥ j
= |C(ci, cj)|+ 1 (5)

since the number of inner vertices is one less than the number of edges. In particular, dC(v, v) = |C| for all
v ∈ C. The C-distance dC is not symmetric. Instead, we have dC(u, v) + dC(v, u) = |C| for all two vertices
u 6= v ∈ C. Another useful consequence of the definition of dC is:

dC(v, w) < dC(v, u) =⇒ dC(w, u) = dC(v, u)− dC(v, w) (6)

The following implication will be useful later on:

Corollary 7. Let G be a digraph; let C a cycle in G; and let c1, c2, c3 ∈ C. Then, dC(c1, c2) ≤ dC(c1, c3) if and
only if c1 ∈ C(c3, c2) ∪ {c3}.

Proof. If c1, c2, and c3 are pairwise distinct, the l.h.s. is true if the path from c1 to c2 is a subpath of the path
from c1 to c3, i.e., c1 /∈ C(c2, c3) and, thus, c1 ∈ C(c3, c2) ∪ {c3}. The converse is obvious. The statement is
trivial for c1 = c3. If c2 = c3, the l.h.s. is always true, while on the r.h.s., we have C(c2, c2) ∪ {c2} = C 3 c1.
For c1 = c2, both the l.h.s. and the r.h.s. are satisfied only if c2 = c3.

In the following, it will be useful to know whether two vertices on a cycle are also reachable via
a directed path that is disjoint from C. We formalize this idea as a binary relation on C.

Definition 5. Let G be a digraph and C a cycle in G and s, t ∈ V. Then, t is C-reachable from s, in symbols s C
 t,

if there is a path p = {s = v0, . . . vh = t} such that h ≥ 1 and vi /∈ C for 0 < i < h.

We have used the letters s and t here since C-reachability will be used to identify potential candidates
for entrance and exit of superbubbles. C-reachability is defined not only for vertices in the “reference cycle”
C. It satisfies a restricted transitivity property: If v ∈ V(G) \ C, s C

 v, and v C
 t, then s C

 t. Another

Algorithms 2019, 12, 81 10 of 24

interesting observation is that s C
 s implies that there is a directed cycle C′ such that C ∩ C′ = {s}. As an

immediate consequence of Definition 5, we obtain:

Lemma 6. Let G be a digraph, C a cycle in G, c1, c2 ∈ C such that c1
C
 c2, and dC(c1, c2) > 1. Then, c1 and c2

are connected by (at least) two edge-disjoint directed paths. In particular, {(vi, vi+1) | 0 ≤ i < h} ∩ E(C) = ∅.

Definition 6. Let C be a cycle in the digraph G and u, v ∈ C. Then, C(u, v) is C
 -covered if u C

 v.

As an immediate consequence of the definition, v C
 v implies that C \ {v} is covered, while nothing

is covered if (u, v) ∈ E(C).
Consider two C-intervals C(u, v) and C(x, y) on the same cycle C of the digraph G. We say that C(u, v)

is included in C(x, y) if C(u, v) (C(x, y), C(u, v) and C(x, y) are disjoint if C(u, v)∩C(x, y) = ∅, and C(x, y)
extends C(u, v) if dC(x, v) < dC(u, v) and dC(x, v) < dC(x, y). In particular, if C(x, y) extends C(u, v),
then x ∈ C(u, v), since the interval boundaries themselves are not considered part of the C-intervals.
For each pair of distinct C-intervals, thus exactly one of the following four statements is true: (a) the
C-interval are disjoint; (b) one C-interval is contained in (i.e., a proper subset of) the other one; (c) one
C-interval, say C(x, y), extends the other one, but not vice versa, i.e., x ∈ C(u, v) and y /∈ C(u, v); (d) both
C-intervals extend each other, i.e., x, y ∈ C(u, v). Figure 2 illustrates the four cases. Note that in Case
(c), the interval boundaries are arranged in the order u− x− v− y− ualong the cycle, while in Case (d),
the arrangement is u− y− x− v− u along C.

Figure 2. Relationships of distinct C-intervals. The four possibilities for the relative location of two distinct
C-intervals are shown on a linear layout of a cycle C with five vertices (0, 1, 2, 3, 4). Left top: the C-intervals
C(0, 2) and C(2, 4) are disjoint. Right top: C(0, 4) includes C(1, 3). Left bottom: C(1, 3) extends C(0, 2),
but not vice versa. Right bottom: C(0, 4) and C(3, 1) extend each other. Together, the two C-intervals cover C.

In the following, we will use the notation:

Q(C) := {C(u, v) | u C
 v, u, v ∈ C}

Q(C) :=
⋃

B∈Q(C)

B = {w | ∃B ∈ Q(C) : w ∈ B} (7)

for the set of all C
 -covered intervals and the set of all C

 -covered vertices of C, respectively. Note that
∅ ∈ Q(C) since u C

 v holds for (u, v) ∈ E(C). By the same argument, there is at least one interval
C(u, v) ∈ Q(C) for each u ∈ C, albeit some or even all of these may be empty.

Definition 7. A subset B ⊆ Q(C) is a C
 -cover of C if

⋃
B∈B B = Q(C), and B is a total C

 -cover of C if⋃
B∈B B = C. We say that C is totally C

 -covered if C has a total C
 -cover.

Note that C is totally C
 -covered if and only if Q(C) = C.

Algorithms 2019, 12, 81 11 of 24

Definition 8. A vertex in v ∈ K(C) := C \Q(C) is a C
 -cut vertex.

Obviously, C is either totally C
 -covered or it has a non-empty set K(C) of C

 -cut vertices.

Definition 9. Let C be a cycle in the digraph G. A C
 -cover B of C is clean if B ∈ B and B′ (B implies B′ /∈ B.

In other words, in a clean C
 -cover, no C

 -covered interval is contained within another one.

Corollary 8. Let C be a cycle in the digraph G, and let B be a clean C
 -cover. Then, either B = {∅} or, for every

C(u, v) ∈ B, dC(u, v) > 1.

Proof. Recall that C(u, v) = ∅ if and only if dC(u, v) = 1. Thus, Q(C) = {∅} if and only if there is no
C(u, v) ∈ B with dC(u, v) > 1. Since the empty set is a subset of every other set, dC(u, v) > 1 for every
C(u, v) ∈ B unless B = Q(C) = {∅}.

Lemma 7. Let C be a cycle in the digraph G. Then, Q(C) contains a clean C
 -cover B.

Proof. Let B ⊆ Q(C) be a set of C
 -covered intervals that together C

 -cover Q(C). Suppose B is not
clean. Then, there are two intervals C(p, q) ∈ B and C(u, v) ∈ B such that C(p, q) (C(u, v). Then, B′ =
B \ {C(p, q)} still C

 -cover Q(C). The removal of such redundant intervals can be repeated until no further
removable interval can be found. By Definition 9, the remaining C

 -cover is clean.

Definition 10. Let C be a cycle in a digraph G. Then:

L(C) =
{

C(u, v) ∈ Q(C) | for all v′ ∈ C and C(u, v′) ∈ Q(C), dC(u, v′) ≤ dC(u, v)
}

By definition, L(C) consists of all C
 -covered intervals for which there is no larger C

 -covered interval
with the same starting point. Since every C(p, q) ∈ Q(C) \ L(C) is contained in a interval with the same
starting point, L(C) is a C

 -cover of C. Thus, Lemma 7 implies:

Corollary 9. Let C be a cycle in a digraph G. Then, there is clean cover B ⊆ L(C).

Lemma 8. Let C be a cycle in the digraph G. A clean C
 -cover B of C is total if and only if B 6= ∅ and every

B ∈ B is extended by at least one B′ ∈ B.

Proof. If B = ∅, then Q(C) = ∅, and thus, B is not total. In the following, we assume B 6= ∅ is a clean
C
 -cover. Suppose, for contradiction, that C(u, v) ∈ B is not extended by any B ∈ B. Then, any interval
B′ ∈ B

C
 -covering v would have to contain C(u, v), contradicting the assumption that B is clean.

Thus, v is a C
 -cut vertex, and hence, B is not total. If B, therefore it is non-empty, and every B ∈ B is

extended by some B′ ∈ B.
Conversely, suppose c is a C

 -cut vertex of C. If C(u, c) ∈ B for some u, then the first part of the proof
implies that C(u, c) is not extended by any B′ ∈ B. If B contains no interval C(u, c), then consider the
vertex v such that C(u, v) ∈ B for which dC(v, c) is minimal. Since c is a C

 -cut vertex, there is no extension
of C(u, v), since any such extension B′ would either contradict the minimality of dC(v, c) or C

 -cover c,
thereby contradicting the assumption that c is a C

 -cut vertex. Thus, v is again a C
 -cut vertex. As shown

Algorithms 2019, 12, 81 12 of 24

in the first part of the proof, C(u, v); therefore, it is not extended by any B ∈ B. We conclude that unless B
is a total C

 -cover or B = ∅, there is an interval B ∈ B without an extension.

Figure 3 shows an example of a cycle with a total C
 -cover and a cycle with a C

 -cut, respectively.
Since the largest C

 -interval in C is C(v, v) = C \ {v} for some v, every total C
 -cover comprises at least

two C
 -covered intervals.

(a)

(b)

Figure 3. C
 -covers. (a) The green cycle C in the top panel has five C

 -paths indicated in red. In the middle
panel, C is laid out linearly to emphasize the C

 -covered intervals. Below, the clean C
 -cover obtained by

removing all C
 -intervals that are contained in longer ones. Note that every C

 -interval is extended by
another one; hence, the C

 -cover is total. (b) Again, the top panel highlights C in green and the C
 -paths in

red. The linear layout below highlights that Vertex 1 is not C
 -covered. Thus, it is a C

 -cut vertex.

The following lemma provides us with a convenient way to obtain a total C
 -cover.

Algorithms 2019, 12, 81 13 of 24

Lemma 9. Let C be a cycle in G, v 6∈ C, and c1, c2, c3, c4 ∈ C with dC(c1, c3) ≤ dC(c1, c2) < dC(c1, c4). Then,
c1

C
 v, c2

C
 v, v C

 c3, and v C
 c4 imply that B := {C(c1, c4), C(c2, c3)} is a total clean C

 -cover of C.

Proof. By construction, C(c1, c4) and C(c2, c3) are C
 -covered intervals. By definition, we have c2 ∈

C(c1, c4), and C(c2, c3) extends C(c1, c4). Since c3 ∈ C(c1, c4), the two intervals cover all of C. Furthermore,
the cover B consists of only two intervals that are not subsets of each other; thus, it is clean.

We will refer to this type of total clean C
 -cover as a single-vertex cover of C. An example is shown

in Figure 4.

Figure 4. One-vertex cover. As in Figure 3, the cycle C and the C
 -paths are highlighted in green and red,

respectively. The paths (0, 5, 4) and (3, 5, 1) imply that C(0, 4) and C(3, 1) are C
 -covered. It is a one-vertex

cover conforming to Lemma 9.

2.5. Cycles, C
 -Cover, C

 -Cuts, and Superbubbles

A key result of [5] states that every superbubble is either contained in or disjoint of any
strongly-connected components. The following results on the interaction of cycles and superbubbles are
a generalization of this observation. The acyclicity condition (S.v) can be restated in the following way:

Lemma 10. Let 〈s, t〉 be a weak superbubbloid in the digraph G and u ∈ 〈s, t〉. Then, every cycle containing u also
contains s and t.

Proof. If u 6= s, then all in-neighbors of u are contained in 〈s, t〉. Similarly, if u 6= t, then all out-neighbors
of u are contained in 〈s, t〉. Since every cycle through u contains both in- and out-neighbors of u,
it, in particular, contains an edge e in 〈s, t〉. (S.v) now implies any cycle through e contains both s
and t.

Lemma 11. Let C be a cycle in the digraph G, and let B be a total clean C
 -cover of C. If C(u, v) ∈ B, then v is

neither an interior, nor an exit of a weak superbubble, i.e., v is a legitimate root.

Proof. Assume, for contradiction, that v is an interior or the exit of the superbubble 〈s, t〉. Since C is
totally C

 -covered by assumption, Corollary 8 implies dC(u, v) > 1. Thus, by Lemma 6, there are (at least)
two edge-disjoint paths from u to v. Since neither path can leave 〈s, t〉 before passing through s, neither

Algorithms 2019, 12, 81 14 of 24

of them contains the entrance s, and hence, both are contained in the weak superbubble. Thus, 〈s, t〉
contains C(u, v).

Since B is a total clean C
 -cover of C, there is an interval C(p, q) ∈ B that extends C(u, v),

i.e., p ∈ C(u, v), and hence, p is an inner vertex of 〈s, t〉. Therefore, 〈s, t〉 contains C(p, q), and it again has
an extending C

 -interval. Repeating the argument, we conclude that every vertex of Q(C) is an inner
vertex of 〈s, t〉. Since the cover B is total, Q(C) = C, i.e., the cycle C consists entirely of interior vertices of
〈s, t〉, i.e., C is a proper subset of 〈s, t〉. This contradicts the acyclicity condition (S.v).

Corollary 10. Let C be a cycle in the digraph G. Suppose C is totally C
 -covered, and let C(u, v) ∈ L(C) such that

dC(u′, v′) ≤ dC(u, v) for all C(u′, v′) ∈ L(C). Then, v is a legitimate root.

Proof. The longest C
 -interval C(u, v) ∈ L(C) by construction cannot be contained within another

C
 -interval. Therefore, C(u, v) is contained in the clean cover B ⊆ L(C) of Corollary 9. By Lemma 11,
its endpoint v is a legitimate root.

Let us now turn to cycles with C
 -cut vertices:

Lemma 12. Let C be a cycle of the digraph G, and let c be a C
 -cut point of C, i.e., c ∈ K(C). Then, c is not

an interior vertex of any weak superbubble.

Proof. Assume, for contradiction, that c is an interior vertex of a weak superbubble 〈s, t〉. Then, there is
a path p from s to t not passing through c. Otherwise, 〈s, c〉 is a superbubbloid, contradicting the
assumption that 〈s, t〉 is a weak superbubble; see corollary 5 in [7]. Along p, let u be the last vertex
on C before c, and let v be the first vertex on C after c. Thus, u C

 v. Therefore, c is C
 -covered in C,

a contradiction.

The example in Figure 5 shows that it is possible that every entrance of superbubble is at the same
time the exit of another superbubble. Such graphs do not have any legitimate root. Nevertheless, it is easily
possible to obtain all the superbubbles. To this end, fix a C

 -cut vertex c for some cycle C in G, and consider
the auxiliary digraph G# obtained from G by splitting c into two vertices c′ and c′′ so that c′ retains only
the in-edges and c′′ retains only the out-edge.

Lemma 13. Let C be a cycle in the digraph G, c ∈ C a C
 -cut vertex, and G# the digraph obtained from G by

splitting c. If 〈s, t〉 is a weak superbubble in G, then it is also a weak superbubble in G#, where c as an entrance in G
corresponds to c′ in G# and c as an exit in G corresponds to c′′ in G#. Conversely, every weak superbubble 〈s, t〉
with {s, t} 6= {c′′, c′} in G# is also a weak superbubble in G.

Proof. For the proof, we construct the auxiliary graph G̃# by inserting the edge (c′, c′′) into G#. Then, there
is a 1-1 relationship between the set of paths in G and the set of paths that do not start or end with the
edge (c′, c′′) in G̃#, which is constructed as follows: If p starts at c in G, it starts in c′′ in G̃#; if p ends at c in
G, it ends at c′′ in G̃#; and if p runs through c in G, then it runs through the edge (c′, c′′) in G̃#. The 1-1
correspondence of weak superbubbles now follows immediately from the equivalence of the path systems
in G and G̃# since reachability is the same for every pair u, v, with c as the starting point corresponding to
c′′ and c as the endpoint corresponding to c′. Thus, G and G̃# have the same superbubbles, except possibly
for the ones with {s, t} = {c′′, c′} in G̃#. Now, consider a DFS-tree on G# rooted in c′′. The edge (c′, c′′) is
not a tree edge and necessarily appears as a back edge. Since c is a C

 -cut vertex, c′ and c′′ are not interior

Algorithms 2019, 12, 81 15 of 24

vertices of any weak superbubble in G̃#. Thus, the edge (c′, c′′) does not affect any weak superbubble of G̃#,
and thus, G# and G̃# have the same weak superbubbles, except possibly the ones with {s, t} = {c′, c′′}.

Figure 5. A digraph G without any legitimate root. In G are 16 isomorphic cycles containing eight of the 12
vertices, all of which contain {1, 3, 5, 7}. The superbubbles 〈1, 3〉, 〈3, 5〉, 〈5, 7〉, and 〈7, 1〉 cover G entirely,
i.e., every entrance of a superbubble is also the exit of another one, and all other vertices are interior vertices
of a superbubble.

The only potential differences between the weak superbubbles of G and G# is, therefore, the possibility
that G# contains 〈c′, c′′〉 or 〈c′′, c′〉 as an additional weak superbubble. Of course, it is easy to detect and
remove the additional weak superbubble. Since c′′ is a source in G#, we can apply Superbubble to G#

and remove the possible spurious weak superbubble 〈c′′, c′〉 in order to obtain the correct set of weak
superbubbles of G. In contrast to the auxiliary digraph constructions suggested in [5], G# contains
only a single extra vertex instead of doubling the size. More importantly, however, it not necessary
to construct G# explicitly. Instead, on can modify the DFS starting at c in G in the following manner:
when c is encountered for the first time as an out-neighbor of a tree vertex u, then c′′ is inserted as
with parent u and no further out-neighbors, with only a constant overhead. The algorithm Superbubble
applied to G# extracts the minimal intervals satisfying (F1) and (F2) (w.r.t.) the reverse postorder π̄ of
the DFS-tree rooted as c′, and thus correctly identifies the weak superbubbles of G#. The modified
DFS on G rooted at c by construction yields the same DFS-tree on G#, and thus the same reverse
postorder. Together with setting OutChild(c′′) = OutChild(c), OutParent(c′) = OutParent(c),
OutChild(c′) = ∞, and OutParent(c′′) = −1, Superbubble operating on the modified DFS-tree thus
correctly identifies the weak superbubbles in G#. We refer to this algorithm, which is equivalent to applying
Superbubble to G#, as Superbubble#.

Definition 11. Let G be a digraph. Then, r ∈ V is a quasi-legitimate root if either:

(i) r is source in G,
(ii) r is the end point of an interval C(u, r) ∈ B of a total clean C

 -cover of some cycle C in G, or
(iii) r is C

 -cut vertex of some cycle C in G.

Algorithms 2019, 12, 81 16 of 24

Our discussion so far can be summarized as:

Corollary 11. Algorithm Superbubble# correctly identifies the superbubbles in G[V[r]] if and only if r is a
quasi-legitimate root.

As an immediate consequence of Lemmas 11 and 12, every cycle contains a quasi-legitimate root.
Recalling that every vertex in the digraph G can be reached either from a source vertex or from a cycle,
we finally obtain:

Theorem 2. Every digraph G contains a set of quasi-legitimate roots {r1, r2, . . . , rk}. Given these roots,
the algorithm Superbubble# correctly identifies all superbubbles of G in linear time.

It remains to show, therefore, that a suitable set of roots can be identified in linear time. Clearly, this is
possible for the sources. For superbubbles that cannot be reached from a source vertex, a suitable set of
cycles needs to be identified.

Lemma 14. Let F = (T[v1], T[v2], . . . , T[vk]) be an arbitrary DFS-forest of G with constituent ordered trees T[vi]

rooted at vi, and let C be a cycle in G. Then, C ∩V(T[vi]) 6= ∅ implies C ⊆ V(T(vi)), and there is a u ∈ C such
that C ⊆ V(T[u]).

Proof. Let vi be the first root of F that can reach any vertex of C. Then, by definition of a cycle, C ∈ V[vi].
Thus, C ⊆ V(T[vi]). Further, let u be the first vertex that is reached from vi in the DFS. Then, every other
vertex of C is reached from u in the DFS. Thus, C ⊆ V(T[u]).

The same is true for strongly-connected components:

Lemma 15. [8] (corollary 11) Let S be a strongly-connected component in G, and let T be a DFS-tree with
S ⊆ V(T). Then, there is a vertex v ∈ S such that S ⊆ V(T[v]). We call v the root of the strongly-connected
component S in T.

Our aim is now to find a set of “start cycles” such that every cycle C is reachable from at least one of
these start cycles.

Lemma 16. Let T be a DFS-tree on the digraph G rooted in v, and let W be the set of ≺-maximal vertices w that
have an incoming back edge (u, w). Then, (i) w ∈ W is contained in a cycle, and (ii) every cycle C ⊆ V(T) is
satisfied C ⊆ V(T[w]) for some w ∈W.

Proof. Property (i) is an immediate consequence of the definition of DFS. Now, suppose u /∈ V(T[w])

for some w ∈W. Then, by construction, none of the vertices along the path from the root v to u have an
incoming back edge, and thus, neither u, nor one of its ancestors are contained in a cycle. Thus, if x ∈ C
for some cycle C ⊆ V(T), then a vertex w ∈W exists such that x ∈ V(T[w]), and thus, C ⊆ V(T[w]).

Note that W = ∅ if T[v] does not contain a cycle. Since the vertex set of every cycle in the digraph G
is necessarily contained in one of the constituent trees of a DFS-forest, we immediately obtain:

Corollary 12. Let F be a DFS-forest on the digraph G, and let W by the set of ≺-maximal vertices w that have
an incoming back edge (u, w). Then, (i) w ∈ W is contained in a cycle, and (ii) every cycle C in G is satisfied
C ⊆ V(T[w]) for some w ∈W and some T ∈ F.

Algorithms 2019, 12, 81 17 of 24

Lemma 17. A set of cycles {C1, C2, ..., Cn} from which all cycles in G are reachable can be constructed in O(|E|+
|V|) time.

Proof. The DFS-forest F on the digraph G is obtained in O(|E|+ |V|) time. The set W is easily identified by
a preorder traversal of F omitting a subtree as soon as a vertex w has an incoming back edge. The worst-case
effort is O(|V|) since we only traverse the forest, not the entire digraph G. Given W and the associated
back edges (uk, wk) identified in the previous step for each wk ∈W, the cycle Ck is explicitly retrieved by
following the parent links of F from uk back to wk in O(|V|) time.

Lemma 17 ensures that a sufficient set of cycles can be found in linear time. More precisely, using the
sources of G and a quasi-legitimate root ri in each cycle Ci as roots, the algorithm Superbubble# correctly
identifies all superbubbles in G in linear time. It remains to show that we can identify a quasi-legitimate
root in a cycle Ci.

2.6. Identification of Quasi-Legitimate Roots

The obvious approach to identify quasi-legitimate roots is to construct a clean C
 -cover. The obvious

starting point is L(C) since it requires the construction of no more than the |C| C
 -path. This can be

achieved in polynomial time, e.g., using an independent DFS-tree rooted at c ∈ C that ignores the edges of
C. This naive approach, however, exceeds linear time even for a single cycle.

For c ∈ C, we construct a modified DFS-tree Tc by excluding all other vertices of C from G.
By construction, u ∈ C is C

 -reachable from c if and only if Tc contains an in-neighbor u′ of u, i.e., there is
an edge (u′, u) ∈ E(G) with u′ ∈ V(Tc).

For each v ∈ V(Tc), we are interested in the vertices cmin ∈ C and cmax ∈ C that are C
 -reachable from

v and minimize and maximize dC(c, cmin) and dC(c, cmax). These can be recursively computed on Tc by
traversing Tc in postorder. For each v ∈ V(Tc), cmin and cmax are obtained by comparing the cmin and cmax

values for the out-neighbors of v along T, and the vertices reachable directly from v. More precisely, at each
leaf v of Tc, cmax[c, v] is initialized by the vertex c′ ∈ C such that (v, c′) ∈ E(G) and c′ maximizes dC(c, c′).
At each inner vertex v of Tc, cmax[c, v] is computed as the vertex c′ maximizes dC(c, c′) from the following
set of candidates: {cmax[c, u]|(v, u) ∈ E(Tc)} ∪ {u ∈ C|(v, u) ∈ E(G)}. The vertex C

 -reachable from c
with the maximal value of dC(c .) is thus cmax[c, c]. The same computations are used for cmin[c, v], except
that dC(c, .) is minimized instead of maximized. The computations of Tc and values of cmin[c, v] and
cmax[c, v] clearly can be performed in linear time. Repeating this for each c ∈ C, however, will, in general,
exceed linear time since the length |C| is not bounded in general.

We can mostly reuse the information stored in Tc, however. A crucial observation is the following:

Lemma 18. Let C be a cycle of the digraph G; consider two distinct cycle vertices c1, c2 ∈ C; and let v /∈ C
with c1

C
 v and c2

C
 v. If dC(c2, cmin[c1, v]) ≤ dC(c2, cmax[c1, v]), then cmin[c2, v] = cmin[c1, v] and

cmax[c2, v] = cmax[c1, v]. Otherwise, B = {C(c1, cmax[c1, v]), C(c2, cmin[c1, v])} forms a one-vertex C
 -cover.

Proof. For simplicity, we write c3 = cmin[c1, v] and c4 = cmax[c1, v]. By definition of cmin and cmax, we have
(1) dC(c1, c3) ≤ dC(c1, c4), and (2) for every c ∈ C satisfying v C

 c, we have c ∈ C(c3, c4)∪{c3, c4}. Starting
from Property (1), Corollary 7 implies c1 ∈ C(c4, c3) ∪ {c4}. As a consequence, for every c ∈ C(c3, c4) ∪
{c4}, we have dC(c1, c) = dC(c1, c3) + dC(c3, c). Since dC(c1, c3) is just a constant, dC(c1, a) ≤ dC(c1, b)
implies dC(c3, a) ≤ dC(c3, b) for all a, b ∈ C(c3, c4) ∪ {c4}.

First, assume dC(c2, c3) ≤ dC(c2, c4). Then, Corollary 7 implies c2 ∈ C(c4, c3) ∪ {c4}. The same
arguments as for c1 show that dC(c2, a) ≤ dC(c2, b) implies dC(c3, a) ≤ dC(c3, b), which in turn implies

Algorithms 2019, 12, 81 18 of 24

dC(c1, a) ≤ dC(c1, b) for all a, b ∈ C(c3, c4) ∪ {c4}. Because of Property (2), this implication can be used
in particular for every c ∈ C for which v C

 c might hold. Therefore, the same two vertices minimize
and maximize dC(c1, .) and dC(c2, .), and thus, we arrive at cmin[c2, v] = cmin[c1, v] and cmax[c2, v] =
cmax[c1, v].

Now, suppose dC(c2, c4) < dC(c2, c3). Then, c3 6= c4 (otherwise, the distances would be equal),
and Corollary 7 implies c2 ∈ C(c3, c4) ∪ {c3}. Since c1 ∈ C(c4, c3) ∪ {c4}, we obtain dC(c1, c3) ≤
dC(c1, c2) < dC(c1, c4). By Lemma 9, B := {C(c1, c4), C(c2, c3)} is a one-vertex cover of C.

The use of Lemma 18 is that it allows either to use the cmin[c1, v] and cmax[c1, v] values also for c2,
or we obtain a one-vertex C

 -cover, which immediately provides us with a legitimate root according
to Lemma 11. Thus, we need to continue the computation of cmin[ci, v] and cmax[ci, v] only until we
encounter a one-vertex cover. Up to this point, the values of cmin[ci, v] and cmax[ci, v] are independent of ci
by Lemma 18.

The difficulty is to compute the cmin[ci, v] and cmax[ci, v] for all v ∈ V(Tc) correctly. We have already
seen above how to handle tree edges. Forward-edges in Tc do not effectively contribute, because the
same information (minimization or maximization over values of dC(c, .)) is also propagated stepwise
along the tree-edges. Cross edges, on the other hand, could add information. Postorder traversal
ensures, however, that the pertinent information at their starting points is already computed in time
to include them to compute the correct value, i.e., we simply have to include the cross-edges in the
minimization/maximization step.

Back edges are problematic when belonging to the same strongly-connected component S as C (S.
In this case, they can be reached from a cycle vertex c ∈ C and themselves reach a cycle vertex u ∈ C.
Such back edge, therefore, influence which cycle vertices are reachable. To handle this information, S is
split into parts that are strongly connected components under the use of C

 -reachability. More precisely,
we define a C

 -SCC as a strongly-connected component on the induced subgraph G[V(G) \ C].
Consider the auxiliary graph Gc with vertex set (V(G) \C)∪ {c} and all edges of G[V(G) \C], as well

as all edges (c, u) with u ∈ V(G) \ C. Then, c is not contained in a cycle of Gc, and thus, the SCC of
Gc are exactly the C

 -SCC and the single vertex c. By construction, Tc is also a DFS-tree for Gc. Thus,
Tarjan’s DFS-based SCC-detection algorithm (see Lemma 15) on Tc identifies the C

 -SCC as the SCC of
Gc. To mimic the traversal on Gc instead on G[(V(G) \ C) ∪ {c}], the graph on which Tc was originally
defined, it suffices to ignore the back edge leading to the root, i.e., edges of the form (u, c) for u ∈ V(G) \C.
It is thus not necessary to construct the graph Gc explicitly.

The definitions of cmin and cmax imply:

Corollary 13. Let C be a cycle in the digraph G; let Tc be a modified DFS-tree rooted at c ∈ C; and let S be a C
 -SCC

with S ⊆ V(Tc). Then, cmin[c1, v] and cmax[c1, v] are independent of v for every v ∈ S.

This begs the question of whether the v-independent values of cmin[c1, v] and cmax[c1, v] can be
obtained while traversing G. A partial answer is provided by:

Corollary 14. Let C be a cycle in the digraph G; let Tc be a modified DFS-tree rooted at c ∈ C; and let v be the root
of a C
 -SCC. Suppose the values of cmin[c1, w] and cmax[c1, w] are known for w /∈ V(Tc[v]). Then, cmin[c1, v] and

cmax[c1, v] are obtained correctly by postorder traversal of Tc considering all tree and cross edges.

Algorithms 2019, 12, 81 19 of 24

Proof. The only missing information could be a back edge (u, w) with u ∈ V(T[v]) and v ≺ w. Such a back
edge cannot exist because v is by assumption the root of a C

 -SCC, and thus, there is no cycle including u,
v, and w ∈ G[V(G) \ C].

This observation yields a simple solution to obtain the correct entries for cmin[c1, v′] and cmax[c1, v′]
for every v′ ∈ S: determine the C

 -SCC and its root v, and set cmin[c1, v′]← cmin[c1, v] and cmax[c1, v′]←
cmax[c1, v].

Tarjan [8] showed that SCC can be found efficiently by DFS. Below, we will modify the approach
slightly to operate on a given DFS-tree. We therefore briefly outline Tarjan’s SSC algorithm; for full details,
we refer to [8]: First, the vertices are enumerated in preorder. Then, a postorder traversal is used to
compute, for each v, the lowlink `(w), which is recursively defined as:

`(v) := min
(
{`(w)|(v, w) is a tree- or unfinished cross-edge}∪
{ρ(w)|(v, w) is a back edge} ∪ {ρ(v)}

) (8)

A cross edge is only included if it is “unfinished”, i.e., if its endpoint w has not been reported as part
of a previously-completed SCC. A vertex v is the root of an SSC if `(v) = ρ(v). Tarjan’s SSC algorithm now
uses a stack to iterate over every vertex of the SCC S to mark them as finished. This cannot be done in the
same way in a predefined DFS-tree.

The stack can be replaced, however, by an equally-efficient iterative method: Starting from v with
`(v) = ρ(v), simple traverse T[v] starting at v; report all “unfinished” vertices as members of the SSC;
and omit every subtree rooted in a “finished” vertex. To see that this is correct, note that `(w) 6= ρ(w)

for all w ∈ S \ {v}, and hence, w is “unfinished” when the postorder traversal encounters v. Lemma 15
implies that there is a path (v, w1, . . . , wh = w) from v to w in T, with wi ∈ S and thus also “unfinished”.
Thus, if u is “finished”, so are all its descendants, and the subtree T[u] does not need to be considered.
The only difference from Tarjan’s SSC algorithm tree traversal is to retrieve S, which considers every edge
of T once and thus runs in a total time of O(|V|). We summarize the discussion above as:

Lemma 19. The modified version of Tarjan’s SCC algorithm correctly identifies all strongly-connected components
in T in O(|E|+ |V|) time.

Since the correct values of cmin[c1, u] and cmax[c1, u] are computed by postorder traversal of Tc, they are
already available when the root v of a C

 -SCC is encountered. Thus, identification of the C
 -SCC and

the computation of cmin[c1, u] and cmax[c1, u] can be combined in the same tree traversal. The same tree
traversal also guarantees that for every cross edge (u, w), we have either (i) u and w in the same C

 -SCC or
(ii) the values of cmin[c1, w] and cmax[c1, w] are computed correctly.

Now, consider the vertex cj along C, and suppose we have not encountered a one-vertex C
 -cover so

far. Let Tj be the DFS-tree rooted in cj that ignores all vertices already included in a previous DFS-tree.
As for ci, we can compute cmin[cj, v] and cmax[cj, v] with v ∈ Tj along this tree. Then, cmin[cj, v] either
equals cmin[cj, v] computed on Tj or cmin[ci, u] for some u such that (v, u) ∈ E(G), depending on which
has the smaller value of dC(cj, .), and cmax[cj, v] either equals cmax[cj, v] computed on Tj or cmax[ci, u]),
depending on which has the larger value of dC(cj, .). Note that cmin[ci, v] and cmax[ci, v] do not actually
depend on i. In a practical implementation, it is simply stored in dependence of v. The index ci only is
used to keep track of the individual, disjoint DFS-trees Ti rooted in ci in our arguments.

Algorithms 2019, 12, 81 20 of 24

After processing all vertices of C, we have either found a one-vertex C
 -cover of C, or we know,

for every cj ∈ C, the largest C
 -covered interval C(cj, cmax(cj)). Thus, we directly conclude:

L(C) := {C(cj, cmax(cj))|cj ∈ C and cmax(cj)} (9)

In particular, we have shown that for each C, L(C) or a one-vertex cover can be constructed in
linear time.

To detect a quasi-legitimate root, it is necessary to first decide whether C has a total C
 -cover or

a non-empty set K(C) of C
 -cut vertices exists. To this end, a clean C

 -cover B can be used efficiently.
Recall that by Lemma 8, every interval in a clean C

 -cover is extended by at least one other interval
from the C

 -cover. Since a clean C
 -cover contains at most |C| intervals, it is easy to check in linear time

whether a C
 -cut vertex exists: starting from an arbitrary C(u, v) ∈ B, we initialize the upper bound of

the C
 -covered part of C that starts at the successor of u by x := dC(u, v). For every C(u′, v′) ∈ B with

dC(u, u′) < x, we check whether dC(u, u′) > dC(u, v′), in which case a total cover is found, and otherwise,
we update x with max(x, dC(u, v̂)). If no total cover is found when the intervals are exhausted, then x is
a C
 -cut vertex (see the proof of Lemma 8). With the C(u, v) stored, e.g., as array a[u], a total cover or the

C
 -cut vertex x is found in O(|C|) operations.

In practice, however, we do not have access to a clean C
 -cover. However, L(C) can be computed

in linear time. By Corollary 9, there is a clean C
 -cover B ⊂ L(C). We can thus use the same procedure.

The redundant intervals in L(C) are, by definition, contained within intervals belonging to B, and thus,
they do not change the results provided the initial interval C(u, v) is contained in the clean cover B.
By Corollary 10, this is true for the longest interval C(u, v) ∈ L(C). Since L(C) contains at most |C|
intervals, the longest interval and a cut point or the validation of a total cover can be computed in O(|C|).
When L(C) it is a total C

 -cover, the longest interval C(u, v) is contained in a total clean cover, and thus, v is
a legitimate root by Lemma 10. Thus, a quasi-legitimate root v can be retrieved in O(|C|) time. The entire
procedure is summarized in Algorithm 1.

Lemma 20. Given a cycle C in the digraph G, Algorithm 1 identifies a quasi-legitimate root in C in linear time
w.r.t. the size of G[V[C]], the induced subgraph of G reachable from C.

Proof. The correctness of the algorithm follows from the discussion in the previous paragraphs.
The construction of DFS-trees Tj together is linear in the size of G[V[C]] since each edge in G[V[C]]
is considered once. The recursive computation along each Tj is also linear. Since the Tj are disjoint, the total
effort is still linear.

Finally, we note that by construction, no vertex in G[V[C]] reaches any cycle C′ disjoint from G[V[C]].
Hence, when processing the next cycle C′, the vertices (and edges) already visited in the context of
processing C are irrelevant, and thus, G[V[C]] can be disregarded. In other words, the DFS for the next
cycle can be performed in the same digraph G, with all previously processed induced subgraphs marked
as finished. This ensures an overall linear running time for the identification of starting points for all cycles
Ci as in Lemma 17.

Algorithms 2019, 12, 81 21 of 24

Algorithm 1 get_root(C, G) computes a C
 -cover and determines Q(C), as well as a quasi-legitimate root

in C.
Require: digraph G = (V, E) and cycle C

for c ∈ C do

create DFS-tree Tc with root c by ignoring finished and cycle vertices with preorder ρ.
while v traverses Tc in postorder do

`(v)← ρ(v)
for (v, u) ∈ G do

if u ∈ C then

Update cmin[c, v] with u
Update cmax[c, v] with u

else if (v, u) is a back edge then

Update `(v) with ρ(u)
else

if dC(c, cmin[c, v]) > dC(c, cmax[c, v]) then

return legitimate root cmin[c, v]
Update cmin[c, v] with cmin[c, u]
Update cmax[c, v] with cmax[c, u]
if u is unfinished then

Update `(v) with `(u)
if `(v) = ρ(v) then

for u in C
 -SCC with root v do

cmin[c, u]← cmin[c, v]
cmax[c, u]← cmax[c, v]
Set u as finished

Set u such that dC(c, cmax[c, c]) ≤ dC(u, cmax[u, u]) for every c ∈ C
x = dC(u, cmax[u, u])
for c ∈ C in cycle order starting from the successor of u do

if dC(u, c) = x then

return quasi-legitimate root c
if dC(u, c) > dC(u, cmax[c, c]) then

return legitimate root cmax[u, u]
x = max(x, dC(u, cmax[c, c]))

2.7. Putting It All together

Theorem 3. Algorithm 2 correctly identifies the superbubbles of a digraph G in linear time.

Proof. Theorem 2 ensures that for every digraph G, there is a set R of quasi-legitimate roots such that,
given R, the algorithm Superbubble# identifies all superbubbles of G in linear time. Every vertex in V(G)

is reachable from a source or a cycle in G. By Lemma 5, all sources are legitimate roots. Lemma 17 shows
that a set of cycles can be constructed in linear time from which all vertices of G can be reached by DFS.
Algorithm 1 identifies a quasi-legitimate root in a cycle (Lemma 20). As discussed in the text following
Lemma 20, the effort for this step is again linear in size of G. Algorithm 2 therefore correctly identifies the
superbubbles of a digraph G and does so in O(|E|+ |V|) time.

Algorithms 2019, 12, 81 22 of 24

Algorithm 2 Identification of all superbubbles in an arbitrary digraph G.

Require: Digraph G
R← all sources in G
generate a random DFS-forest F̂
find set W of ≺-maximal vertices with a back edge in F̂
generate set C of cycles from W with F̂
for all cycles Ck ∈ C do

run get− root(Ck, G) to identify quasi-legitimate root rk
add rk to R

generate DFS-forest F with root set R
run Superbubble# on F

3. Results

We extended the “Linear Superbubble Detection” (https://github.com/Fabianexe/Superbubble)
software LSD [7] with the new algorithm presented in the previous section. LSD is written in Python and
uses the NetworkX package [10] to handle graph data structures. Since the same data structures are used,
benchmarking the different algorithms provided in LSD allows a fair comparison of running times.

In the implementation, we deviated from the presentation above in two minor details. First, instead
of using the reverse postorder of the DFS-tree, we directly used postorder and the corresponding (trivial)
redefinitions of the helper functions OutChild() and OutParent(). Second, we did not completely
separate the determination of the cycles, the identification of the roots, and the identification of the
superbubbles. Instead, we performed cycle search, root detection, and superbubble identification
immediately for each DFS-tree. Since cycles and superbubbles are necessarily completely contained
within the DFS-trees, this does not affect the correctness of the algorithm. As a by-product, we obtained
a speedup by a constant factor because cycles reachable within a given DFS-tree were marked as “already
processed” in the superbubble detection step and hence were not (superfluously) considered as candidate
additional roots.

In order to benchmark the direct detection algorithm in comparison to other linear-time superbubble
detection algorithms, we used the same datasets as in our previous work [7]. In order to guarantee
comparability, performance data for all algorithms were computed with the same version of LSD on the
same hardware. The results are summarized in Table 1.

For most datasets, we observed an approximately three-fold speedup of Directbubble compared to
LSD. The exception is the Slashdot dataset for which no performance gain was observed.

To understand this outlier, it is necessary to understand the source of the speedup in the other test cases.
In a typical case, both Directbubble and LSD performed three depth-first searches: in LSD, they are used
to determine SCCs, create auxiliary graphs, and detect superbubbles. Directbubble uses them to identify
the cycles, quasi-legitimate roots, and finally the superbubbles. Both need to handle exceptional cases. LSD
requires the construction of the Sung graph if an SCC coincides with a connected component of the input
graph (rather than being just part of it). Since the Sung graph is twice the size of the SCC, this roughly
doubles the running time. Directbubble behaves exceptionally for vertices that are reachable from
a source. In this case, the detection of cycles and quasi-legitimate roots in cycles was skipped, incurring
a substantial speedup. When a graph had neither an SCC that was also a connected component, nor large
subgraphs reachable from a source, then LSD and Directbubble essentially performed the computations
and thus performed very similarly. The Slashdot dataset is such a case. Typically, however, directed graphs
have some sources so that Directbubble outperforms its competitors on most real-life graphs.

https://github.com/Fabianexe/Superbubble

Algorithms 2019, 12, 81 23 of 24

Table 1. Comparison of running times. The five combinations of algorithms compared here are:
Db (Directbubble) refers to the new approach described in this contribution. LSD (using the auxiliary
graphs Ĝ(C) and the stack-based superbubble detector) refers to the algorithm proposed in [7]. S + LSD
combines the Sung graphs as auxiliary graphs [5] with LSD stack-based detector plus a post-filter for the
false positives. LSD + B uses the LSD graph construction with the range-query-based detector of [6], and S
+ B uses Sung graphs together with the range-query-based detector, as well as the necessary post-filters;
see [7] for full details. All computations were performed on a 2.5-GHz quad-core Intel Core i7 processor
(Turbo Boost up to 3.7 GHz) with 6-MB shared L3 cache and 16 GB of 1600-MHz DDR3L onboard memory.
Test datasets were taken from [11] and from the Stanford Large Network Dataset Collection [12]. For each
test graph, we list the number of vertices N, the numbers of edges M, and the number S of superbubbles.

Data N M S Running Times (s)
Db LSD S + LSD LSD + B S + B

Yeast 49,795 130,993 325 1 3 4 5 9
EU Mail 265,214 420,045 13,285 5 14 16 30 32
Slashdot 82,168 948,464 0 16 16 30 22 37
Amazon 403,394 3,387,388 3 13 59 93 84 159
Google 875,713 5,105,039 6477 26 95 147 152 255
Wikipedia 2,394,385 5,021,410 4737 52 160 164 382 418

4. Conclusions

In this contribution, we extended the body of results describing properties of superbubbles,
a particular class of induced subgraphs of a digraph. The analysis presented here was motivated by the
observation that in principle, all superbubbles in G can be identified in linear time in a single depth-first
search, provided the roots of the individual DFS-trees are known beforehand. Our main result is the
observation that a suitable set of starting points, which we call quasi-legitimate roots, (1) always exists
in every given digraph and (2) can be identified in linear time, using two additional DFSs. In the first
pass, a suitable set of cycles is constructed such that every node in G is reachable from a source vertex of
one of these cycles. In the second pass, a peculiar structure of “detours” in a cycle C is used to identify
quasi-legitimate roots in a given cycle. To this end, we defined a notion of C

 -reachability that may also be
interesting in its own right to characterize (short) cycles.

A comparison of running times of Directbubble and previous approaches shows that practically
useful performance gains are obtained essentially from two sources: (1) we dispense with the construction
of auxiliary graphs and (2) we can avoid most of the processing for all vertices reachable from a source in G.
In practice, we observed a speedup of about a factor of three on most, but not all, benchmark cases. In all
cases, Directbubble performed at least as good as all competing algorithms for superbubble detection.

Author Contributions: F.G. and P.F.S. designed the study, developed the theoretical results, and wrote the manuscript.
F.G. implemented the algorithm and evaluated its performance.

Funding: This work was funded by the German Federal Ministry of Education and Research within the project
Competence Center for Scalable Data Services and Solutions (ScaDS) Dresden/Leipzig (BMBF 01IS14014B). The authors
acknowledge support from the German Research Foundation (DFG) and Universität Leipzig within the program of
Open Access Publishing.

Conflicts of Interest: The authors declare no conflict of interest.

Algorithms 2019, 12, 81 24 of 24

References

1. Paten, B.; Eizenga, J.M.; Rosen, Y.M.; Novak, A.M.; Garrison, E.; Hickey, G. Superbubbles, Ultrabubbles,
and Cacti. J. Comput. Biol. 2018, 25, 649–663. [CrossRef] [PubMed]

2. Onodera, T.; Sadakane, K.; Shibuya, T. Detecting superbubbles in assembly graphs. In Proceedings of the
International Workshop on Algorithms in Bioinformatics, Sophia Antipolis, France, 2–4 September 2013; Darling,
A., Stoye, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 8126, pp. 338–348. [CrossRef]

3. Simpson, J.T.; Pop, M. The Theory and Practice of Genome Sequence Assembly. Annu. Rev. Genomics Hum. Genet.
2015, 16, 153–172. [CrossRef] [PubMed]

4. Baichoo, S.; Ouzounis, C.A. Computational complexity of algorithms for sequence comparison, short-read
assembly and genome alignment. Biosystems 2017, 156–157, 72–85. [CrossRef] [PubMed]

5. Sung, W.K.; Sadakane, K.; Shibuya, T.; Belorkar, A.; Pyrogova, I. An O(m log m)-time algorithm for detecting
superbubbles. IEEE/ACM Trans. Comput. Biol. Bioinf. 2015, 12, 770–777. [CrossRef] [PubMed]

6. Brankovic, L.; Iliopoulos, C.S.; Kundu, R.; Mohamed, M.; Pissis, S.P.; Vayani, F. Linear-time superbubble identification
algorithm for genome assembly. Theor. Comput. Sci. 2016, 609, 374–383. [CrossRef]

7. Gärtner, F.; Müller, L.; Stadler, P.F. Superbubbles revisited. Algorithms Mol. Biol. 2018, 13, 16. [CrossRef] [PubMed]
8. Tarjan, R. Depth-First Search and Linear Graph Algorithms. SIAM J. Comput. 1972, 1, 146–160. [CrossRef]
9. Acuña, V.; Grossi, R.; Italiano, G.F.; Lima, L.; Rizzi, R.; Sacomoto, G.; Sagot, M.F.; Sinaimeri, B. On Bubble

Generators in Directed Graphs. In Graph-Theoretic Concepts in Computer Science, 43rd ed.; Bodlaender, H.L.,
Woeginer, G.J., Eds.; Lecture Notes in Computer Science; Springer: Heidelberg, Germany, 2017; Volume 10520,
pp. 18–31. [CrossRef]

10. Hagberg, A.; Schult, D.A.; Swart, P. Exploring network structure, dynamics, and function using NetworkX.
In Proceedings of the 7th Python in Science Conference (SciPy 2008), Pasadena, CA, USA, 19–24 August 2008;
pp. 11–16.

11. Gärtner, F.; Höner zu Siederdissen, C.; Müller, L.; Stadler, P.F. Coordinate Systems for Supergenomes. Algorithms
Mol. Biol. 2018, 13, 15. [CrossRef] [PubMed]

12. Leskovec, J.; Krevl, A. SNAP Datasets: Stanford Large Network Dataset Collection. Available online:
http://snap.stanford.edu/data (accessed on 26 November 2018).

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution (CC
BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1089/cmb.2017.0251
http://www.ncbi.nlm.nih.gov/pubmed/29461862
http://dx.doi.org/10.1007/978-3-642-40453-5_26
http://dx.doi.org/10.1146/annurev-genom-090314-050032
http://www.ncbi.nlm.nih.gov/pubmed/25939056
http://dx.doi.org/10.1016/j.biosystems.2017.03.003
http://www.ncbi.nlm.nih.gov/pubmed/28392341
http://dx.doi.org/10.1109/TCBB.2014.2385696
http://www.ncbi.nlm.nih.gov/pubmed/26357315
http://dx.doi.org/10.1016/j.tcs.2015.10.021
http://dx.doi.org/10.1186/s13015-018-0134-3
http://www.ncbi.nlm.nih.gov/pubmed/30519278
http://dx.doi.org/10.1137/0201010
https://doi.org/10.1007/978-3-319-68705-6_2
http://dx.doi.org/10.1186/s13015-018-0133-4
http://www.ncbi.nlm.nih.gov/pubmed/30258487
http://snap.stanford.edu/data
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Theory
	Oriented Trees and DFS-trees
	Weak Superbubbloids
	Superbubble Detection
	Cycles, C-Covers, and C-Cuts
	Cycles, C-Cover, C-Cuts, and Superbubbles
	Identification of Quasi-Legitimate Roots
	Putting It All together

	Results
	Conclusions
	References

